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Teaching a Vehicle to Autonomously Drift: A

Data-based Approach Using Neural Networks

Manuel Acosta1, Stratis Kanarachos

Department of Mechanical, Aerospace and Automotive Engineering,Coventry University,
Coventry, United Kingdom

Abstract

This paper presents a novel approach to teach a vehicle how to drift, in a
similar manner that professional drivers do. Specifically, a hybrid structure
formed by a Model Predictive Controller and feedforward Neural Networks
is employed for this purpose. The novelty of this work lies in a) the adoption
of a data-based approach to achieve autonomous drifting along a wide range
of road radii and body slip angles, and b) in the implementation of a road
terrain classifier to adjust the system actuation depending on the current
friction characteristics. The presented drift control system is implemented
in a multi-actuated ground vehicle equipped with active front steering and
in-wheel electric motors and trained to drift by a real test driver using a
driver-in-the-loop setup. Its performance is verified in the simulation en-
vironment IPG-CarMaker through different open loop and path following
drifting manoeuvres.

Keywords: Neural Networks, Autonomous Drift control, Autonomous
Vehicles, Multi-Actuated Ground Vehicles, Model Predictive Control

1. Introduction

Future autonomous vehicles will be required to operate safely at the lim-
its of handling under all environmental and roadway conditions (Level 5
autonomy, [1]). Among these conditions, automated driving on limited ma-
noeuvrability surfaces such as deep snow or gravel is still challenging and un-5

explored. The friction characteristics exhibited by the tyres on these surfaces
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and, in particular, the abrupt reduction of the tyre cornering stiffness [2, 3]
affect drastically the vehicle stability and controllability. In these conditions,
traditional Yaw Stability Control (YSC) systems based on the controllability
concept presented in [4] might perform inefficiently, limiting the cornering10

capabilities [5, 6] and overall vehicle manoeuvrability.
Recently, vehicle dynamics researchers have shifted their attention to the

rallying motorsport discipline. Specifically, it is stated that understanding
how professional rally drivers exploit the full chassis potential on loose sur-
faces [7, 2] could help to elucidate the path towards the development of15

highly-skilled autonomous cars. To this point, relevant research works on ex-
pert driving skills such as active drifting [8, 9, 10, 11, 12, 13, 14, 15] or vehicle
agile manoeuvring [16, 17, 18, 19, 20, 21] have been introduced. Regarding
research on active drifting, Velenis et al. [10] proposed a Linear Quadratic
Regulator (LQR) to achieve drift control in a rear-wheel-drive (RWD) ve-20

hicle configuration. Moreover, the authors pointed out through numerical
analysis the necessity of applying active drifting techniques to maximise the
vehicle lateral dynamics on loose surfaces. A similar drift controller was
proposed in [15] employing onboard vision-based and inertial measurements.
Finally, Acosta et al. proposed an Autonomous Drift Control (ADC) sys-25

tem to achieve simultaneously drift control and path following employing a
cost-effective measurement setup [5, 22].

The major drawback derived from the previous works is that an accurate
tyre model is required to calculate the controller references (drift equilibrium
solutions) [9]. Furthermore, several tyre parameters have to be known in30

advance to design the controller (e.g. local cornering and longitudinal tyre
stiffness at the target drift operating point [5, 22]). This methodology is not
recommended from a mass production perspective, as the parameterization
of a tyre model in off-road conditions can be extremely complex and costly.
To start with, new dedicated facilities may be required to operate safely with35

a skid trailer [23] on these surfaces. In addition, state-of-the-art skid trailers
have a limited lateral slip characterisation range (e.g. typically between ±15
or± 20 degrees [23]). As lateral slip values can be as high as 40 degrees during
drift stabilisation, a wider tyre characterisation range would be necessary to
compute the drift equilibrium solutions employing a numerical tyre model-40

based approach.
These limitations have motivated the exploration of alternative strategies

avoiding the use of a tyre model. In this line, Cutler and How [14] solved
the autonomous drifting problem using Reinforcement Learning (RL). The

2



authors proposed a methodology where the control policy was approximated45

as a closed-loop controller using a Radial Basis Function (RBF) network
and a Probabilistic Inference for Learning COntrol (PILCO) algorithm was
employed to refine the initial policy and achieve the drifting motion. The
ability of this approach to generalise the drifting behaviour to a wider range
of reference body slip angles or along arbitrary road geometries was not ex-50

plored. As indicated in [24], RL problems are often initialised using example
demonstrations or hand-craft policies. The necessity of generating such ini-
tial policies and repeating the “learning” process for each envisaged task
might complicate the development of a control system with a large operating
envelope. Latest advances in RL techniques can be found in the following55

references [25, 26, 27, 28]
The main motivation of this work is to develop a novel tyre-model-less

drifting system able to perform drifting manoeuvres autonomously in a wide
range of scenarios (arbitrary road geometries and different road terrains). Ac-
cording to the authors’ literature survey, it is the first time that a driverless60

drifting system is designed for such a large operating envelope. This is accom-
plished using a data-based approach. In brief, the drift stabilisation and path
following tasks are achieved by means of a hierarchical structure formed by
an upper-level proportional-integral-derivative (PID) controller and a lower-
level Model Predictive Controller (MPC). Instead of using an analytical tyre65

model-based approach, the unknown drift references and tyre parameters
required by the lower-level controller are provided by feedforward Neural
Networks (NN). These are trained to learn the drifting operating points and
tyre friction properties during real drifting manoeuvres. The drifting tests
are executed by a test driver using an experimental driver-in-the-loop (DIL)70

setup. In addition, several NNs are trained in different road terrains and a
data-based road friction classifier is designed to select the set of NNs suit-
able for the identified road terrain. This way, the proposed system is able
to adjust its driving behaviour depending on the current road terrain, like
professional drivers do.75

The reason for using a hybrid structure instead of an end-to-end learn-
ing approach [29] is twofold. First, it is very difficult, if not impossible,
to fully validate and verify the behaviour of an end-to-end learning system
[30]. Thus, it might be not possible to meet ISO-26262 [31] requirements for
mass marketing these solutions. The second reason is that it does not make80

sense to rely only on “black box” models and omit the knowledge and insight
gained by modelling. Instead, it is proposed to use models where they can
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describe sufficiently well the system behaviour and NN where it is difficult or
meaningless to derive a model. For the latter, we refer to cases that require
complex models described by a huge number of parameters, which might be85

also uncertain or difficult to measure (e.g. tyre model in extreme off-road
conditions). The results presented in this paper demonstrate that it could be
possible to develop a highly-skilled autonomous drifting vehicle from a cata-
logue of standardised drifting manoeuvres. The rest of the paper is organised
as follows:90

In Section 2 the vehicle model used in the proposed system is derived and
a brief description of the actuators employed in the Multi-Actuated Ground
Vehicle (MAGV) is provided. In Section 3 the intelligent ADC system is
described in detail. The section is completed with a brief insight into MPC
and feedforward NN. After that, the methodology followed to train the intel-95

ligent ADC system is detailed in Section 4. The performance of the proposed
system is assessed in Section 5 through several simulations performed in the
high-fidelity vehicle dynamics software IPG-CarMaker. Finally, conclusions
and future research steps are presented in Section 6.

2. Vehicle Modelling100
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Figure 1: Two-track vehicle planar dynamics model.

In this paper, a two-track vehicle planar dynamics model is employed
to approximate the vehicle responses, Figure 1. Following recommendations
from previous works on drift stabilisation [10], the roll and pitch dynamics are
disregarded and assumed to have little influence on the steady-state drifting
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behaviour to reduce the model complexity. If rotating balance and force105

equilibrium equations are taken around the centre of gravity, the expressions
(1-3) are obtained,

m(v̇x − vyψ̇) = Fx,fl cos δ + Fx,fr cos δ − Fy,fl sin δ
− Fy,fr sin δ + Fx,rl + Fx,rr

(1)

m(vxψ̇ + v̇y) = Fy,fl cos δ + Fy,fr cos δ + Fx,fl sin δ + Fx,fr sin δ

+ Fy,rl + Fy,rr
(2)

Iψψ̈ = (Fy,fl cos δ + Fy,fr cos δ + Fx,fl sin δ

+ Fx,fr sin δ)lf − (Fy,rl + Fy,rr)lr

+
twf
2

(Fx,fr cos δ − Fx,fl cos δ

+ Fy,fl sin δ − Fy,fr sin δ) +
twr
2

(Fx,rr − Fx,rl)

(3)

where the vehicle planar velocities are denoted by vx, vy and the yaw rate by
ψ̇. The vehicle mass is designated by m, the yaw inertia by Iψ, the distances
from the front and rear axles to the centre of gravity by lf , lr, and the front110

and rear track widths by twf , twr respectively. δ is the angle steered by the
front wheels, and Fy,i, Fx,i are the tyre lateral and longitudinal forces (with
i ∈ {front− left, front−right, rear− left, rear−right}). The latter forces
are often computed using a nonlinear function f(α, λ), which depends on the
tyre lateral slips (α), tyre longitudinal slips (λ), and additional variables such115

as the wheel inclination angle (e.g. Magic Formula Tyre model [32]).

2.1. Tyre forces

In order to facilitate the adoption of a linear controller, a linearised tyre
force formulation was employed in this work. If a first order Taylor series
expansion is performed on the nonlinear expression f(α, λ) and cross-stiffness120

terms are neglected [33, 5], the linearised forces (4-5) can be obtained.

Fy,i ≈ Fyss,i + Cα,i∆αi (4)

Fx,i ≈ Fxss,i + Cλ,i∆λi (5)

Where Cα and Cλ are the cornering and longitudinal tyre stiffnesses at
each equilibrium point. Fyss, Fxss are the steady-state tyre equilibrium forces,
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and ∆α,∆λ are perturbations around these equilibrium points. As men-
tioned in the introduction, the former tyre parameters (Cα, Cλ) are directly125

approximated by NN structures. Additional details are provided in Section
3. The steady-state equilibrium tyre forces are eliminated when the regulator
problem is formulated (i.e. ∆Fy,i = Fy,i−Fyss,i ≈ Cα,i∆αi). The longitudinal
slips (λ) are defined in this work following the ISO slip convention [32, 34],
expression (6),130

λi =
ωire − Vxc,i

Vxc,i
(6)

with ω being the wheel angular velocity, re the wheel effective radius, and
Vxc the longitudinal velocity at the wheel centre. The angular velocity can
be easily obtained from the wheel rotating dynamics, expression (7).

Iωω̇i = Ti − Fx,ire (7)

In this case, Iω is the wheel inertia and Ti is the torque provided by the
electric motors. Regarding the longitudinal velocities at the wheel centres135

(Vxc), these terms can be obtained from the vehicle planar motion states as
follows,

Vxc,fl =
V cos β − twf

2
ψ̇

(cos δ + tanαfl sin δ)
, Vxc,fr =

V cos β +
twf
2
ψ̇

(cos δ + tanαfr sin δ)
(8)

Vxc,rl = V cos β − twr
2
ψ̇, Vxc,rr = V cos β +

twr
2
ψ̇ (9)

where the velocity module is V =
√
v2x + v2y and the body slip angle β =

arctan ( vy
vx

). Finally, the tyre lateral slips αi are obtained from the following
expressions,140

αfl = δ − arctan

(
ψ̇lf + V sin β

V cos β − twf
2
ψ̇

)
, αfr = δ − arctan

(
ψ̇lf + V sin β

V cos β +
twf
2
ψ̇

)
(10)

αrl = arctan

(
ψ̇lr − V sin β

V cos β − twr
2
ψ̇

)
, αrr = arctan

(
ψ̇lr − V sin β

V cos β + twr
2
ψ̇

)
(11)
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2.2. Chassis actuators

The proposed MAGV incorporates Active Front Steering (AFS) and in-
wheel electric motors (EM). Actuator limits were considered in these chassis
systems. Specifically, the maximum torque provided by the electric motors
was determined from the torque and wheel speed values presented in Table145

1. These were extracted from field tests executed on state-of-the-art electric
motors [35].

Table 1: Torque versus wheel speed values of the in-wheel EM. Values approximated from
the experimental results presented in [35].

ω(rpm) 0 500 750 1000 1250 1500 1750
T (Nm) 650 630 610 490 380 310 290

Regarding the AFS system, maximum steering amplitude and maximum
slew rate constraints were considered. The steering dynamics were disre-
garded [10] under the assumption of a purely kinematic model [36]. In150

particular, the maximum angle steered by the front wheels was limited to
|δmax| =450 deg /SR and the maximum steering rate was limited to |δ̇| =
1200 deg/s / SR, where SR is the steering ratio. The latter constraint was
impossed based on the authors’ experience with steering robots [37]. To con-
clude, the proposed vehicle modelisation can be synthesised by the following155

vectors of inputs (U), states (X), and parameters (p):

U = {δ, Ti} (12)

X = {vx, vy, ψ̇, ωi} (13)

p = {m, Iψ, lf , lr, twf , twr, re, Iω, Cλ,i, Cα,i} (14)

3. Artificially Intelligent Drift Control

The structure of the intelligent drifting system proposed in this work is
depicted schematically in Fig. 2. Two layers can be clearly differentiated
in this structure: the high-level references and parameters layer, and the160

low-level reference tracking layer.
The upper-level structure generates the reference states (xss), equilibrium

inputs (uss), and tyre parameters (Css) required to achieve the drift control
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task. This is accomplished by means of the AI Drift References and Param-
eters block, which is composed of two sets of feedforward NNs trained at165

different road terrains. The outputs from these NNs depend on the target
body slip angle β and target road curvature κ̃. The latter reference is ob-
tained from a proportional-integral-derivative (PID) controller that corrects
the open loop road curvature κ to minimise the lateral deviation error elat.
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Figure 2: Scheme of the Artificially-Intelligent drift control system.

Therefore, the high-level layer provides the appropriate drift references170
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and tyre parameters for different combinations of target body slip angles
and road geometries. These references and tyre parameters are adapted de-
pending on the current road terrain, which is identified by an NN-based road
terrain classifier. Once the suitable signals and parameters are selected by the
road terrain classifier, these are used by the MPC controller situated in the175

low-level reference tracking layer. The MPC controller coordinates optimally
the five constrained chassis actuators (AFS and four individual EM). For
simplicity, full-state feedback of the tracked states (vx,vy,ψ̇,ωfl,ωfr,ωrl,ωrr)
is assumed in this work. As the lateral velocity cannot be measured cost-
effectively and its estimation is not trivial [38, 39, 33], virtual sensing strate-180

gies are currently being investigated by the authors to eliminate the previous
hypothesis using an observer block. The integration of these virtual sensing
solutions [22] into the proposed hybrid controller will be presented in future
works.

3.1. Why this system design?185

According to the authors’ literature survey, the drift control task has
been studied only in a reduced number of works. Among these, analytical
model-based controllers [10, 15, 8] have been used most. Other solutions
based on RL [14] have been also explored. The proposed design introduces
a new hybrid approach based on supervised machine learning.190

With respect to analytical model-based controllers, these require a set
of tyre parameters and steady-state drifting references to operate correctly.
Thus, if the tyre information embedded in the controller and used to compute
the previous drifting references is inadequate, the controller will exhibit a
poor performance, and will not be able to reproduce accurately the drifting195

motion exhibited by real drivers. Moreover, if the friction characteristics
change drastically and the controller does not adapt accordingly, its operating
envelope will be very limited.

The major aim of the proposed system is to avoid the previous short-
comings adopting a data-based approach. In this case, the system internal200

parameters and drifting steady-state references are directly learned from a
real driver using a supervised machine learning approach. Therefore, the pro-
posed system tries to mimic the “real” drifting motion, instead of tracking a
set of analytical references that might be computed with an uncertain tyre
model and may not approximate accurately the desired drifting state. Fur-205

thermore, the proposed scheme incorporates a data-based terrain classifier
which adapts the system actuation to the current surface characteristics, like
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professional drivers do. According to the authors’ survey, it is the first time
that a drifting system exhibiting this friction-based adaptation is presented.

In what concerns RL, the existing solutions have been verified in a reduced210

number of open-loop (path following not incorporated) test cases. RL-based
systems require interactions with the real environment during several iter-
ations to learn a specific task (e.g. drifting with a specific body slip angle
and a specific open-loop radius). If the task to be performed by the agent
changes (e.g. drifting with a different body slip angle), a new policy needs to215

be learned, and the training process has to be repeated. Therefore, it is ex-
pected that training an agent to drift along a wide continuous range of road
radii and body slip angles (even without considering different road terrains)
will be a cumbersome and costly task. Instead, the proposed data-based
system relies on the interpolation capabilities of feedforward NNs. These are220

trained with data extracted from a coarse grid of operating conditions (dif-
ferent combinations of body slip angles and road radii). Once trained, the
NNs are able to interpolate accurately between these points. This way, the
proposed design incorporates a large continuous operating envelope requiring
a reduced number of experimental drifting manoeuvres.225

3.2. Feedforward Neural Networks

Feedforward or “static” Neural Networks are a powerful tool to charac-
terise time-independent relationships between the inputs and outputs of a
system (Y = f(U)). Following the definition presented in [40], the simplest
element of a Neural Network structure is the Neuron, Fig. 3.230
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Figure 3: Scheme representing an Artificial NN structure and artificial neuron.

Neurons, or individual NN cells, are grouped into different layers, giving
as a result a multi-layered structure formed by input, hidden, and output
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layers. With such structure, any nonlinear function can be approximated by
means of simple multiplications and summations,

Sj =
∑
i

wijai + bj (15)

aj = f(Sj) (16)

where the output from the jth neuron is represented by Sj and is formed by235

the sum of the weighted outputs (wijai) from the previous layer i. A constant
bias bj is added to the previous expression. Finally, f is the activation
function of the jth layer and aj represents the activation of the node at hand.
Regarding the former, sigmoid activation functions are often chosen for the
hidden layers whereas linear activation functions are selected for the output240

layers [41].

3.2.1. Neural Networks for Drift Control

As has been demonstrated in previous investigations [10, 5, 15, 22], the
steady-state drift solutions corresponding to a given combination of body slip
and road curvature (β, κ) can be entirely represented by a unique vector of245

vehicle feedforward inputs (uss), vehicle equilibrium states (xss), and vehi-
cle parameters (pss). Assuming that the vehicle mass and chassis geometric
parameters remain unaltered during the system actuation, only the tyre pa-
rameters (Cλ,i, Cα,i, expression (14)) depend on the pair (β, κ). Therefore,
the dependence of the feedforward inputs, reference states, and tyre parame-250

ters on the given body slip and road curvature can be defined by the following
nonlinear functions:

xss = fxss(β, κ) (17)

uss = fuss(β, κ) (18)

Cα,ss = fCα,ss(β, κ) (19)

Cλ,ss = fCλ,ss(β, κ) (20)

In this paper NNs are employed to “learn” these nonlinear expressions
directly from real manoeuvres performed by a test driver, thus avoiding the
necessity of performing numerical offline calculations with analytical tyre255

models. The proposed approach essentially overcomes the problem of deriv-
ing and identifying a tyre-road model (which can be particularly costly and
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complex in off-road conditions [42, 3]) by following a data-based approach
that can be directly implemented using a production vehicle.

As the training process is carried out on a given road terrain, the NNs260

are expected to produce inaccurate results if the drifting manoeuvres are per-
formed on a different surface. A possible way to overcome this issue would be
to extend the input vector of the previous expressions, incorporating addi-
tional parameters representative of the current road friction characteristics.
Due to the large number of parameters required to approximate the friction265

characteristics of off-road surfaces, the complexity of the NN structure would
increase drastically. Instead, authors propose a modular approach in which
different sets of NNs are trained on each road terrain. The selection of the
appropriate NNs is carried out by a road terrain classifier. Other modular
approaches using NN have been employed by the authors in previous works270

on road friction monitoring [33].

3.3. Model Predictive Control

The role of the MPC controller is to stabilise the vehicle around the
equilibrium states xss dictated by the upper-level drift reference structure
(formed by the NNs defined previously). In other words, the MPC controller275

must provide the vector of input corrections ∆u to drive the state error
vector ∆x to zero.

∆x = x− xss, ∆u = u− uss (21)

Following the procedure described in [5], the vehicle dynamics expressions
(1-11) were discretised using a first order approximation (eATs ≈ 1 + ATs).
The following system of linearised equations was obtained,280

∆x(k + 1) = Ass∆x(k) + Bss∆u(k) (22)

where the steady-state matrices Ass and Bss are particularised at each oper-
ating point (target body slip β and corrected road curvature κ̃). This is ac-
complished using the vector of equilibrium states xss, feedforward inputs uss,
and tyre longitudinal and lateral stiffnesses (Cα,Cλ) provided by the upper-
level NN-based structure. The rate of change of the equilibrium points is285

assumed to be negligible in comparison to the system dynamics. The rest of
variables that form the vector of chassis parameters (m,Iψ,lf ,lr,twf ,twr,re,Iω)

12



are assumed to be known. Regarding the vehicle mass, yaw inertia, and cen-
tre of gravity location, different online parameter identification algorithms
have been proposed in the literature [43]. Finally, full-state feedback is as-290

sumed for simplicity. Virtual sensing strategies using signals from inexpensive
sensors have been already developed by the authors and promising results
have been obtained [22]. The integration of these solutions into the system
described in this work will be pursued in future stages of this research.

Model Predictive Control is chosen in this work to track the drift refer-295

ences due to its superior ability to handle optimally amplitude and slew rate
actuator constraints. Specifically, in comparison to other linear-feedback-
law controllers (e.g. Linear Quadratic Regulator), MPC calculates optimally
nonlinear feedback laws through online numerical optimisation [44] when con-
strained systems are faced. Following the linear MPC derivation presented300

in [45], the evolution of the state-space model (22) during the future Np steps
under the sequence of future Nc control inputs (∆u(k), ...,∆u(k+Nc− 1)),
can be expressed in compact form by the augmented system,

∆X = Fss∆x(k) + Φss∆U (23)

where the augmented state ∆X and input ∆U vectors are expressed by the
equations (24-25).305

∆X = [∆x(k + 1|k)T ,∆x(k + 2|k)T , ...,∆x(k +Np|k)T ]T (24)

∆U = [∆u(k)T ,∆u(k + 1)T , ...,∆u(k +Nc − 1)T ]T (25)

The augmented matrices Fss and Φss were extracted from [45] and are
written below for clarity.

Fss =


Ass

Ass
2

...
Ass

Np

 ,Φss =


Bss 0 · · · 0

AssBss Bss · · · 0
...

...
. . .

...
Ass

Np−1Bss Ass
Np−2Bss · · · Ass

Np−NcBss


(26)

The MPC control problem consists of calculating the Nc future control
inputs that minimise the cost function J(∆U),
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minimize
∆U

J(∆U)

subject to Ac∆U ≤ b(k)

subjected to the linear amplitude and slew rate input constraints given by310

the matrices Ac, b. The derivation of these matrices is omitted here due
to space limitations, additional details can be consulted in [45]. Finally,
this optimisation problem can be solved online with reduced computational
resources using Quadratic-Programming (QP) optimisation [44]. In order to
employ the previous routine, it is necessary to rearrange the cost function315

J(∆U) in a suitable form,

J(∆U) = ∆UTH∆U + 2∆x(k)TMT∆U (27)

H = Φss
T Q̂Φss + R̂ (28)

M = Φss
T Q̂Fss (29)

where Q̂, R̂ are weighting matrices used to fix the relative importance of the
tracking error and input energy expenditure.

3.4. Path Following PID

In all the previous works on drift control consulted by the authors, the320

road geometry is not considered, and the attention is placed on stabilising the
vehicle around the drift equilibrium states [10, 15, 14]. Following a similar
approach to [5], the PID control law

κ̃ = κ−∆κ = κ− (kpelat + kdėlat + ki

∫
elat) (30)

is proposed to achieve simultaneously the drift control and path following
tasks. The concept behind the proposed control law is illustrated in Fig. 4,325

and can be summarised in the following manner: when the lateral deviation
error is positive, the reference curvature is decreased to straighten the current
vehicle trajectory; if the lateral deviation error is negative, the reference road
curvature is increased to tighten the vehicle trajectory. The sign criteria for
the lateral deviation error is adopted from the road model presented in [2]. If330

the PID gains are carefully chosen and the response of the lower-level MPC
controller is assumed to be fast enough to track the changes in the corrected
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road curvature κ̃, the proposed control law will drive the lateral deviation
error to zero. Therefore, the vehicle will eventually converge to the reference
path under the proposed PID law. As an analytical Lyapunov-based stability335

proof for the proposed system is not trivial, the closed loop stability under
different initial errors is studied by means of a phase-space coverage analysis.
These results are presented in Section 5.2.1.
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Positive lateral deviation error, (b) negative lateral deviation error.

3.5. Road Terrain Classifier

(1) Braking event detection

(3) ANFIS Friction Curve Learning

MC Press

(4) Feature extraction (5) NN Classifier

Fx,Fz,Long. slip

Event Rule

Friction Curve

Road Class

𝜇

𝜆

𝜇

𝜆

𝜇n

𝜇1

[𝜇1,𝜇2,...,𝜇n]
Feature vector ... . ... .

𝜇

𝜆

(2) Data Logging

Figure 5: Scheme of the road terrain classifier developed in this work. Once the road terrain
is identified, the high-level drift references and parameters are adjusted accordingly.
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The road terrain classifier proposed in this work is depicted schemati-340

cally in Fig. 5. The operation of this structure can be summarised in the
following manner. The first block (Braking event detection) monitors the
master cylinder pressure signal and identifies whether a braking intervention
is taking place. A rule-based approach is employed for this task. During
the braking situation, the tyre vertical and longitudinal forces, as well as the345

tyre longitudinal slips are logged (block 2, Data Logging). Once the braking
event has concluded, an Adaptive Neuro-Fuzzy Inference System (ANFIS) is
trained to approximate the friction curve formed by the cloud of normalised
longitudinal force (defined as µ = Fx/Fz) versus slip data (block 3, ANFIS
Friction Curve Learning). In order to acquire a cloud of points representative350

of the terrain friction characteristics, only braking interventions in which a
certain longitudinal slip value (λthres) is developed (i.e. enough longitudi-
nal excitation is present) are considered. The feature vector required by the
terrain classifier is obtained directly from the trained ANFIS structure and
consists of a set of uniformly-spaced friction values µ = {µ1, µ2, ..., µn}. This355

vector is passed through a Neural Network classifier (block 5) trained with
braking data from different terrains to infer the road class that best matches
the current friction characteristics.

ANFIS structures have been employed by the authors in previous works
to “learn” the road friction characteristics during sinusoidal steering inputs360

[22]. In brief, the use of ANFIS as an intermediate step permits a straight-
forward extraction of a noise-free feature vector. Otherwise, e.g. computing
the previous vector from raw data, would require the execution of non-trivial
post-processing steps (such as data averaging in a predefined region) to re-
duce the influence of outlier points. Finally, the use of a data-based classifier365

is justified by the necessity of identifying drastically-different terrains (e.g.
asphalt roads and loose surfaces). As has been demonstrated in previous
works [22], the use of grip scaling-based methods to estimate the road fric-
tion potential taking as a reference an analytical tyre model (e.g. the Magic
Formula [46]) can lead to significant errors when loose surfaces are consid-370

ered.

3.5.1. Training of the road terrain classifier

The classifier was trained in IPG-CarMaker with data obtained from five
different road surfaces, Fig. 6. These surfaces were implemented in the
previous software employing an isotropic Magic Formula tyre model. The375

tyre parameters of the terrains 1 to 4 were obtained from Tavernini et al. [2],
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and correspond to dry asphalt, wet asphalt, dirty off-road, and gravel-like
surfaces respectively. A fifth terrain, low-mu loose surface, was added to the
training dataset by decreasing the maximum friction factor (D = 0.2) of the
fourth surface. For simplicity, the classifier was implemented in the front-left380

wheel of a sports-class vehicle. A two-wheel configuration will be employed in
the future to detect non-uniform road friction characteristics (e.g. mu-split
conditions).
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Figure 6: Road terrains implemented in IPG-CarMaker to train the classifier.

In total, 250 braking manoeuvres were executed with the static simulator
presented in Fig. 8 (50 at each road surface). An additive white Gaussian385

noise model was employed to simulate noise levels representative of state-
of-the-art automotive instrumentation, Table 5. Virtual Sensing techniques
will be evaluated in the future to reconstruct the classifier inputs (Fx, Fz, λ)
from inexpensive onboard measurements.

Table 2: Parameters employed in the road terrain classifier.

λthres(%) ANFIS MF ANFIS epochs NN neurons
−20 4 20 2

The parameters employed in the classifier are presented in Table 2. The390

longitudinal slip level required to consider a braking event as valid was set
to −20%. The influence of the Anti-lock Braking System (ABS) actuation
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on this threshold will be evaluated in the future. An ANFIS structure com-
posed of 4 generalised bell-shaped Membership Functions (MF) was selected
after an iterative trial-and-error procedure. Overall, a reduced-size structure395

was pursued to limit the ANFIS training time (0.27s for a training dataset
of 254 samples and 20 maximum epochs). The ANFIS was trained using
a hybrid algorithm composed of least-squares and backpropagation gradient
descent methods [47]. Additional details regarding ANFIS can be found in
[47]. The classifier feature vector is formed by the friction values associated400

with the longitudinal slip vector λ = [−0.02 : −0.02 : −0.2]. A pattern
recognition shallow Neural Network was built in Matlab using the pattern-
net function. A reduced two-neuron hidden-layer size was selected with the
aim to avoid potential overfitting issues. The structure was trained using the
Scaled Conjugate Gradient algorithm and a 70/15/15 dataset division (train-405

ing/validation/test). During the execution of this process, the classifier was
able to identify correctly 231 samples out of the 250 samples that composed
the training dataset. After that, several braking events were executed with
the trained classifier and similar performance levels were obtained. An ex-
ample braking test on a type 2 road terrain is depicted in Fig. 7.410
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Figure 7: Braking test on a type 2 road terrain. (a) Vehicle velocity, (b) Brake pedal
position, (c) Longitudinal slip, (d) Longitudinal force, (e) identified road class.

During the first seconds (t < 3.3 s) the tyre forces and longitudinal slip
are logged. Once the braking event has concluded, the ANFIS network is
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trained and the classifier feature vector extracted. As the ANFIS structure
is trained in a short time (0.27s), the proposed approach can be considered
to run on “real-time”. The experimental validation of the classifier with415

data from field tests will be pursued in the future. Authors believe that
the proposed structure can significantly facilitate the recognition of the road
terrain under challenging conditions (e.g. driving on loose surfaces), where
grip scaling-based methods relying on an analytical tyre model are expected
to fail [22].420

4. Teaching a vehicle to drift

The strategy employed to train the intelligent drift control system is de-
picted schematically in Fig. 8.
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Figure 8: Scheme of the intelligent drift control training process. (1) Execution of drifting
manoeuvres in IPG-CarMaker - (2) Preparation of the training datasets - (3) Training of
the Neural Networks.

In brief, the training process was carried out in the following manner.
Drifting manoeuvres on circular roads of different radii and covering dif-425

ferent steady-state body slip angles were performed by a test engineer in a
static DIL setup. The runs generated in IPG-CarMaker during the execution
of these manoeuvres were logged using the CarMaker for Simulink Library
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(CM4SL) and employed to construct the training datasets. These were post-
processed and used to train the NNs contained in the AI drift references430

and parameters block. The Levenberg-Marquardt optimisation routine was
used for this purpose. This procedure was repeated in two different road
terrains: class 4 (gravel) and class 5 (low-mu loose surface). A more detailed
description regarding the latter steps is provided in Section 4.2.1.

4.1. High-fidelity simulation environment435

A high-fidelity virtual environment was constructed in the vehicle dynam-
ics simulation software IPG-CarMaker to train and evaluate the proposed
intelligent drift control system. The static DIL setup introduced in Fig. 8
was employed to perform agile manoeuvres. A driving simulator was cho-
sen to avoid compromising the driver’s safety. The Logitech G-27 driving440

peripherals [48] were used to feed the driver’s steering, gear, clutch, brake,
and gas pedal inputs into IPG-CarMaker. In addition, road random profiles
were used to generate a virtual rough road representative of off-road surfaces.
The road random profiles were created with the Sayers model [49] and in-
corporated into the IPG virtual road by means of a .crg file. This file was445

constructed with the open source “opencrg” [50] software. For additional
details [51] can be consulted.

4.1.1. Vehicle Model

A sports-class vehicle model from the IPG-CarMaker library was em-
ployed to train and verify the proposed intelligent drift control system. A450

full experimental validation of the proposed simulation model is out of the
scope of this work due to the costs and complexity derived from the pro-
posed MAGV architecture. The ability of IPG-CarMaker to provide realistic
vehicle responses has been verified by the authors in previous works using
a compact-class experimental vehicle [33]. A custom powertrain model was455

developed in IPG-CarMaker to incorporate the torque versus wheel speed
curves presented in Section 2. For simplicity, uneven torque distributions
were not considered in the virtual test vehicle. Thus, the electric motors
provide a torque response proportional to the driver pedal position, given by
the expression460

Toutput,i = Tmax,iPpos (31)
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where Tmax,i is the maximum torque that can be generated at the current
wheel speed, and Ppos is the gas pedal position (ranging between 0 and 1).
The tyre forces are modelled in the simulation environment using an Isotropic
Magic Formula parameterisation [2], equations (32-33).

Fx = Fz
σx
σ
D sin[C arctan{σB − E(σB − arctanσB)}] (32)

Fy = Fz
σy
σ
D sin[C arctan{σB − E(σB − arctanσB)}] (33)

In this model, the theoretical slip quantities are obtained from the lon-465

gitudinal and lateral wheel slips through the computation of the following
expressions,

σx =
λ

1 + λ
, σy =

tanα

1 + λ
, σ =

√
σ2
x + σ2

y (34)

This formulation has been employed in previous works to evaluate the
influence of the road terrain on the vehicle cornering performance [2] or to
approach the drift stabilisation problem [10]. Finally, the chassis and tyre470

parameters used in the simulation model are presented in Table 3.

Table 3: Vehicle and tyre parameters used in the simulation model. The sub-indexes 4
and 5 denote the terrains 4 and 5 introduced in Section 3.5.

lf (m) lr(m) Iψ(Kgm2) m(kg)
1.20 1.45 2325 1580
re(m) Iw(Kgm2) twf (m) twr(m)
0.32 2 1.5 1.5
B4 C4 D4 E4

1.5289 1.0901 0.6 −0.95084
B5 C5 D5 E5

1.5289 1.0901 0.2 −0.95084

4.2. Neural Networks Training

As mentioned previously, two sets of NNs were trained in this work: the
first set in a gravel-like surface (terrain 4), and the second set in a low-mu
loose surface (terrain 5). The graphs portrayed in this section were generated475

during the training procedure carried out on the class 4 terrain. The same
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procedure was followed to train the second set of NNs on the class 5 terrain.
The training datasets were generated by direct concatenation of the test runs
executed in the virtual testing environment described previously, Fig. 9.
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Figure 9: Direct concatenation of individual test runs once steady-state conditions have
been achieved.

The drifting state (|β| ≈ 30-40 degrees) is achieved after some seconds480

and maintained during the rest of the test. In order to employ only data
corresponding to steady-state conditions, the data contained in the time in-
terval t ∈ [40 s,70 s] were extracted from each individual test run. Additional
experiments were carried out to complete the test matrix presented in Table
4. Firstly, drifting manoeuvres were performed in circles of different radii,485

R = [10 : 10 : 100]. After that, in order to facilitate the generalisation of the
proposed system to a wide range of reference body slip angles, these tests
were repeated for two additional body slip angle ranges: Medium body slip
|β| ≈ 15− 25 degrees and Low body slip |β| ≈ 10− 15 degrees. In total, 30
runs were generated and concatenated at each road terrain (terrains 4 and490

5, Fig. 6).

Table 4: Test Matrix executed to form the training data sets. T-4: Terrain 4 / T-5:
Terrain 5.

Body slip R = 10 R = 20 R = 30 ... R = 100
High T-4/T-5 T-4/T-5 T-4/T-5 ... T-4/T-5

Medium T-4/T-5 T-4/T-5 T-4/T-5 ... T-4/T-5
Low T-4/T-5 T-4/T-5 T-4/T-5 ... T-4/T-5

These runs were acquired at a sampling frequency of 100 Hz. Moreover,
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in order to reproduce realistically the noise associated with state-of-the-art
automotive testing equipment, an additive noise model of the form ȳ = y +
yσ was employed. The standard deviations of these noise terms (yσ) were495

extracted from sensor datasets [52, 53] and from field tests executed with
Wheel Force Transducers (WFT). These values are given in Table 5. The
standard deviation of the wheel speed noise was obtained from experimental
onboard CAN measurements.

Table 5: Standard deviation error of the measured tyre force, inertial, and wheel speed
signals.

σV [m/s] σβ [rad] σω [rad/s]
0.0278 0.0035 0.062
σFx [N] σFy [N] σψ̇[rad/s]

70 70 0.0019

The rest of signals required to train the NNs (e.g. tyre lateral slips)500

were computed from the noise-corrupted tyre force, wheel speed, and inertial
simulation signals. Finally, noise-free torque signals were assumed to be pro-
vided by the electric motors. The acquisition and generation of the training
datasets from cost-effective CAN measurements (avoiding the use of WFT)
will be evaluated in the future using virtual sensing approaches [22].505

4.2.1. Reference states and feedforward inputs

The nonlinear functions fxss and fuss , defined in Section 3.2.1, were ap-
proximated by NNs trained following the scheme portrayed in Fig. 8. The
vector of inputs (containing the road radius calculated as R = V

ψ̇
and the

body slip angle β) and the vectors of outputs were constructed by direct510

concatenation. The latter were formed by the steering wheel angle and in-
dividual wheel torques (fuss) and the velocity module and individual wheel
speeds (fxss). The Levenberg-Marquardt algorithm was employed with a
data partition of 70/15/15 (training/validation/test). The NNs were con-
structed in Matlab using the feedforwardnet function and trained with the515

trainlm routine. The training process was repeated several times varying the
number of neurons of the hidden layer and good results were obtained with a
six-neuron hidden-layer structure (2-6-5 NN). As acceptable results were al-
ready obtained using the preliminary training method and dataset partition,
additional simulations were not performed.520
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The stability of the NNs was studied following the methodology detailed
in [40] and adopted in previous works [33]. A total number of 50 NN struc-
tures were trained using different initial weights (randomly selected by the
trainlm function), and the average output from these structures was taken
as a reference. After that, the NN exhibiting the lowest Normalised Root525

Mean Square Error (NRMSE) with respect to the average value was chosen
as the most accurate and representative structure of the real field data, and
implemented in the final intelligent drift controller.

4.2.2. Cornering stiffness and longitudinal stiffness

The generation of the nonlinear functions fCα,ss and fCλ,ss presented an530

added complexity, as it was not possible to obtain these directly from raw
data. Due to the fact that the measured data present some inherent noise
(from the rough road excitation and the measuring equipment), differenti-
ating the tyre forces with respect to the tyre slips would lead to poor tyre
stiffness estimates. Instead, a two-step approach is adopted in this work, Fig.535

10. If the problem is particularised on the lateral dynamics case (function
fCα,ss), the following procedure is followed: First, a two-neuron hidden-layer
NN (1-2-1) is trained to fit a cloud of Fy − α values. These are extracted
from the steady-state interval of each test run (t ∈ [40 s, 70 s]). The average
tyre lateral slip (ᾱ) is calculated on this time interval and the cornering stiff-540

ness (Cα) for the given steady-state drift equilibrium is obtained employing
a finite differences approach [33],

Cα ≈
Fy,up − Fy,down
∆αup + ∆αdown

(35)

where the forces Fy,up and Fy,down are the outputs from the 1-2-1 NN eval-
uated on the lateral slip limits ᾱ + ∆αup and ᾱ − ∆αdown. The increments
∆αup and ∆αdown were obtained from expressions545

∆αup = min(0.4(max(α)−min(α)),max(α)− ᾱ) (36)

∆αdown = min(0.4(max(α)−min(α)),−min(α) + ᾱ) (37)

These expressions guarantee that the lateral slip limits will remain within
the interval defined by the experimental slip data used to train the 1-2-1 NN.
The factor 0.4 was determined empirically with the aim to capture the small
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oscillations derived from the continuous steering and throttle corrections
required to stabilise the vehicle around the drift steady-state equilibrium.550

These small oscillations around the steady-state slip equilibrium facilitate
the extraction of the correct tyre stiffness and avoid misleading results de-
rived from linearisations in too short slip intervals. After that, the average
values of the body slip β̄ and radius R̄ are associated to each cornering stiff-
ness estimate Cα,i. This process is repeated with each test run until the555

complete cloud of points (R, β, Cα) is formed, Figure 10-(1).
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Figure 10: Approximation of the fCα,ss function. (1) A 1-2-1 NN structure is trained to
approximate the pair (Fy − α) at each test run and the matrix of Cα points is generated.
(2) A second NN structure is trained to approximate the cloud of points generated in step
1.

In the second step, a new NN structure is trained to fit the cloud of tyre
stiffness points calculated previously. The same two-step procedure was fol-
lowed to compute the nonlinear function fCλ,ss, this time using the tyre longi-
tudinal slips λ and tyre longitudinal forces Fx. Regarding the selection of the560

NN structure used in the second step, NNs with distinct hidden-layer sizes
(with the number of hidden neurons ranging from 2 to 8) were trained using
the Levenberg-Marquardt algorithm and a dataset division 70/15/15 (train-
ing/validation/test). For consistency, these parameters were maintained dur-
ing the training of each NN structure. The proposed hybrid controller was565

fitted with these NN structures and remarkable performance differences were
not noticed. In order to avoid overfitting problems and guarantee a smooth

25



surface shape, the NN structure with the smallest number of hidden neurons
was selected (2-2-4), Figure 11-(a).
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Figure 11: (a) Outputs of NNs with different number of hidden neurons. (b) Outputs of
the selected 2-2-4 NNs trained with the Levenberg-Marquardt (LM) and Bayesian Regu-
larisation (BR) routines.

After fixing the NN structure, different training methods (Levenberg-570

Marquardt (LM) and Bayesian Regularisation (BR)) were compared and
significant differences were not observed, Figure 11-(b). The BR training
method was executed in Matlab with the function trainbr. Finally, similarly
to the process described in Section 4.2.1, a total number of 50 NNs were
trained with different initial weights (randomly generated by the trainlm575

function) and the average output from these structures was taken as a refer-
ence [40]. The NN exhibiting the lowest NRMSE with respect to the average
value was implemented in the final intelligent drift controller.

4.3. Controller tuning

The structure presented in Figure 2 was implemented in Simulink and580

IPG-CarMaker using the CM4SL library. The simulation time was set to 1
ms and white Gaussian noise (Table 5) was added to the virtual signals in
order to assess the controller performance to track noise-corrupted references
(body slip, wheel speed, yaw rate and vehicle velocity). For simplicity, noise-
free road curvature and lateral deviation error signals were taken from the585

simulation environment.
The PID and MPC controllers were carefully tuned following a systematic

trial-and-error process. Specifically, the MPC was tuned first in open loop,
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removing the reference curvature corrections provided by the PID path fol-
lowing controller. The terminal cost Q necessary to incorporate an infinite590

preview horizon was determined in first place. A Linear Quadratic Reg-
ulator (LQR) constrained with saturation functions was constructed first,
and a preliminary linear feedback gain Klqr was obtained after solving the
steady-state Ricatti equation (See [54, 5] for further details). After that,
the derivation presented in [44] was followed, and the terminal cost (Q) was595

calculated solving the Lyapunov equation (38),

Q− (A + BKlqr)
TQ(A + BKlqr) = Q + Klqr

TRKlqr (38)

The values of the matrix Klqr are presented below:

Klqr =


2.6102 1.1559 −13.6908 9.6976 −0.0042 0.0137 −0.0156
16.3130 −3.2610 60.8824 −0.0042 7.8221 −0.0607 0.1466
9.5240 15.0613 −199.9869 0.0137 −0.0610 5.7538 −0.2912
34.0090 −23.3092 308.1216 −0.0157 0.1470 −0.2913 3.8358
−0.3358 0.1225 0.2890 −0.0005 −0.0018 −0.0029 −0.0025


(39)

The MPC preview time Np and preview control sequence Nc were set to 50
and 1 respectively, and the MPC discretisation time was set to TMPC = 0.02
s in order to keep an acceptable computational load. Such discretisation600

time remains within the minimum limits defined in [55], as the vehicle yaw
resonance frequency lies around 1Hz. The intelligent drift system was run in
real time on a computer: Intel(R) Core(TM) i7-3632QM CPU at 2.20Ghz,
Simulink 2016 64 bits version, and IPG-CarMaker 5.1.3 version. The MPC
was fine-tuned to reduce the body slip overshoot and ensure a smooth con-605

vergence to the drift references. The values presented in Table 6 were finally
obtained.

Table 6: Diagonal terms of the MPC Q and R matrices.

Q1 Q2 Q3 Q4

1 100 1 1
Q5 Q6 Q7 R1

1 1 1 0.01
R2 R3 R4 R5

0.01 0.01 0.01 1e4
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Where Q and R are the MPC tuning matrices. These are concatenated to
form the total Q̂ and R̂ weighting matrices presented in expressions (27-29)
in the following way [44],610

Q̂ =


Q 0 · · · 0
0 Q · · · 0
...

...
. . .

...
0 0 · · · Q

 , R̂ =


R 0 · · · 0
0 R · · · 0
...

...
. . .

...
0 0 · · · R

 (40)

Finally, the upper-level PID controller was incorporated and tuned in
several path-following test cases. The values presented in Table 7 were found
to provide accurate path tracking capabilities for the proposed intelligent
drift controller.

Table 7: PID Tuning parameters

Kp Kd Ki

4e− 3 2e− 2 1e− 4

The tuning procedure described in this subsection was performed with615

the driverless drift control system trained on the type 4 road terrain. For
simplicity, the same tuning was tested on the drift control system trained on
the type 5 road terrain and good results were obtained. A gain-scheduling
approach will be evaluated in the future to adapt the controller parameters
depending on the identified friction characteristics.620

5. Results

The performance of the driverless drift controller was assessed in IPG-
CarMaker under a wide range of manoeuvres performed in two different loose
surfaces (terrains 4 and 5, Figure 6). The catalogue of manoeuvres presented
in Table 8 was executed on the terrain 4 in the first place. In these tests, the625

performance of the system was evaluated assuming a known road terrain. In
total, #4 manoeuvres covering different radii and reference body slip angles
were selected. These were grouped into open loop (no path tracking) and
closed loop (path tracking and drift control) tests. This preliminary evalua-
tion on terrain 4 was completed with a phase-space coverage analysis, Section630

5.2.1.
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After that, the ability of the proposed system to cope with drastically-
different road terrains (using the terrain classifier presented in Section 3.5)
was assessed. The proposed terrain-based adaptation strategy was compared
to a non-adaptive one in a clothoid test case executed on a type 5 terrain.635

Several tests were also performed to study the system robustness to small
variations in the peak surface friction. Moreover, as parameters like the vehi-
cle mass might vary during real operating conditions, additional simulations
were executed to evaluate the system performance under these variations.

Table 8: Catalogue of manoeuvres executed on a type 4 terrain.

Test Path Following |β| (deg) R (m) Description

#1 OL 35 10− 100
Radius ramp

at constant body slip.

#2 OL 15 10− 100
Radius ramp

at constant body slip.

#3 CL 35 100− 20
Decreasing radius clothoid

at constant body slip.

#4 CL 35− 15− 35 30
Sinusoidal body slip

at constant radius.

5.1. Open Loop Drifting Manoeuvres640

The proposed system was evaluated first in open loop conditions (i.e.
without a predefined reference path). The main aim of this evaluation was to
assess the open-loop ability of the proposed structure to track different radii
and body slip references. The results corresponding to the test #1 (open loop
radius ramp reference) are presented in Fig. 12. The system stabilises the car645

around the reference body slip angle during an extensive continuous radius
range (R ∈ [10, 100 m]). This demonstrates the suitability of the proposed
AI drift references block to capture and generalise the drifting equilibria in
the studied ranges from a reduced number of drifting manoeuvres. Similar
results were obtained on the second open-loop test (graphs are omitted here650

due to space limitations). The NRMSE of the tracked states obtained in
these tests can be consulted in Table 9.

5.2. Closed Loop drifting manoeuvres

The closed loop evaluation of the proposed system (path-following and
drift control) is presented in the following. The results corresponding to the655
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Figure 12: Test #1, Open Loop ramp radius test with high body slip reference |β| =35
degrees. (a) Yaw rate, (b) body slip angle, (c) longitudinal velocity, (d) vehicle trajectory.

test number #3 (radius reduction clothoid at high body slip reference) are
depicted in Fig. 13. Overall, the performance of the proposed system is
remarkable. The vehicle is stabilised around the target body slip reference
and the lateral deviation error elat is kept within 1 metre during the rest of
the manoeuvre. As can be seen in Fig. 15-left, the vehicle is able to complete660

the clothoid segment and maintain a drifting motion simultaneously.
Most importantly, this intelligent system is able to perform a complicated

driving task (clothoid segment) that was not included in the NNs training
dataset (formed exclusively by constant radius drifting manoeuvres). Thus,
the proposed hybrid system presents a larger operating envelope than other665

agents trained with methodologies such as RL, which would be able to ex-
ecute exclusively the tasks learned during the training stage. Authors en-
visage that the proposed methodology can help to develop highly-skilled au-
tonomous vehicles from a reduced number of standardised manoeuvres. This
can contribute to (a) the reduction of the development costs of these systems670

and (b) facilitate the training procedure of these systems (using average test
drivers that might be unable to perform drift control and path following tasks
along complex road segments of arbitrary geometries).

The results regarding the test number #4, constant radius path following
with sinusoidal body slip reference, are depicted in Figure 14.675
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Once again, the upper-level PID controller maintains the lateral deviation
error within 1 metre in spite of the changing body slip reference. Regarding
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the latter signal, a slight delay between the reference and the vehicle body
slip is noticed during the execution of this test. Additional investigations
regarding the dynamic response of this system to changes in the references680

will be covered in the future. The trajectories of the closed-loop tests are
depicted in Figure 15. As can be observed in Figure 15-left, the vehicle is
initialised in a straight line and the proposed intelligent drift system drives
the vehicle autonomously to the drift equilibrium. This is a significant ad-
vantage with respect to previous works on drift control [10], where expert685

open-loop inputs are required to build up a certain body slip angle before
triggering the controller action.

Figure 15: Left: Test #3, Decreasing-radius clothoid test with high body slip reference.
Right: Test #4, Constant-radius test with sinusoidal body slip reference.

Finally, the NRMSE of the tracked vehicle planar motion states are pre-
sented in Table 9.

Table 9: Normalised root mean square error (%) of the tracked vehicle planar motion
states.

Test eψ̇ evx eβ
#1 1.76 0.79 1.80
#2 1.71 0.57 3.01
#3 4.41 3.45 6.37
#4 7.66 2.35 8.45

32



For consistency, and with the aim to focus on the body slip tracking690

capabilities of the proposed system, the initial stabilisation period was not
considered. Therefore, the state errors were calculated between t > 5 s and
tend in all the tests presented in this paper. Expectedly, the largest body slip
error is observed on the test (#4), where a time-varying body slip angle is
tracked. Nevertheless, this error is kept below the 10% error band and can695

be considered acceptable for the proposed application. Reduced state errors
were obtained in the rest of tests. As similar results have not been found
in the literature (previous drift control works considered time-invariant body
slip and radius references), these errors will be taken as a reference for further
refinements of the proposed system.700

5.2.1. Phase-space coverage

As was remarked in Section 3.4, studying the closed-loop stability of the
complete driverless model is not trivial. A phase-space coverage analysis
was performed to evaluate the system convergence to the desired path and
drift equilibria under initial errors on the lateral deviation and vehicle states.705

Specifically, the vehicle is expected to follow a thirty-metre circular trajectory
maintaining a high body slip angle |β| = 35 degrees. The road width was set
to 10 metres and the trajectories leaving the road boundaries were considered
unacceptable. The vehicle was initiated in straight line conditions (null body
slip angle and null yaw rate) at different initial speeds and lateral deviation710

errors, Figure 16-a.
Specifically, the grid formed by the vector of initial longitudinal veloc-

ity errors (vehicle speed at the start of the simulation minus target speed
at steady-state drift equilibrium) [-20:5:20] (km/h) and vector of lateral
deviation errors [-8:2:8] (m) was simulated in the proposed scenario. The715

three-dimensional trajectories of the body slip, lateral deviation, and longi-
tudinal velocity state errors are depicted in Figure 16-b. The distortion of
the longitudinal velocity error ∆vx is caused by the action of the upper-level
PID controller, which modifies the tracked references to reduce the lateral
deviation error. As can be noticed, the proposed system converged to the720

reference trajectory for the majority of initial errors, Figures 16-c and 16-d.
Additional simulations were repeated in a wide range of road radii and sim-
ilar results were obtained, evidencing the ability of the proposed intelligent
drift controller to drive the vehicle to the reference path in a finite time.

Remark: The proposed system converged to the desired equilibrium con-725

ditions for the majority of initial errors considered. Nevertheless, for high
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Figure 16: Phase-space coverage analysis. (a) Initial longitudinal velocity and lateral
deviation errors, (b) Three-dimensional state error trajectories, (c) time histories of the
lateral deviation error, (d) drift controller trajectories.

positive speed errors, the system was unable to converge to the reference
trajectory and left the road. Metaheuristic optimisation routines will be
employed in the future to optimise the controller performance and elucidate
whether the phase-space limits observed in this section are due to the physical730

limitations of the system or caused by the preliminary non-optimal controller
tuning.

The previous analysis was executed on a type 4 terrain with the corre-
sponding set of NNs. Additional simulations were performed on a type 5
terrain to assess the convergence ability of the system with the second set of735

NNs and satisfactory results were obtained.
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5.3. Robustness assessment

The ability of the driverless drift control system to adapt to drastically-
different terrains or cope with uncertainties in the vehicle parameters was
assessed in this subsection. The closed-loop path following clothoid test case740

(#3, Table 8) was selected for this purpose.

5.3.1. Terrain-based adaptation
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In the first place, the proposed system was simulated in a low-mu loose
surface (class 5 terrain, Figure 6). The vehicle is initialised at a high speed
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(18 m/s), and a hard braking intervention is performed while the clothoid745

segment is being approached. During the braking event (t ≈ 2 s to t ≈ 8
s) the classifier described in Section 3.5 recognises the current road terrain
and the references and tyre parameters of the MPC are adjusted accordingly.
After that, the vehicle achieves the desired drifting motion and follows the
clothoid road segment with minimum lateral deviation, Fig. 17. In order750

to evaluate the importance of an adaptive terrain-based control strategy, a
second simulation eliminating the terrain classifier action was executed. In
this case, the system is initialised with the set of NNs trained in the gravel-
like terrain (class 4). As can be observed in Figure 18, the non-adaptive
system is unable to cover the clothoid segment and leaves the road in an755

uncontrolled spinning motion.
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Figure 18: Trajectories of the adaptive (green) and non-adaptive (red) drift control sys-
tems.

These results evidence the necessity of incorporating terrain-based adap-
tive strategies to future highly-skilled autonomous vehicles. Such skills are
often exhibited by professional Rally drivers, who adapt their driving style
to the current terrain. According to the authors’ survey, such strategies have760

not been presented before in related works, where the drift control systems
have been evaluated in an unique terrain.

5.3.2. Slight friction and mass variations

In addition to the previous terrain changes, the proposed system should
be robust to slight variations in the friction characteristics (which might not765

be identified as a different terrain by the classifier). According to recent
results on off-road tyre data analysis [56], peak friction values (D factor,
expression (32)) can vary within a 0.1 band if different tyres (e.g. summer
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tyres, studded tyres) are tested in the same off-road surface (e.g. gravel).
Additional simulations were performed in the clothoid test case increasing770

and decreasing by a factor of 0.05 the maximum friction parameter corre-
sponding to the type 4 road terrain. The set of NNs trained with data from
the previous terrain class was employed in the driverless controller for con-
sistency. These simulations were aimed at identifying potential performance
problems that might arise if different tyres are used in the proposed system.775
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by a factor of 0.05. (a) Yaw rate, (b) body slip angle, (c) longitudinal velocity, (d) lateral
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As can be seen in Figure 19, the proposed system is able to stabilise the
vehicle around the target drifting motion and follows the desired path within
reasonable error limits, Table 10.

Table 10: NRMSE of the tracked vehicle states. front∗: ∆m ≈ 150 kg on front position /
rear∗: ∆m ≈ 150 kg on rear position.

Test Configuration eψ̇ evx eβ
1 D+0.05 4.20 3.29 5.58
2 D-0.05 7.02 4.02 18.36
3 +∆m front∗ 3.33 2.02 4.40
4 +∆m rear∗ 4.08 2.73 4.31
5 +∆m front∗ + ∆m rear∗ 3.76 2.55 5.23
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Finally, the previous test case was repeated introducing several variations
in the vehicle mass and weight distribution (+∆m ≈ 150 kg on front and780

rear positions). These results are omitted here due to space limitations and
the NRMSE of the tracked states can be consulted in Table 10. Overall, the
proposed system performed well to changes in the vehicle mass and slight
variations in the road friction characteristics (e.g. due to the use of different
tyres [56]). In addition, the ability of the proposed system to cope with more785

significant terrain changes was demonstrated in the previous section.

6. Conclusions

In this paper, a novel data-based approach to teach an autonomous car
to drift without requiring any tyre friction information has been presented.
Specifically, autonomous drift control has been achieved by means of an artifi-790

cially intelligent hybrid structure composed of Feedforward Neural Networks
and a Model Predictive Controller. The proposed system incorporates a lon-
gitudinal dynamics-based road terrain classifier, which adapts the system
behaviour depending on the identified terrain, as expert drivers do.

The intelligent structure has been trained using experimental data gener-795

ated by a real test driver in IPG-CarMaker using a static driver-in-the-loop
setup. The suitability of the Neural Networks to capture the drifting equi-
librium from noise-corrupted data and provide the drifting references and
tyre parameters to the lower-level Model Predictive Controller has been evi-
denced in a relevant number of test cases. Overall, the proposed intelligent800

drift controller has exhibited a remarkable performance, being able to per-
form advanced driving tasks not included in the training dataset even in the
presence of significant initial state errors or different road terrains.

6.1. Current limitations and future research steps

In the opinion of the authors, the main drawbacks of the proposed system805

could be related to vehicle state estimation requirements. The implementa-
tion of virtual sensing techniques emphasizing tyre-model-less approaches will
be pursued in future research steps. Apart from this, the refinement of the
proposed terrain-based adaptive system to cope with a wider range of road
terrains will be studied in detail. Furthermore, friction fusion approaches810

combining longitudinal and lateral dynamics signals will be investigated to
extend the operating limits of the current road terrain classifier.
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To conclude, authors envisage that the proposed system, and in particular
the methodology described to develop and train a self-adaptive intelligent
autonomous car, will contribute to accelerating the development of future815

highly-skilled autonomous vehicles.
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