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Abstract
MAX phase solid solutions physical and mechanical properties may be tuned via

changes in composition, giving them a range of possible technical applications. In the

present study, we extend the MAX phase family by synthesizing (Zr1�xTix)3AlC2

quaternary MAX phases and investigating their mechanical properties using density

functional theory (DFT). The experimentally determined lattice parameters are in

good agreement with the lattice parameters derived by DFT and deviate <0.5% from

Vegard’s law. Ti3AlC2 has a higher Vickers hardness as compared to Zr3AlC2, in

agreement with the available experimental data.
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1 | INTRODUCTION

Mn+1AXn phases (n=integer, M=early transition metal;
A=group 13-16 element and X=C or N) were initially
investigated in the 1960s,1 however, the interest of the
community was captured by a study on the remarkable
properties of Ti3SiC2 nearly two decades ago.2,3 Mn+1AXn

phases exhibit the P63/mmc (no. 194) space group.1,2 The
first (n=1) and second (n=2) members of the family are
known as the 211 and 312 MAX phases respectively. A
feature of them is the highly symmetric unit cell with
atomic layers stacked along the c-direction. Numerous
MAX phases were synthesized that shared these metallic

and ceramic properties (good machinability, high melting
temperature, high thermal shock resistance, high elastic
stiffness, high thermal, and electrical conductivity), effec-
tively motivating their technological application.2-5 The key
for the metallic and ceramic properties is the structure that
consists of the stacking of Mn+1Xn “ceramic” layer(s) inter-
leaved by an A “metallic” layer.2-5

Ti-based MAX phases such as Ti3AlC2 are of signifi-
cant technical interest as they have excellent properties
combined with a strong oxidation resistance in air due to
formation of a passivating Al2O3 outer layer.6 Related
MAX phases have been investigated as candidate materials
for passive safety protection of nuclear fuel cladding (i.e.
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in accident scenarios as occurred at Fukushima, Japan).7-12

For example, in the Accident-Tolerant Fuel (ATF) concept
there is a requirement to protect the nuclear fuel cladding
material (a Zr-based alloy) against oxidation for tens of
hours at temperatures exceeding 1200°C.10 Ti3AlC2 is con-
sidered as it has good oxidation resistance but also low
neutron absorption cross section.13 For the same application
Zrn+1AlCn MAX phases are attractive because Zr-contain-
ing phases will likely adapt better onto current Zr-based
alloys in nuclear fuel cladding in addition to having com-
paratively lower neutron absorption cross section. All in
all, the whole (Zr1�x,Tix)3AlC2 quaternary system is worthy
of study as a promising system to design properties
depending on industry demands.

Indeed quaternary MAX phases have attracted research
interest as there is potential to fine tune the properties of a
given MAX phase.14-20 For example, the right amount of Ge
added to Cr2AlC allowed the resulting MAX phase solid
solution to display an isotropic thermal expansion.21 Exami-
nation of the compositional flexibility of 312 MAX phases in
addition to characterization of their structure and understand-
ing of their physical properties is needed. However, the diffi-
culty of getting single-phase MAX phases (or even with a
yield higher than 90 wt%) is a current challenge, which
needs to be addressed since, for example, the maximum yield
reported for Zr3AlC2 is only 59 wt%.12 In addition, it is still
unclear whether Zr3AlC2 could be formed as a pure ternary
or if it needs addition of impurities such as Si to assist the
nucleation process and/or to stabilize Zr3AlC2.

22

The aim of the present study is to investigate the syn-
thesis and mechanical properties of the (Zr1�xTix)3AlC2

quaternary MAX phases. Lattice parameters calculated by
density functional theory (DFT) are compared with those
determined by X-ray diffraction (XRD) of fabricated
ceramics.

2 | METHODOLOGY

2.1 | Experimental method

Commercial reactants used were ZrH2 grade S (APS 2-
4 lm, >99.7%, Rockwood Lithium, Frankfurt, Germany),
Al (�325 mesh, >99.9%, Alfa Aesar, Heysham, UK), TiH2

grade T (APS ~3.5 lm, >99.9%, Rockwood Lithium,
Frankfurt, Germany), and C (>99.9%, Sigma Aldrich, Dor-
set, UK). Elemental mixtures for Zr3AlC2 were prepared
with stoichiometries for the 312 phase adjusted to 3/1.1/1.9
for Zr/Al/C to compensate for partial Al sublimation and C
uptake from the graphite die during sintering,8 as is usually
done for MAX phase syntheses.

Powder mixtures were prepared in a glove box under a
controlled atmosphere of Ar. Then, the powder mixtures
were dry-milled to break up agglomerates and produce

homogeneous mixing in a planetary ball mill PM-100 (Ret-
zch, Han, Germany) in a polyvinyl jar sealed inside the
glove box for 30 minutes at 150 rpm, which is a speed
high enough to produce an homogeneous mixing and break
agglomerates but low enough to avoid contamination from
the media. Milling was performed in a dry environment
with 10 mm diameter ZrO2 balls (Grade TZ-3Y, Tosoh,
Japan) as milling media. Finally, the powders were precom-
pacted at 20 MPa in a 30 mm diameter graphite die, which
was placed in a hot-press HP W/25/1 (FCT Systeme,
Frankenblick, Germany) and heated to 1450°C for 60 min-
utes under an applied pressure of 30 MPa to produce the
MAX phase in the (Zr1�x,Tix)3AlC2 quaternary system. A
dwell time of 60 minutes was found to be optimum as
shorter or longer dwells reduce the yield of the MAX
phases formed. Sintering was performed at an intermediate
temperature of 1450°C to form solid solutions in the
(Zr1�x,Tix)3AlC2 quaternary system, considering that the
temperature to produce Zr3AlC2 is 1500°C12 and Ti3AlC2

is 1400°C.23

A PANalytical instrument was used for X-Ray diffrac-
tion (XRD) studies, using a 0.02° 2Ɵ step and an angular
range from 5 to 100°. Crystalline phase determination was
carried out using International Center for Diffraction Data
database (ICDD)24 and the Xpert High Score plus software
(PANalytical, Almelo, the Netherlands) for phase match-
ing.25 Determination of lattice parameters was carried out
using a full-pattern matching method (Le Bail function)
with the help of the Fullprof suite program.25 Finally,
phase ratios were determined by Rietveld refinement using
Xpert High Score software. Sample observations on pol-
ished cross sections with 1 lm surface finish, were carried
out in a scanning electron microscope (SEM) Auriga
(Zeiss, Oberkochen, Germany), under back-scattering elec-
tron (BSE) and secondary electron (SE) imaging modes,
equipped with an energy-dispersive spectroscopy (EDS)
detector with ultra-thin polymer window (Oxford Instru-
ments, Oxford, UK).

2.2 | Theoretical method

The plane wave DFT code CASTEP,26 was used with
exchange and correlation interactions being formulated by
employing the corrected density functional of Perdew,
Burke and Ernzerhof (PBE)27 in the generalized gradient
approximation (GGA) and in conjunction with ultrasoft
pseudopotentials.28 The virtual crystal approximation
(VCA) was used initially to model disorder in these cells;
this is an effective medium method that can be used to
model disordered alloys.29 In VCA disorder is introduced
by assigning partial occupancies to each atomic site of the
disordered sublattice. A disadvantage of the technique is
the assumption of a homogeneous distribution of atoms on
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the disordered sublattice and this does not consider the pos-
sibility of clustering. For all the VCA calculations, the unit
cell was relaxed to a stress of less than 50 MPa using the
algorithm of Pfrommer et al.,30 with a plane wave basis set
cutoff of 450 eV and a 49491 Monkhorst-Pack (MP)31 k-
point grid which was sufficient to give a converged accu-
racy of 0.1 eV per formula unit. Traditional point defect
calculations were performed to check the VCA values and
examine the antisite defects TiZr and ZrTi (i.e. replacement
of host metal atoms by the opposite) in 19191 (12 atoms),
29291 (48 atoms) and 39391 (108 atoms) cells using a
similar or smaller k-point spacing and the same energy cut-
off. The minimum defect-defect separation in these cells is
1a, 2a, and 3a (a~3 �A) and so they are representative of
single compositions within the phase diagram rather than
an infinitely dilute limit. Increasing the cut-off energy to
650 eV and decreasing the k-point spacing to 0.025 �A�1

resulted in a change in the final cell volume of a 39391
supercell defect calculation of 0.013 �A3 per formula unit
which we consider to be inconsequential to the quality of
comparison with diffraction data.

3 | RESULTS AND DISCUSSION

3.1 | Structural properties

The phase compositions of the obtained samples were
determined using XRD (Figure 1), by performing XRD
refinements (Table 1) and with the help of SEM and EDS
measurements (Figure 2). Crystalline phase determination
by XRD (Figure 1) first revealed the formation of (Zr1�x,
Tix)3AlC2 MAX phases as well as ZrC or TiC over the
whole range studied. In addition, XRD peaks correspond-
ing to 211 MAX phases were detected in the targeted com-
positions Zr2.5Ti0.5AlC2, Zr2TiAlC2, Zr1.5Ti1.5AlC2, and
ZrTi2AlC2, which suggests the possibility of obtaining
solid solutions in the 211 system and this will be the sub-
ject of a further study. Figure 2 shows SEM microstruc-
tures of compositions Zr2TiAlC2, Zr1.5Ti1.5AlC2 and
ZrTi2AlC2 and the different EDS spectra used to quantify
the real stoichiometry of (Zr1�x,Tix)3AlC2 MAX phases.
One or two phases with lamellar structure are seen in each
sample, visually confirming the formation of MAX phases.
EDS was used to determine the obtained x values in the
312 MAX phases. For the ZrTi2AlC2 sample, the accumu-
lation of EDS point measurements revealed the presence of
two different x=Ti/(Zr+Ti) ratios, the major one being
x=0.80, the other x=0.45. To differentiate the 211 and the
312 MAX phases, the lattice parameters of the 312 and
211 quaternary phases were compared to those of ternary
end-members (Table 1). It was then evident, as confirmed
by Figure 3, that the 312 MAX phase was the Ti-rich one
(x=0.8), while the 211 was Zr-rich (x=0.45). Table 1

reports the compositions of the 312 quaternary MAX phase
synthesized. It was found that samples Zr2.5Ti0.5AlC2,
Zr2TiAlC2 and Zr0.5Ti2.5AlC2 led to actual compositions
fairly close to those targeted. However, for Zr1.5Ti1.5AlC2

and ZrTi2AlC2 the deviations were greater: Zr1.5Ti1.5AlC2

was low in Ti as the composition (Zr0.56Ti0.44)3AlC2 was
determined by EDS and conversely ZrTi2AlC2 was found
with an excess of Ti ((Zr0.20Ti0.80)3AlC2 measured). These
observations may be due to the existence of a miscibility
gap in the (Zr1�x,Tix)3AlC2 system for x values in the
0.45<x<0.80 range. This would also explain the formation
of ZrC and a Zr-rich 211 MAX phase in the ZrTi2AlC2

sample to accommodate Zr (and Al and C) excess(es). By
extension, the present results suggest also that contrary to
the analogous (Cr1�xTix)3AlC2

9,32 and (Mo1�xTix)3AlC2
33

systems, there is no formation of a (Zr2/3Ti1/3)3AlC2 com-
pound stabilized by ordering of the Zr and Ti cations on
the respective 4f and 2a Wyckoff sites. Table 1 also reports
the lattice parameters determined for (Zr1�x,Tix)3AlC2,
(Zr1�x,Tix)2AlC, ZrC, and TiC phases. The lattice parame-
ters for ZrC are similar to the lowest reported for ZrC,34

which suggests that highly substoichiometric ZrC1�x is
formed (with x�0.4),34 and/or that some substitution of Zr
by Ti occurs. Conversely, TiC only found in the
Zr0.5Ti2.5AlC2 sample, has a rather high unit cell parameter
(4.362 �A) compared to its usual value (4.328 �A) and
should therefore contain some Zr. More importantly, it
could be seen in Table 1 that there is a gradual decrease in
the lattice parameters of the 312 MAX phases from
Zr3AlC2 to Ti3AlC2, in agreement with the formation of
(Zr1�x,Tix)3AlC2 solid solutions.

In Table 1, we also report the synthesis yields. The
MAX phase (Zr0.15Ti0.85)3AlC2 was produced with a 94 wt
% yield with only TiC as a secondary phase. The other
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samples led to MAX phase yields (312 and 211 combined)
of 61 to 77 wt% and the minimum yield for a 312 MAX
phase was obtained for (Zr0.69Ti0.31)3AlC2 (41 wt%). The
recent discovery of Zr3AlC2 and Zr2AlC2 by Lapauw
et al.12,35 has raised some questions about the mechanism
of their synthesis, as others investigators were unable to
synthesize them.8 Lapauw et al.12,35 suggested that the
choice of ZrH2 powders as a reactant in their work could
have led to the formation of Zr3AlC2 and Zr2AlC2 and
highlighted the need for further study.35 It is well-known
that impurities play a key role in the nucleation of MAX
phases, for example the deliberate addition of a small
amount of Si (~1 to 4 at.%) in the reaction powder mix of
Ti3AlC2 leads to significant yield, purity, and grain size
improvements.36-39 Furthermore, it has been demonstrated
recently that addition of 1.6 at.% of Si leads to an
increased MAX phase yield from 7 wt% to 59 wt% in
Zr3AlC2,

22 which is exactly the same yield reported by
Lapauw et al.12 using an impurity-rich (including Si) ZrH2

powder reactant. The nucleation was presumably assisted
by the presence of Zr5Si3 particles in an analogous manner
to how Ti5Si3 has been found to enhance the nucleation of
Ti3AlC2.

36 In the present study it is significant that a com-
position such as Zr2.5Ti0.5AlC2 can be produced with a
61 wt% yield while, using similar experimental conditions
with the same reactants, Zr3AlC2 barely forms (7 wt%).22

It may thus be inferred that the presence of Ti assists
nucleation and/or growth of (Zr1�x,Tix)3AlC2 and/or that Ti
integration in Zr3AlC2 somehow favors the MAX phase
formation rather than of competing phases.

Figure 3 combines the above-discussed results by plot-
ting for the considered (Zr1�xTix)3AlC2 quaternary MAX
phases the experimental and VCA-calculated lattice param-
eters as a function of the EDS-determined x values, reveal-
ing good agreement between the experimental and VCA
values. We also considered point defect calculations of TiZr
and ZrTi defects in 19191, 29291 and 39391 cells and
the calculated lattice parameter range is very close to the
experimental lattice parameters. A way to assess this is by
Vegard’s law which is an empirical rule stating that a prop-
erty of an alloy (here we consider lattice parameters) can
be calculated from a linear interpolation of the property
values of its constituent elements (or for higher order
alloys, constituent compounds).40,41 In essence the lattice
parameters are in good agreement with Vegard’s Law as
their fractional deviation from the line drawn between the
end-members’ values is only up to 0.5% (refer to Figure 4)
except for the c lattice parameter of (Zr0.20Ti0.80)3AlC2

which has a deviation of 1%. These deviations from
Vegard’s law may suggest some tendency for Zr-Ti order-
ing and this should be addressed using extensive supercells.
Lapauw et al.42 determined the formation of solid solutions
in the (Nb1�x,Zrx)4AlC3 quaternary system with x≤0.5 and
observed a deviation from Vegard’s law above x=0.185,
which is similar with the present study as x≥0.2 here devi-
ates from Vegard’s Law (up to 1%). However, it was con-
cluded that there was a solid solubility limit for Zr
additions x>0.185 as the fraction of (Nb,Zr)C increased. In
addition, lattice parameters a and c experimentally
observed for x>0.185 followed a nonlinear-opposite bowing

TABLE 1 Lattice parameters of (Zr1�x,Tix)3AlC2 MAX phases and of secondary phases (Zr1�x,Tix)2AlC and (Zr,Ti)C

Sample
(Targeted
compound)

Phases (composition
from EDS)

Space
groups

Unit cell parameters
Phase ratioa

(wt%)a (�A) b (�A) c (�A) V (�A3)

Zr3AlC2
22 Zr3AlC2 P63/mmc 3.3287 (4) 3.3287 (4) 20.011 (1) 192.01 (6) 7 (1)

Zr2.5Ti0.5AlC2 (Zr0.815Ti0.185)3AlC2 P63/mmc 3.2900 (4) 3.2900 (4) 19.696 (4) 184.63 (8) 61 (2)

Zr(Ti)C Fm3m 4.6597 (6) 4.6597 (6) 4.6597 (6) 4.6597 (6) 39 (2)

Zr2TiAlC2 (Zr0.69Ti0.31)3AlC2 P63/mmc 3.2674 (5) 3.2674(5) 19.572(4) 180.96(6) 41(2)

(Zr,Ti)2AlC P63/mmc 3.184 (1) 3.184(1) 14.046(4) 123.3(4) 30(2)

Zr(Ti)C Fm3m 4.6523 (9) 4.6523(9) 4.6523(9) 100.70(3) 29(2)

Zr1.5Ti1.5AlC2 (Zr0.56Ti0.44)3AlC2 P63/mmc 3.2317 (9) 3.2317(9) 19.397(5) 175.44(9) 51(2)

(Zr,Ti)2AlC P63/mmc 3.148 (1) 3.148(1) 13.93(6) 119.6(5) 26(2)

Zr(Ti)C Fm3m 4.646 (1) 4.646(1) 4.646(1) 100.28(4) 23(2)

ZrTi2AlC2 (Zr0.20Ti0.80)3AlC2 P63/mmc 3.1276 (8) 3.1276(8) 18.816(4) 159.40(7) 69(2)

Zr(Ti)C Fm3m 4.642 (1) 4.642(1) 4.642(1) 100.05(6) 31(2)

Zr0.5Ti2.5AlC2 (Zr0.15Ti0.85)3AlC2 P63/mmc 3.1156 (5) 3.1156 (5) 18.750 (4) 157.62 (5) 94 (1)

Ti(Zr)C Fm3m 4.3623 (1) 4.3623 (1) 4.3623 (1) 83.013 (5) 6 (1)

Ti3AlC2
38 Ti3AlC2 P63/mmc 3.0786 () 3.0786 () 18.73 () 153.736 ()

aFor phase ratio determination, very minor phases (eg. 211 MAX phase in Zr2.5Ti0.5AlC2) had to be excluded. This is expected to have a very limited effect on the
calculated values.
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trend above x>0.185 with a deviation of ~3%.42 Figure 3
also graphically support the probable existence of a misci-
bility gap as we were not able to get a (Zr1�x,Tix)3AlC2

composition with 0.45<x<0.80, checked by EDS, despite
targeting x values of x=0.5 and x=2/3.

3.2 | Population analysis and theoretical
hardness

The population analysis in density functional theory using the
CASTEP module is performed with a projection of the plane
wave states onto a localized basis by means of a method
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developed by Sanchez-Portal et al.43 Population analysis of
the resulting projected states is executed via the Mulliken for-
malism.44 This method is extensively used in the analysis of
electronic structure computations with the Linear Combination
of Atomic Orbitals (LCAO) basis sets. In addition to provid-
ing a relevant condition in favor of bonding between atoms,
the overlap population can be used to judge the covalent or
ionic character of a bond. The bond population with a high
value is a sign of a covalent bond, while a low value signifies
an ionic interaction. The bonding and antibonding states are
due to positive and negative bond overlap populations respec-
tively. An additional gauge of ionic nature can be achieved
from the effective ionic valence, which is computed as the dif-
ference between the formal ionic charge and the Mulliken
charge on the anion species. If the value of effective valence is
zero a perfectly ionic bond exists, while with values above
zero the levels of covalency increase. The calculated Mulliken
atomic populations and effective valence for nearest neighbors
are presented in Table 2. Table 3 also lists the Mulliken bond
number, bond length and bond overlap population of
(Zr1�xTix)3AlC2 for x=0 and 1.

The effective valence indicates that the covalency in
chemical bonding by the two end-members of MAX phase
solid solutions (Zr1�xTix)3AlC2 is prominent with the level
of covalency for these two compositions being similar.
From the calculated bond population, it is seen that the Zr–
C and Zr–Al bonds are slightly more covalent in Zr3AlC2

than the corresponding Ti–C and Ti–Al bonds in Ti3AlC2.
Moreover, a bond between two Zr atoms in Zr3AlC2 arises
with small negative populations but the similar Ti–Ti bond
in Ti3AlC2 appears with large negative populations. The
metallic population to bond population ratio fm=P

l0/Pl is
used as a measure of metallicity of the chemical bond.45,46

The calculated values of metallicity for the Ti1–C, Ti2–C
and Ti–Al bonds in Ti3AlC2 are found to be 0.062, 0.082
and 0.150, whereas Zr1–C, Zr2–C, and Zr–Al bonds in
Zr3AlC2 have respective values of 0.045, 0.062, and 0.079.
It is evident that the bonds between transition metals and
aluminum show a high degree of metallicity in both the

end-members in comparison to the other bonds. In fact, the
nature of bonding in the two end-members of (Zr1�xTix)3-
AlC2 MAX phases may be described as a combination of
covalent and metallic.

Gao47 formulated equations to calculate the theoretical
Vickers’s hardness for nonmetallic compounds using Mul-
liken bond population within DFT. Although this method
successfully predicts the hardness of a range of nonmetallic
materials, it fails to evaluate the hardness of compounds
having partial metallic bonding like MAX phases because
of the delocalization of metallic bonding.48 Gou et al.45

introduced an additional term called metallic population to
compensate the effect of delocalization of metallic bonding
and reformulated Gao’s equation as:

Hl
m ¼ 740ðPl � Pl0 ÞðmlbÞ�5=3

where Pl refers to the Mulliken overlap population of the
l-type bond, Pl0 is introduced for the metallic population
and is evaluated from the unit cell volume V and the num-
ber of free electrons in a cell nfree ¼

R EF

EP
NðEÞdE as

Pl0 = nfree/V and mlbis the volume of a bond of l-type,
which is calculated using the bond length dl of type l and
the number of bonds Nm

b of type m per unit volume with
mlb ¼ ðdlÞ3=Pm½ðdlÞ3Nv

b�. For complex multiband crystals,
the hardness can be calculated as a geometric average of
all bond harnesses using:49,50

TABLE 2 Population analysis of (Zr1�xTix)3AlC2 for x=0 and 1

Compounds Species

Mulliken atomic populations

Effective valence charge (e)s p d Total Charge (e)

Zr3AlC2 C 1.50 3.30 0.00 4.79 �0.79 –

Al 1.15 1.93 0.00 3.08 �0.08 3.08

Zr(1) 2.18 6.48 2.60 11.25 0.75 3.25

Zr(2) 2.25 6.63 2.67 11.54 0.46 3.54

Ti3AlC2 C 1.48 3.25 0.00 4.73 �0.73 –

Al 1.08 1.96 0.00 3.04 �0.04 3.04

Ti(1) 2.13 6.62 2.61 11.35 0.65 3.35

Ti(2) 2.17 6.75 2.65 11.58 0.42 3.58

TABLE 3 Calculated Mulliken bond number nl, bond length dl,
and bond overlap population Pl of l-type bond of (Zr1�xTix)3AlC2

for x=0 and 1 (with their metallic populations in parenthesis)

Ti3AlC2 (P
l0=0.07208) Zr3AlC2 (P

l0=0.05474)

Bond nl dl (�A) Pl Bond nl dl (�A) Pl

Ti1–C 4 2.07550 1.16 Zr1–C 4 2.25771 1.22

Ti2–C 4 2.19815 0.88 Zr2–C 4 2.38753 0.89

Ti–Al 4 2.90778 0.48 Zr–Al 4 3.07672 0.69

Ti–Ti 4 2.95899 �0.54 Zr–Zr 4 3.22779 �0.34

C–C 2 3.13896 �0.09 C–C 2 3.41744 �0.07
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HV ¼ ½P
l
ðHl

v Þn
l �

1
Rnl

where nl is the number of bond of type l comprising the
actual multiband crystal. The calculated values of the Vick-
ers hardness for the two end compounds are listed in
Table 4. The computed Vickers hardness values for
Ti3AlC2 and Zr3AlC2 are 8.96 and 7.15 GPa respectively.
For comparison, the experimental values are 11.4 and
4.4�0.4 GPa for Ti3AlC2 and Zr3AlC2 respectively.12,51

Hardness values obtained from nanoindentation experi-
ments carried out as a function of load (11.4 GPa for
Ti3AlC2)

51 are larger than the early determined microhard-
ness (in the range of 3-7 GPa for Ti3AlC2) values.

52-54 The
present value is in good agreement with the previous theo-
retical values on Ti3AlC2.

55 Bei et al.39 remarked that sev-
eral grains are involved in the deformation process when
indentation tests (micro- or nano-indentation) are performed
with a large load. Consequently, the measured hardness
values are likely affected by grain boundaries and impuri-
ties and this may explain the differences between the
experimental and theoretical values.

4 | CONCLUSIONS

In the present study, we extend the MAX phase family by
the synthesis of (Zr1�xTix)3AlC2 quaternary MAX phases.
The derived and experimental lattice parameters are in
agreement and both a and c lattice parameters were found
to follow Vegard’s law. It was, however, noted that no
compositions were able to be experimentally obtained
inside the 0.45<x<0.80 range, suggesting the existence of a
miscibility gap for this range. Ti3AlC2 is calculated to have
a higher Vickers hardness as compared to Zr3AlC2, in
agreement with the available experimental data.
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