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Shell model for buoyancy-driven turbulence

Abhishek Kumar1, ∗ and Mahendra K. Verma1, †

1Department of Physics, Indian Institute of Technology Kanpur, Kanpur, India 208016

In this paper we present a unified shell model for stably stratified and convective turbulence.
Numerical simulation of this model for stably stratified flow shows Bolgiano-Obukhbov scaling in
which the kinetic energy spectrum varies as k−11/5. The shell model of convective turbulence yields
Kolmogorov’s spectrum. These results are consistent with the energy flux and energy feed due to
buoyancy, and are in good agreement with direct numerical simulations of Kumar et al. [Phys. Rev.
E 90, 023016 (2014)].

I. INTRODUCTION

Turbulence remains one of the unsolved problems of
classical physics. Turbulence generates strong nonlinear
interactions among the large number of modes of the sys-
tem, which makes theoretical analysis of such flows highly
intractable. Using Kolmogorov’s theory of fluid turbu-
lence, it can be shown that the degrees of freedom of a
turbulent flow with Reynolds number Re is (Re)9/4 [1].
Consequently, a numerical simulation of a turbulent flow
with a moderate Reynolds number of Re ≈ 106 requires
1027/2 ≈ 31 trillion grid points, which is impossible even
on the most sophisticated supercomputer of today.

A low-dimensional model called shell model of turbu-
lence [2, 3] is reasonably successful in explaining cer-
tain features of turbulence, e.g., it reproduces the Kol-
mogorov’s theory of fluid turbulence, as well as the ex-
perimentally observed intermittency corrections [2, 3]. In
a shell model, a single shell represents all the modes of a
logarithmically-binned shell, hence the number of modes
in a shell model is much smaller than (Re)9/4. Conse-
quently, a large Reynolds number can be easily achieved
in a shell model with 40 or more shells.

A large body of work exists on the shell model of fluid
turbulence. However, till date, there is no shell model for
the stably stratified turbulence, and there is no conver-
gence on the shell model for the convective turbulence.
Brandenburg [4] and Mingshun and Shida [5], have con-
structed shell models for convective turbulence, namely
Rayleigh Bénard convection, but their results are diver-
gent (to be discussed later; also see [6]). In this paper, we
introduce a shell model that describes both stably strat-
ified and convective turbulence; we can go from one to
the other with a change of sign in the density or temper-
ature gradient. Our shell model reproduces the numer-
ical results of Kumar et al. [7], according to which sta-
bly stratified turbulence exhibits Bolgiano-Obukhov scal-
ing [8–10], and convective turbulence shows Kolmogorov
scaling.

Buoyancy-induced turbulence [10], often encountered
in geophysics, astrophysics, atmospheric and solar
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physics, engineering, come in two categories: (a) Stably
stratified flows in which a lighter fluid is above a heavier
fluid. These flows are stable because of their stable den-
sity stratification; (b) Convective flows in which a heavier
(or colder) fluid is above a lighter (or hotter) fluid. Such
flow configurations are unstable, hence, the heavier fluid
elements come down, and the lighter ones go up. The
linear regimes of the above flow are easy to solve, and
they yield gravity waves and convective instabilities re-
spectively. However, the turbulent aspects of such flows
are active areas of research.

For stably stratified turbulence, Bolgiano [8] and
Obukhov [9] first proposed a phenomenology, according
to which for k < kB (k is wavenumber, and kB is Bol-
giano wavenumber [8]), the kinetic energy (KE) spectrum
Eu(k), entropy spectrum Eθ(k), KE energy flux Πu(k),
and entropy flux Πθ(k) are

Eu(k) = c1(α2g2εθ)
2/5k−11/5, (1)

Eθ(k) = c2(αg)−2/5ε
4/5
θ k−7/5, (2)

Πu(k) = c3(α2g2εθ)
3/5k−4/5, (3)

Πθ(k) = εθ = constant. (4)

Here u and θ are the velocity and temperature fluctua-
tions respectively, α is the thermal expansion coefficient,
g is the acceleration due to gravity, εu and εθ are the
KE and entropy dissipation rates respectively, and ci’s
are constants. The KE flux Πu(k) is forward, and it de-
creases with k due to a conversion of kinetic energy to
potential energy. This decrease Πu(k) causes a steepen-
ing in the kinetic energy spectrum to k−11/5, compared
to Kolmogorov’s classical k−5/3 spectrum. Note that the
stably stratified flows is also described in terms of den-
sity fluctuation ρ′, which leads to an equivalent descrip-
tion since ρ′ ∝ −θ. In convective turbulence, θ2/2 is
referred to as the entropy, but in stably stratified turbu-
lence, ρ′2/2 is called the potential energy.

Bolgiano [8] also showed that the buoyancy effects be-
come somewhat insignificant in the wavenumber band
kB < k < kd, where kd is the dissipation wavenum-
ber. Therefore, Eu(k), Eθ(k) ∼ k−5/3, Πu(k) = εu,
and Πθ(k) = εθ. The aforementioned scaling, k−11/5

for k < kB , and k−5/3 for kB < k < kd, is referred
to as Bolgiano-Obukhov (BO) phenomenology. For con-
vective turbulence, in particular for the idealised version
called Rayleigh Bénard convection (RBC), Procaccia and
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Zeitak [11], L’vov [12], L’vov and Falkovich [13], and Ru-
binstein [14] argued in favour of BO scaling.

The numerical and experimental findings however are
inconclusive [10, 15–17]. In a recent numerical simula-
tion, Kumar et al. [7] analysed the above phenomenolo-
gies in a great detail. They showed that stably stratified
turbulence under strong buoyancy exhibits k−11/5 energy
spectrum, as predicted by Bolgiano [8] and Obukhov [9].
They observed that F (k) = Re(〈ukθ∗k〉) < 0, thus cor-
roborating the net conversion of kinetic energy to po-
tential energy. For RBC, Kumar et al. [7] showed that
F (k) = Re(〈ukθ∗k〉) > 0, which is interpreted as a con-
version of potential energy to kinetic energy, opposite
to that in stably stratified turbulence. As a result, for
RBC, the KE flux Πu(k) increases marginally with k,
and KE exhibits an approximate Kolmogorov spectrum
k−5/3, contrary to the earlier predictions [11–14]. The
numerical results of Kumar et al. [7] are consistent with
those of Borue and Orszag [18].

The powerlaw regimes in Kumar et al.’s [7] simulations
are somewhat narrow. Also, they could not observe the
dual spectrum of BO phenomenology, which may require
much higher numerical resolution than 10243. In this pa-
per, we present a unified shell model of stably stratified
and convective turbulence that overcomes some of the
aforementioned limitations of the numerical simulations.
For the unified shell model for the buoyancy driven flows,
we assume that the fluid is subjected to a mean tempera-
ture gradient, dT̄ /dz, which is positive for a stably strat-
ified flow (cold below and hot above), and is negative
for a convective flow (hot below and cold above). Here
T̄ (z) is computed by averaging the temperature over the
horizontal plane whose height is at z.

The outline of the paper is as follows. In Sec. II, we
introduce unified shell model, which can solve both sta-
bly stratified and convective turbulence; we discuss the
construction of nonlinear terms, the required constraints,
and the method for computing the energy spectrum and
flux. Numerical results of the shell models for the stably
stratified turbulence and the convective turbulence are
discussed in Sec. III and IV respectively. We conclude
in Sec. V.

II. SHELL MODEL FOR BUOYANCY-DRIVEN
TURBULENCE

Our shell model for the buoyancy-driven turbulence is

dun
dt

= Nn[u, u] + αgθn − νk2nun + fn, (5)

dθn
dt

= Nn[u, θ]− dT̄

dz
un − κk2nθn, (6)

where un and θn are the shell variables for the velocity
and temperature fluctuations respectively, fn represents
the external force field, kn = k0λ

n is the wavenumber of
the n-th shell, and ν and κ are the kinematic viscosity

and thermal diffusivity, respectively, of the fluid. We
choose λ = (

√
5 + 1)/2, the golden mean [2].

The nonlinear terms Nn[u, u] and Nn[u, θ] are con-
structed keeping in mind the conservation of kinetic en-
ergy

∫
dr(u2/2), kinetic helicity

∫
dr(u · ω), and en-

tropy
∫
dr(θ2/2) in the absence of diffusive and forcing

terms. For the shell model, the corresponding quali-
ties are

∑
n |un|2/2,

∑
n(−1)nkn|un|2, and

∑
n |θn|2/2

respectively. The nonlinear term Nn[u, u] has been con-
structed earlier by invoking the conservation of kinetic
energy and kinetic helicity as [see e.g, [19]]

Nn[u, u] = −i(a1knu∗n+1un+2 + a2kn−1u
∗
n−1un+1

−a3kn−2un−1un−2). (7)

with constraints a1+a2+a3 = 0 and a1−λa2+λ2a3 = 0.
For our computation, we choose a1 = 1, a2 = λ− 2, and
a3 = 1− λ [2].

For the construction of the nonlinear term Nn[u, θ], we
use the fact that the nonlinear term of the temperature
equation is a bilinear product of the temperature fluctu-
ation and the velocity fluctuation. Also, the conservation
of entropy yields a condition

Re

(∑
n

θ∗nNn[u, θ]

)
= 0. (8)

A combination of the above yields

Nn[u, θ] = −i[kn(d1u
∗
n+1θn+2 + d3θ

∗
n+1un+2)

+kn−1(d2u
∗
n−1θn+1 − d3θ∗n−1un+1)

−kn−2(−d1un−1θn−2 − d2θn−1un−2)] (9)

with arbitrary d1, d2, and d3. For our shell model, we
choose d1 = 1, d2 = λ−2, and d3 = 1−λ. For consistency,
we choose the boundary conditions u−1 = u0 = θ−1 =
θ0 = 0 and uN+1 = uN+2 = θN+1 = θN+2 = 0, where N
is the total number of shells. Also note that we use Sabra
model [19] that yields less fluctuations for the spectrum
compared to the GOY model [3, 19, 20].

The second term in the RHS of Eq. (5), αgθn, is
the buoyancy term, while −(dT̄ /dz) is the temperature
stratification (or equivalently density stratification) term.
Clearly, dT̄ /dz > 0 for a stably stratified flow, and
dT̄ /dz < 0 for the convective turbulence.

The shell model for RBC does not require forcing to
maintain a steady state. However, the shell model for
the stably stratified turbulence requires a forcing for the
same; we force a set of small wavenumber shells (large
length-scale modes) randomly so as to feed a constant
energy supply rate ε to the system. We assume that the
forcing shells receive equal amount of energy. If nf shells
are forced, then the above conditions yield the force at
the n-th shell as

fn =

√
ε

nf∆t
eiφn , (10)

where φn is the random phase of the n-th shell chosen
from the uniform distribution in [0, 2π]. In our simulation
we force the shells n = 3 and 4, hence nf = 2.



3

It is convenient to work with the nondimensionalized
equations, which is achieved by using box height or the

characteristic length d as the length scale,
√
αg|dT̄ /dz|d2

as the velocity scale, and |dT̄ /dz|d as the tempera-

ture scale. Therefore, un = u′n
√
αg|dT̄ /dz|d2, θn =

θ′n|dT̄ /dz|d, kn = k′n/d, and t = t′(d/
√
αg|dT̄ /dz|d2).

In terms of nondimensonalized variables, the equations
are

du′n
dt′

= N ′n[u′, u′] + θ′n −
√

Pr

Ra
k′2n u

′
n + f ′n, (11)

dθ′n
dt′

= N ′n[u′, θ′]− Su′n −
1√

RaPr
k′2n θ

′
n, (12)

where S = 1 for positive |dT̄ /dz|, and S = −1 for nega-
tive |dT̄ /dz|.

We remark that ours is the first shell model for the
stably stratified turbulence. For RBC, Brandenburg [4],
and Mingshun and Shida [5] had constructed shell mod-
els. Our shell model differs quite significantly from that
of Brandenburg. The shell model “2” of Mingshun and
Shida [5] is applicable to neutral stratification, and it is
a subset of our shell model. The shell model of Ching
and Cheng [6] is same as that of Brandenburg [4].

The important parameters for the buoyancy-driven
turbulence are: the Prandtl number Pr = ν/κ, the
Reynolds number is Re = urmsd/ν, and

Brunt Väisälä freq. Nf =

√
g

ρ0

∣∣∣∣dρ̄dz
∣∣∣∣

=

√
αg

∣∣∣∣dT̄dz
∣∣∣∣ (13)

Rayleigh number Ra =
d4αg

νκ

∣∣∣∣dT̄dz
∣∣∣∣ (14)

Froude number Fr =
urms

dNf
(15)

Richardson number Ri =
αgd2

u2rms

∣∣∣∣dT̄dz
∣∣∣∣ (16)

where urms is the rms velocity of flow, and d is the char-
acteristic length scale. Note that the Brunt Väisälä fre-
quency is the frequency of the gravity wave, the Froude
number is the ratio of the characteristic fluid velocity
and the gravitational wave velocity, and the Richardson
number is the ratio of the buoyancy and the nonlinearity
(u · ∇)u. For convenience, the primes from the variables
are dropped in our subsequent discussion.

Note that for RBC, the critical Rayleigh number Rac =
1, after which the flow becomes unstable. Due to the
lower critical Rayleigh number in the shell model, turbu-
lence appears at a lower Rayleigh number compared to
that observed in direct numerical simulations. We com-
pute energy spectrum [Eu(k)] and the entropy spectrum

[Eθ(k)], defined as

Eu(k) =
|uk|2

k
, (17)

Eθ(k) =
|θk|2

k
, (18)

using the steady state data.
We also compute the energy and entropy fluxes. In

fluid turbulence, the energy flux Π(k) is defined [21] as
the rate of energy transfer from modes inside a sphere of
radius k to the modes outside the sphere. For the shell
model, the energy flux Π(k) is the rate of energy transfer
from the shells within the sphere of radius k, i.e. m ∈
[0, k], to the shells outside the sphere, i.e. n ∈ (k,N ] [2]:

Πu(k) =
∑
n>k

∑
m≤k

∑
p

−kpIm(upumu
∗
n), (19)

Similarly, the entropy flux Πθ(k) is defined as the rate
of entropy transfer from the shells within the sphere of
radius k to the shells outside the sphere, i.e.,

Πθ(k) =
∑
n>k

∑
m≤k

∑
p

−kpIm(upθmθ
∗
n). (20)

We simulate the aforementioned shell model [Eqs. (11,
12)] for stably-stratified and convective turbulence and
compute the above spectra and fluxes. We take 36 shells
for the stably stratified turbulence simulations SST1 and
76 shells for SST2 and the convective turbulence simu-
lation (CT). For time stepping, we use the fourth-order
Runge-Kutta (RK4) method. For stably stratified turbu-
lence, we apply random force on shells n = 3 and n = 4.
The parameters of the simulations are listed in Table I.

We compute the spectra and fluxes of KE and entropy,
and average over many snapshots (∼ 108) of the steady-
state flow (of a single run); these values are further av-
eraged over 100 simulations with independent random
initial conditions [22, 23]. The error bars reported in the
paper for the spectral exponents and fluxes are the stan-
dard deviations of the aforementioned 100 independent
data sets [22, 23]. This is the statistical error of our data.
The spectral exponents of the energy and entropy spectra
along with the errors for the sets of parameters are sum-
marized in Table II. The data also has some systematic
error, for example the dip in energy spectrum near k ≈ 7
(the fifth shell). The origin of the dip is not understood
clearly at present, and it will be presented in future.

III. ENERGY AND FLUXES OF STABLY
STRATIFIED TURBULENCE

To test the validity of BO scaling in the stably strati-
fied turbulence, we simulate the shell model for the two
sets of parameters, SST1 and SST2, which are listed in
Table I. In Fig. 1(a) we plot the KE spectrum Eu(k) and
entropy spectrum Eθ(k) for Ra = 105 and Ri = 0.10.
Green shadow regions in all the figures of the paper are
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TABLE I. Parameters of our simulations: Flow type [stably stratified turbulence (SST) or convective turbulence (CT)], number
of shells N , Rayleigh number Ra, energy supply rate ε, Reynolds number Re, Richardson number Ri, Froude number Fr, kinetic
energy dissipation rate εu, entropy dissipation rate εθ, and Bolgiano wave number kB . We choose Pr = 1 for all our runs.

Flow Type N Ra ε Re Ri Fr εu εθ kB

SST1 36 105 50 1.0 × 103 0.10 3.2 3.9 3.1 53

SST2 76 105 1010 7.9 × 105 1.6 × 10−7 2.5 × 103 1.4 × 109 7.6 × 103 < 1

CT 76 1012 NA 8.7 × 106 0.01 NA 62 60 NA
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FIG. 1. (Color online) For stably stratified simulation with
Pr = 1, Ra = 105, and Ri = 0.10: (a) plots of KE and entropy
spectra; (b) plots of KE flux Πu(k) and entropy flux Πθ(k).
The green shaded region shows the forcing range.

the forcing bands. The figure indicates that Eu(k) ∼
k−2.17 and Eθ(k) ∼ k−1.47 for more than a decade, a
result consistent with the BO scaling.

We also compute the KE and potential energy fluxes,
which are plotted in Fig. 1(b). In the inertial range, the
entropy flux Πθ(k) is constant, and the KE flux Πu(k) de-

creases with k, but somewhat different from k−4/5. These
results are in general agreement with the BO scaling for
the stably stratified turbulence. We also compute energy
supply rate by buoyancy, F (k) = Re(〈ukθ∗k〉), which is
negative, as shown in Fig. 2. Thus, we show a conver-
sion of kinetic energy to potential energy by buoyancy, a
result consistent with that of Kumar et al. [7].

100 101 102 103 104 105 106
-105

-101

-10-3

0

10-3

101

105

F
(k

)
SST1

SST2

CT

FIG. 2. (Color online) (a) Plots of F (k) for stably stratified
turbulence SST1, SST2, and for convective turbulence (CT);
F (k) < 0 for SST’s, but F (k) > 0 for CT.

TABLE II. Spectral exponents of our simulations for the runs
SST1, SST2, and CT listed in Table 1: KE spectrum Eu(k) ∼
k−p and the entropy spectrum Eθ(k) ∼ k−q.

Flow Type p q

SST1 −2.1677 ± 0.0004 −1.4667 ± 0.0008

SST2 −1.7513 ± 0.0006 −1.6868 ± 0.0007

CT −1.703 ± 0.003 −1.711 ± 0.003

For the above case, the Bolgiano wavenumber kB ≈ 53,
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which lies in the dissipation range, thus making the k−5/3

KE spectrum inaccessible. The Bolgiano wavenumber kB
is calculated by comparing Eq. (1) and the Kolmogorov’s
KE energy spectrum [10]. We also try to investigate the
dual spectrum (k−11/5 and k−5/3) predicted in BO scal-
ing, but increase of Ra shrinks the 11/5 regime and makes
it invisible. Dual spectrum requires further search which
is our future plan.

For the parameters of SST2, the nonlinearity is
stronger than the buoyancy term, which is evident from
the fact the Richardson number Ri � 1. Hence, we
observe Kolmogorov scaling, i.e. Eu(k) ∼ k−5/3 and
Eθ(k) ∼ k−5/3 for these parameters shown in Fig. 3(a).
The fluxes of KE and potential energy are constant in k,
as shown in Fig. 3(b).

In the next section we will discuss the results of con-
vective turbulence.
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FIG. 3. (Color online) For stably stratified simulation with
Pr = 1, Ra = 105, and Ri = 1.6 × 10−7: the (a) plots of
KE and entropy spectra; and (b) plots of KE flux Πu(k) and
entropy flux Πθ(k) exhibit Kolmogorov’s spectrum since Ri
or buoyancy is small.

IV. ENERGY AND FLUXES OF CONVECTIVE
TURBULENCE

In convective turbulence, buoyancy feeds energy to the
kinetic energy, hence the KE flux increases marginally
at lower wavenumbers [7]. In the intermediate range
of wavenumbers, where the dissipation rate D(k) =∑
k

2νk2|uk|2/2 approximately balances the energy sup-

plied by buoyancy F (k), we expect Kolmogorov’s spec-
trum for the velocity field [7]. We performed a shell
model calculation to verify the above conjecture using the
parameters Pr = 1 and Ra = 1012 (CT of Table I). Note
that no external forcing is required to obtain a steady
state in convective turbulence.

In Fig. 4(a) we plot the KE and entropy spectra that
indicates Kolmogorov (KO) scaling, i.e. Eu(k) ∼ k−5/3

and Eθ(k) ∼ k−5/3, for convective turbulence. Our spec-
trum results are consistent with the KE and entropy
fluxes computations, which are plotted in Fig. 4(b). The
KE flux Πu(k) and entropy flux Πθ(k) are constant in the
inertial range, 20 < k < 1000. We also compute energy
supply rate F (k) = Re(〈ukθ∗k〉) and plot it in Figs. 2 and
5. We observe that F (k) > 0 indicating a positive energy
transfer from buoyancy to the kinetic energy. In Fig. 5,
we also plot the dissipation rate D(k) and F (k)−D(k).
In inertial range, F (k) and D(k) cancel each other ap-
proximately, and hence yield a constant KE flux Πu(k).
Thus, we show that in convective turbulence, the KE
exhibits Kolmogorov’s spectrum, not BO spectrum, as
envisaged in some of the earlier work [11–14].

V. DISCUSSIONS AND CONCLUSIONS

It is important to contrast our shell model with earlier
ones. Ours is the first shell model for stably stratified
turbulence, and it yields results consistent with the BO
scaling predicted by Bolgiano [8] and Obukhov [9].

By switching the sign of the density gradient, our shell
model transforms from stably stratified flows to convec-
tive turbulence. For convective turbulence, our shell
model exhibits Kolmogorov’s spectrum in the interme-
diate range of wavenumbers. Earlier, Brandenburg [4]
and Mingshun and Shida [5] had constructed shell mod-
els for RBC. Brandenburg’s [4] shell model is quite dif-
ferent from ours; he added several new terms in the GOY
shell model that leads to both forward and inverse KE
fluxes. He observes Eu(k) ∼ k−5/3 for the forward cas-
cade regime, consistent with our model. However, an
inverse cascade of KE flux yields Eu(k) ∼ k−11/5, which
is consistent with the flux arguments of Kumar et al. [7].
When Πu(k) < 0 and F (k) > 0, Eq. (26) of Kumar et
al. [7] would yield |Πu(k + ∆k)| < |Πu(k)| that could
possibly yield |Πu(k)| ∼ k−4/5 (BO scaling). These ar-
guments need a clearcut validation from numerical sim-
ulations. Ching and Cheng [6] used Brandenburg’s shell
model and studied multiscaling exponents.
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FIG. 4. (Color online) For convective turbulence simulation
with Pr = 1 and Ra = 1012, the (a) plots of KE and entropy
spectra; (b) plots of KE flux Πu(k) and entropy flux Πθ(k)
exhibit Kolmogorov’s spectrum.

The shell model “2” of Mingshun and Shida [5] is ap-
plicable to neutral stratification, and it is a subset of
our shell model. Mingshun and Shida [5] reported Kol-
mogorov’s spectrum for the model 2, hence our model
is consistent with the shell model of Mingshun and
Shida [5].

We also remark that the shell models are applicable to
three-dimensional isotropic turbulence. The numerical
work of Kumar et al. [7] focusses on Froude number of the
order of unity that yields somewhat isotropic flow. This is

the reason why our shell model is consistent with the nu-
merical results of Kumar et al. [7]. However, our present
shell model is not expected to work for anisotropic sta-
bly stratified flows studied earlier for which the Froude
number is quite low [24, 25]. A modification of our shell
model to two-dimensional flows may work for the afore-
mentioned quasi two-dimensional systems.

In summary, we constructed a unified shell model for
the buoyancy driven turbulence that yields BO scaling
for stably stratified flows, but Kolmogorov’s spectrum

100 102 104 106

k
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0
10-4
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102
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(k

),
D

(k
)

F(k)

−D(k)

F(k)−D(k)

FIG. 5. (Color online) For RBC run (CT), plots of F (k),
−D(k), and F (k) − D(k) for CT; the shaded region where
F (k) ≈ D(k) is the inertial range.

for convective turbulence. Such low dimensional mod-
els have strong utility since they can be used to explore
highly non-linear regimes which are inaccessible to nu-
merical simulations and experiments.
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