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Abstract

Security testing and assurance in the automotive domain is challenging. This is

predominantly due to the increase in the amount of software and the number

of connective entry points in the modern vehicle. In this paper we build on

earlier work by using a systematic security evaluation to enumerate undesirable

behaviours, enabling the assignment of severity ratings in a (semi-) automated

manner. We demonstrate this in two case studies; firstly with the native Blue-

tooth connection in an automotive head unit, and secondly with an aftermarket

diagnostics device. We envisage that the resulting severity classifications would

add weight to a security assurance case, both as evidence and as guidance for

future test cases.

Keywords: automotive, Bluetooth, cybersecurity, security assurance,

penetration testing

1. Introduction

Historically, embedded systems were designed to operate in tightly-controlled

environments which required specialist knowledge to design, calibrate and de-

ploy. Developments in functionality and connectivity, however, have meant that

the amount of software and its concomitant complexity has increased dramati-

cally.

There are several trends which have contributed to the automotive threat

landscape, each of which lead to increased attack surface area and increased



complexity, which impairs testability:

• Firstly, the presence of an increased volume of software (measured, for

example, in lines of code) to meet the requirements of an increasingly

sophisticated functionality and attendant rise in the number of processing

units. This leads to compounded complexity. There are more lines of

code within some of the more advanced luxury vehicles than a fighter jet

[1]. Subsequently, testability and auditing (and in this context, security

testing) becomes more difficult and the likelihood of large numbers and

the severity of vulnerabilities increases [2].

• Secondly, there has been significant development and integration of (wire-

less) communication interfaces, which means more connectivity. Subse-

quently, this has led to increased number of connections in the intra-

vehicular network as reuse of externally provided information becomes

more important. There is also a concomitant rise in the number of exter-

nal peripheral devices that can now connect to the vehicle. This means

that there are now more access points for malicious attackers, and also

potentially negatively impacts system boundaries by blurring them, or

extending them to beyond the control of original manufacturers such that

unknown interactions (and therefore possible security risks) could exist.

• Finally content volume, variability and value has changed and increased,

which means that there is more data about the vehicle to extract. Ad-

ditionally, the data that is extracted is potentially more valuable if it is

personal data that is obtained. In summary, there is more of and more

kinds of data to consider and defend.

Security engineering (and security testing as part of that process) is still

relatively novel in mainstream automotive production [3, 4], and typically se-

curity is incidental and a by-product of achieving performance and safety goals

[5, 6, 7, 8]. Even with advanced formal methods for modelling and testing,

the need for and number of demands, features and increased connecting power
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means that, even had security been considered, the scale of the problem facing

security testers is now much broader [9].

There are challenges to introducing a security engineering process into the

automotive industry. Vehicles are heterogeneous with many variants and con-

figurations. Production costs are based on units, with narrow profit margins.

There are differences between life and development cycles to traditional com-

puting software and hardware. Supply chains adds to the level of obscurity with

each tier with regards to the final system [2].

More specifically, securing interfaces in vehicles also comes with many issues.

Any security mechanism will require additional processing overhead, and on the

hardware level, has ramifications in provision of energy and in physical assembly

and design, such as placement of additional wiring.

Even should such concerns be addressed, countermeasures that are com-

monly used currently for large and complex systems are not suitable for vehic-

ular embedded systems because of hardware constraints and the differences in

network configuration. Well-established defences at software level such as the

use of cryptography, firewalls and intrusion detection systems (IDS) cannot be

implemented without considerable change in architecture due to the use of suf-

ficiently different protocols and topologies within the automotive domain, and

the potentially costly computational power required. Post-release, maintenance

becomes an issue as patches for discovered vulnerabilities, unless performed

over-the-air, are difficult to apply once units are sold.

Although the vast majority of demonstrated attacks that have been directed

at the vehicle use automotive-specific vectors, many of the methods are familiar

to security professionals. This includes the use of malware and known software

vulnerabilities, proximity extending hardware, replay attacks or simply reverse

engineering messages to gain illicit knowledge of the system [8]. Considering the

similarity of attack methods, parallels can be drawn between non-automotive

and automotive systems, forming a baseline from which to draw information on

possible weaknesses.

All of the above is dependent on acquiring knowledge and information re-
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garding existing vulnerabilities. From the number and variety of reported

threats, weaknesses and exploits (see Section 2), all of which have been demon-

strated as feasible, it is clear that a methodical description of the problem, as

well as a systematic method of establishing relative priority regarding risks and

threats, is required. Furthermore, manual methods, whilst useful, can be time-

consuming. This is similar to the problem facing those who are addressing vehi-

cle safety; however, the process of evaluation in vehicle safety is well-established.

We endeavour to address the problem in vehicle security in a similar fashion,

using industry standards and to aid in the automation of the process.

The main contribution of this paper is the semi-automated classification of

results using security severity ratings (in line with industry standards), resulting

from a systematic security evaluation of automotive Bluetooth interfaces. We

present two case studies, one which evaluates a native automotive Bluetooth

interface, and one which evaluates a aftermarket Bluetooth-enabled device at-

tached to the vehicle’s on-board diagnostics port.

The evaluation is from a black box perspective. This is because, although

there are high-confidence formal methods for security testing (see Section 2),

the primary barrier to using such methods is that the information required to

do so is not available, both due to commercial confidentiality and the obscurity

of sub-components within the system (many of which are third party)[10]. This

also precludes other methods of enabling systematic evaluation such as attack

graphs, for which formal model checking could be performed.

Thus, we use a black box approach to test the case study systems (see

experimental applications in Section 4), and we build here on our earlier work

[11], by including severity classifications as part of the overall systematic security

evaluation. These classifications can inform the selection of future test cases,

and can act as evidence within a security assurance case.

The rest of the paper is structured as follows:

• We explore related work, including the exposure of vulnerabilities in ve-

hicles, comparative methods and severity classifications in Section 2;
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• We present our methodology together with the fundamental concepts that

underlie it in Section 3;

• We briefly outline the implementation of our methodology as a proof-of-

concept tool in Section 3.4;

• We present the results of two experiments, one in which we apply our

experimental application to the Bluetooth in an infotainment unit and one

where we study an aftermarket on-board diagnostic device) in Section 4;

• We look at how the results could be used in a security assurance case in

Section 5 and finally,

• We discuss implications, give concluding remarks and explore future di-

rections of research in Section 6.

2. Related Work

In this section, we discuss security testing in the automotive domain, with a

brief overview of vulnerabilities exposed and the necessity for systematic security

testing (Section 2.1). We then explore comparative methods and schemes that

allow for a security classification or assurance with the results of such testing in

Section 2.2.

2.1. Security Testing

Many initial studies looking at automotive security have been exploratory,

with demonstrated attacks on the vehicle as a whole [8, 12], on components or

sub-components [13], on the intra-vehicular network [14, 15] or on peripheral

devices that connect to the vehicle such as through the On-Board Diagnostics

(OBD-II) port [16, 17].

These papers established the nature of vulnerabilities and are impressive

in their depth of experimentation. They make clear the need for a systematic

testing method that would help highlight the problems an engineer must address.
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A systematic security evaluation method has many advantages. There is a

disparity between what an attacker must find in order to exploit the system (po-

tentially just one vulnerability) and the number of flaws a defender would have

to safeguard in order to protect the system (as many as possible). An ad-hoc

approach to finding vulnerabilities could mean that bugs and weaknesses are

overlooked [18]. A methodical approach increases the likelihood of determining

the nature and number of problems [19]. The latter is essential since informa-

tion sharing is still limited due to the competitive nature of the industry [20].

Systematic analyses can also be supported by a variety of tools and utilities (as

is the case in this paper) and be further expanded upon once more information

regarding the system is known.

Comparative methods include model-based security testing [19], model-driven

engineering [21] or using “anti-models” [22] or abuse cases [23] to achieve system-

atism. What these all have in common, however, is the need to have pre-built

models (or enough technical information to generate a trustworthy model) in

order to run or generate any test cases.

2.2. Automotive Specific Severity Classifications

The “E-Safety Vehicle Intrusion Protected Applications” (EVITA) project

[24] ultimately aims to provide a secure architecture for automotive on-board

networks and evaluates the realisation of this using two “views”. The first of

these is the magnified view. Of especial interest within this are the automotive

specific systematic methods of evaluation described. Attack tree modelling (dis-

cussed further in Section 3.2) is used to support these processes. Of particular

interest is the classification of the severity of various outcomes (Table 1).

Severity levels have also featured in other automotive security projects, such

as the “Healing vulnerabilities to enhance software security and safety” (HEAV-

ENS) project [25]. This project is aimed at facilitating security requirements

engineering. It uses the popular threat modelling method STRIDE (a mnemonic

for Spoofing, Tampering, Repudiation, Information disclosure, Denial of Service,

Elevation of Privilege) [26] for threat analysis, ending with the assignment of
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Table 1: EVITA Severity Classification for Automotive Security Threats

Severity

Classes

Classes of harm to stakeholders

Safety (Ss) Privacy (Sp) Financial (Sf ) Operational (So)

0 No injuries No unauthorised

access to data

No financial loss No impact on

operational

performance

1 Light or

moderate

injuries

Anonymous data

only

Low-level

financial loss

Operational impact

not discernible to

driver

2 Severe and

life-threatening

injuries (survival

probable) or

light/moderate

injuries for

multiple vehicles

Identification of

vehicle or driver

Moderate

financial loss, or

low losses for

multiple vehicles

Driver aware of

performance

degradation, or

indiscernible

operational

impacts for

multiple vehicles

3 Life threatening

(survival

uncertain) or

fatal injuries, or

severe injuries

for multiple

vehicles

Driver or vehicle

tracking, or

identification of

driver or vehicle

for multiple

vehicles

Heavy financial

loss, or moderate

losses for

multiple vehicles

Significant impact

on operational

performance, or

noticeable

operational impact

for multiple

vehicles

4 Life threatening

or fatal injuries

for multiple

vehicles

Driver or vehicle

tracking for

multiple vehicles

Heavy financial

losses for

multiple vehicles

Significant

operational impact

for multiple

vehicles.

7



risk levels based on threat, impact and level of security needed [27]. Its sever-

ity levels are similar to EVITA’s, in both structure and content, and forms an

alternative example of an automotive risk assessment framework.

EVITA and HEAVENS are both referenced in SAE J3061, the Cybersecurity

Guidebook for Cyber-Physical Systems [28], which provides a framework of

recommendations for establishing a cybersecurity engineering process within an

organisation. The high-level framework for these process recommendations is

aligned with that used in the automotive functional safety standard ISO 26262

[29], which is itself based on the well-established systems engineering V-model.

Within that framework, J3061 suggests engineering processes that are suitable

for security engineering, which among others include threat modelling, attack

trees, vulnerability analysis and penetration testing. These key recommended

process steps of J3061 are of particular relevance to the subject of this paper.

3. Methodology

We begin by describing our workflow in Section 3.1. We then discuss the

methods involved in our workflow in subsequent sections (Sections 3.2 and 3.3)

before reporting on our implementation of the process using Bluetooth as a case

study (Section 3.4).

3.1. Workflow

The high level workflow can be seen in Figure 1. We expand on what the

steps are, the methods used to achieve them and the outputs of each step in the

following sections:

• In Section 3.1.1, we cover threat modelling, which we perform manually;

• In Section 3.1.2, we outline the semi-automated penetration testing pro-

cess;

• In Section 3.1.3, we briefly describe the assignment of severity classifica-

tions (this is also semi-automated); and
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Threat modelling
Built over existing knowledge of

threats

Threat driven penetration

testing of the system

Penetration tests derived from

attack trees

Assignment of severity clas-

sifications
SAE J3061 Severity Classifications

Construction of evidence

based security assurance

case

Validation by automotive experts

Output: scripted attack tree

Output: evidence of security

related system behaviour

Output: severity classifications

for body of evidence

Output: security assurance case

Figure 1: Workflow of Methodology

• In section 3.1.4, we give details regarding the security assurance case con-

struction.

3.1.1. Threat modelling

We perform threat modelling first, by creating attack trees based on prior

knowledge and reconnaissance. This is a manual process based on expert judg-

ment. The process is described in more detail in Section 3.2. The attack trees

are captured in a particular format, which leads to the first output: a scripted

attack tree that reflects possible penetration tests, and that also serves as input
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into the next step.

3.1.2. Threat driven penetration testing of the system

We then used penetration testing (as detailed in Section 3.3) using a semi-

automated test execution tool (Section 3.4). The penetration tests are derived

from the attack trees (see Figure 2); each test is a combination of the leaf nodes

(attack steps) of the attack tree depending on the logic gate at the root of each

branch. Results were acquired regarding system behaviour from a security per-

spective in a semi-automated fashion. Since this is an implementation-specific

step, further details on methods used to test (i.e. gain evidence from) the case

study interface of Bluetooth is given in Tables 2 and 3.

Testing

Penetration tests

derived from attack

tree

System-under-test

Results

Figure 2: Penetration testing process

3.1.3. Assignment of severity classifications

The outcomes of systematic tests were assigned severity ratings (see Sec-

tion 3.4.2 for case-study specific details). This assignment takes place based on

several factors:

• Whether the result is a positive one (presence of information), or whether

it was a negative one (no information acquired, but the test was run

successfully)

• In the case of the latter, the assigned rating for each category is always

zero. If the test was not possible, the assigned rating is also always zero,

although rationale might differ.
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• In the case of the former, questions are asked of the tester to record

manual observations (see Section 3.4.2 for specific questions relating to

Bluetooth). These guiding questions are based again on the rationale

provided by EVITA in Table 1 and help form the ratings of 1, 2 or 3. The

rating of 4 is used only in relation to multiple vehicles being affected at

the same time; with none of the test vehicles being interconnected, the

rating of 4 was never needed.

3.1.4. Construction of evidence based security assurance case

The construction of the assurance case is manual, but conforms to recom-

mendations as outlined in SAE J3061.

SAE J3061 recommends that a cybersecurity case or assurance case is de-

veloped prior to release for production. The assurance case is analogous to a

safety case and is used to document, through the provision of argumentation

and a body of evidence, that a certain claim holds about the security achieved

by the developed system [30]. An example of a claim could be: “freedom from

unreasonable risk of an attack has been achieved”

This claim may be supported by a number of sub-claims which are further

supported by arguments and associated evidence, such as the ones provided in

our case studies in Section 5. Such a sub-claim could be based on the results of

systematic security testing of the implementation, with the methods presented

earlier used to acquire the evidence to support this sub-claim.

Therefore, having built our framework such that a systematic evaluation

was possible, we also required a way to make the results of such an evaluation

meaningful. In this paper, we use severity levels (as outlined in Table 1) to form

ratings that could be used in a security assurance case.

Only the privacy (Sp) and operational (So) aspects of the EVITA classifi-

cation scheme were considered. Safety (and safety analysis), being a significant

topic in itself, was considered out of scope for this paper due to financial and

informational constraints.

The financial category was also not considered due to two challenging fac-
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tors. Firstly, the financial aspect could encompass the severity of loss through

financial transactions within the vehicles, a feature that is not yet widely de-

ployed and was not present on any of the vehicles tested. Secondly, the financial

rating could also be due to severity of loss through theft of the vehicle. However,

there is no definitive real world detection measure or tool to determine whether

a vulnerability led to this theft, even should the vehicle be recovered.

Finally, having no information regarding internal paths or interfaces pre-

cludes us from formal verification and validation. There are also no set of

expected outputs in the given context of automotive systems, since vehicular

experimental analysis has typically concentrated on other technologies. Thus,

this severity classification was validated by two domain experts.

3.2. Attack Trees

We use attack trees as our threat modelling method (see Section 3.1.1) to

provide systematism. Attack trees are conceptual diagrams created to represent

the actions of an adversary looking to fulfil an attack goal. These goals can be

as low level (compromise an interface) or high level (steal money) as required.

Logic gates connect the branches and leaves of the attack tree. The AND

logic gate (also known as conjunction) requires that all leaves of a branch are

complete before an attack is considered complete. The OR logic gate (also

known as disjunction) requires that at least one of the leaves of a branch is

complete before an attack is considered fulfilled [31]. Several other extended

logic gates could also be used. In this study, sequential AND (SAND) is also

used to denote an AND logic gate that requires temporal order. These trees

can be represented as diagrams (Figure 3) or textually (Figure 4).

The trees used in this paper follow the broad outline (Figure 5) of the pen-

etration testing process as described above. We populated the leaves of the

attack trees manually with background research that had been performed on

the case study interface Bluetooth (detailed in Section 3.4).
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Figure 3: Example diagrammatic attack tree detailing the opening of a safe [11]

Figure 4: Example textual attack tree detailing the opening of a safe [11]
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Figure 5: Board outline of attack trees used in this paper

3.3. Penetration Testing

This form of testing is a specialised form of security testing, and is the

method used in the second step of our methodology (see Section 3.1.2). Ulti-

mately, the aim of a such a test is to enumerate exploitable vulnerabilities and

potential weaknesses depending on the scope and authorisation to carry out

such a project. This is performed using a series of activities from an attacker’s

perspective. Activities are not usually prescribed, although there are methods

and processes common in each test run regardless of the technology or system

being tested (such as enumerating a network or machine address).

Although there are formal technical standards, there are drawbacks to ap-

plying them in this case. For example, ISO/IEC15408 has high informational

needs about the testing environment, which is not suitable for an opaque sys-

tem. Others (such as ISO/IEC 27001 on information security management)

only address part of the whole challenge. Nevertheless, recognition of the fact

that there had to be a broad common approach resulted in the proposal of the

Penetration Testing Execution Standard (PTES) [32]. Although named as such,

PTES is not a formal standard, but rather a technical methodological guideline

to provide optimum test coverage; this, however, means that there is still a lack

of a globally accepted methodology for penetration testing [11].

The advantage to these guidelines is that, although there is lack of a concrete

consensus on what constitutes a flaw, weakness or vulnerability, the process can,

at least, be loosely categorised and ordered around:

1. Scoping, whereby scope, objectives, aims and ground rules are established

and agreed to between all stakeholder parties,
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2. Information gathering or reconnaissance, which involves a back-

ground study on the test subject looking for all possible weaknesses,

whether that be through user, developer or system documentation, pub-

licly available manuals, source code or results of previous testing. This

process can be passive (listening for information) or active (probing in or-

der to acquire a response) depending on the aim of the test. An example

of this could be profiling the Bluetooth module or chip, where the NAP

and UAP information could be used to identify the manufacturer (a list

is publicly available in IEEE’s Standards Register [33]).

3. Formation of vulnerability hypotheses, which involves constructing

hypotheses of possible vulnerabilities in the system, determined via study

of background information gathered as well as by looking at abuse cases,

4. Threat modelling which involves the generation and modelling of pos-

sible threats based on potential vulnerabilities identified,

5. Testing and exploitation, which is used to establish the presence of the

vulnerability, determining the nature of the flaw, whether it is repeated

through the system and its security impact,

6. Clean up and report, which involves creating or collating recommenda-

tions for discovered flaws. These are then presented, along with a cleanup

of the system to ensure that no inadvertent flaws from penetration testing

(such as malware or backdoors) are left behind.

The categorisation above is not necessarily a step-by-step process. Each

stage (or series of stages) can be re-iterated as needed for the system or com-

ponent being tested; threat modelling for example may uncover a breadth of

testing that might not necessarily be in scope, which would mean re-visiting or

re-writing the scope in order to match any constraints more accurately.

Although a mass of information has been acquired regarding tools, tech-

niques and to some extent, motivation (in terms of attacker goals and what

they hope to gain), the issue of prioritisation and the combination of circum-

stance that would result in the use of this tool or that attack method can be
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covered by scenario building around an attack goal. In this paper, the latter is

covered through the building of attack trees (see Section 3.2).

Of the steps above, scoping and information gathering as well as vulnerability

hypotheses were inherent in the processes used to build the tailored attack

trees that are seen later in experimental application (see Section 4). Direct

reconnaissance of a specific implementation, testing, exploitation and reporting

are embodied in the software implementation of the attack tree (see Section 3.4)

and are reflected in its key features (Section 3.4.1).

3.4. Implementation

A software tool was designed and created to aid in the systematic evaluation

process. This forms part of the threat driven penetration testing process as de-

scribed in Section 3.1.2. This proof-of-concept tool was developed using Python

2.7, on a Kali Linux machine, with a Cambridge Silicon Radio Bluetooth 4.0

dongle attached. The tool incorporates and extends earlier Bluetooth testing

tools [11]. The general architecture of the tool is given in Figure 6.

3.4.1. Key Features

As described above in Section 3.3, the features of the tool (and the methods

which enable those features) can be categorised broadly into:

• Reconnaissance, which can be defined as a survey of the system’s exis-

tence, configuration and capabilities (Table 2),

• Connection attributes, which includes information on pairing mecha-

nisms, transmission sizes and connection state (Table 2), and

• Attack goal, which encompasses methods that would allow the realisation

of the attack goal (Table 3);

• Reporting, including logs of all data gathering and tests run (Table 3),

parameters chosen by the tester (where appropriate) and the severity clas-

sification. All are also for use as evidence in the security assurance case.
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} For use as evidence 
in the security 
assurance case

Figure 6: General architecture of the tool

Each of these categories is an individual component (with the individual

attack steps forming sub-components). The attack goals in this case were two

examples of the attack classification as described by [34] and are in line with

the general accepted security testing goals of violating confidentiality, integrity

or availability (CIA).

This structure allows for different permutations (depending on the attack

tree desired), and for extensibility; new attack methods can be added as steps (as

sub-components) within each module. New attack goals that come within test

scope can also be added to the tool as a different module. Since the beginning of

every security test begins with an inspection of the system, the reconnaissance

module can likewise be re-used at the beginning of every test run.
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Table 2: Proof-of-concept tool features (expanded version from [11])

Feature Method
R
ec
o
n
n
a
is
sa

n
ce

(A) Discovery of ‘discoverable’ de-

vice addresses

Inquiry scans for available Bluetooth addresses

(A) Discovery of ‘hidden’ devices Brute-force scanning (incrementing the address

bits by one before sending an inquiry). Requires

pre-knowledge of the first three bytes of the Blue-

tooth address (OUI) - or other address bytes to be

feasible.

(A) Determination of device manu-

facturer

Using the OUI to scan through a database of stored

OUIs (from IEEE’s standard register [33])

(A) Determination of Bluetooth chip

manufacturer

Using device information supplied by bluez

(S) Retrieves FCC ID information Retrieves relevant Federal Communications Com-

mission (FCC) web link if ID is known by user

(A) Determination of service profiles

offered by device

Using the Service Discovery Protocol (SDP)

(A) Preliminary indication of device

operating system (OS)

Using indicators in discovered service profiles

(S) Determination of whether device

uses legacy pairing

Checks Bluetooth version (version 2.0 or before

means that legacy pairing is in use, whilst version

2.1 or above means that use of either legacy pairing

or Secure Simple Pairing (SSP) is possible)

(A) Determination of open ports Sending information to all possible RFCOMM and

L2CAP ports and awaiting the appropriate re-

sponses

(A) Determination of filtered ports Sending information to all RFCOMM and L2CAP

ports and filtering for specific error messages

C
o
n
n
ec

ti
o
n

A
tt
r
ib
u
te
s

(A) Determination of pairing status With reference to local paired devices list

(S) Pair or unpair the device as ap-

propriate

With reference to local paired devices list, subject

to appropriate authentication

(S) Spoof a device Calls to installed spooftooph[35] package

(A) Checks for presence of OBEX

File Transfer Profile (FTP) service

With reference to discovered service profiles

(A) Checks for presence of OBEX

Push Profile (OPP) service

With reference to discovered service profiles

(A) Determines maximum transmis-

sion unit (MTU) for open L2CAP

ports

Sending increasing size of packets until Bluetooth

error 90, message too long appears

(A) = fully automated, (S) = semi automated, requires manual intervention
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Table 3: Proof-of-concept tool features (continued) (expanded version from [11])

Feature Method

A
tt
a
c
k
G
o
a
l

D
a
ta

E
x
tr
a
c
ti
o
n (S) Attempted extraction of informa-

tion from headunit

Using “attention modem” (AT) commands through

open RFCOMM ports

(S) Attempted extraction of informa-

tion by browsing headunit filesystem

Mounting the filesystem on a “Filesystem in

Userspace” (FUSE) based filesystem type (if

OBEX FTP exists)

(S) Attempted extraction of informa-

tion

Using the dot-dot-slash (../) attack to attempt di-

rectory traversal beyond the given restricted direc-

tory (if OBEX FTP exists)

D
o
S

(A) Attempted denial of service Flooding open L2CAP ports with L2CAP echo re-

quests

(S) Attempted denial of service Repeated data push through OBEX channels

(S) Attempted denial of service Pushing of malformed data through any RFCOMM

channels

V
e
h
ic
le

C
o
m
p
ro

m
is
e

(A) Extract vehicle specific informa-

tion

Vehicle information based on AT commands sent

to an attached wireless Bluetooth-enabled OBD-II

device

(S) Attempted extraction or denial of

service

Through injection or flooding using OBD-II proto-

col messages (see Section 4.2). User specifies pa-

rameters such as type and number of messages and

time intervals

(S) Attempted vehicle compromise Through injection or flooding using raw pre-

determined CAN messages (see Section 4.2). User

specifies CAN header ID, CAN data payload, num-

ber of messages to be sent and time intervals

(A) Vehicle data extraction Passive monitoring of all exposed CAN buses on

the OBD-II port

O
u
tp

u
ts

(A) Scan logs Written to CSV or TXT files and collated at the

end of the test run

(A) Populated attack tree Displayed and logged with results of the test run

(A) Subtrees Where test results have not been found or entered,

denoted by NULL, appropriate subtrees (found using

width-first search) will be displayed and logged.

(S) EVITA Severity classifications For each result in combination with answers to

tester queries, a severity classification based on the

“privacy” and “operational” categories (see Sec-

tion 2.1) is given.

(A) = fully automated, (S) = semi automated, requires manual intervention
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3.4.2. Severity Classification

After tests are performed, questions were asked of the tester to record manual

observations. Note that these are to assist in the severity classifications (as

outlined in Section 3.1.3). Although the name and characteristics of the service

profiles are determined in an automated manner, a human may be required to

categorise. For example, categories such as ”Vendor Specific Profiles” would

require a human to assess with background research whether they were indeed

specific to the target system vendor, or whether they were instead specific to a

platform such as Android Auto, or to the Bluetooth version implemented on a

target system.

These questions include:

• Service profiles and its nature:

– Were there profiles that are named suggestively?

– Were there vendor specific profiles?

– Were there synchronisation profiles?

– Were there Personal Ad-Hoc Network (PAN) profiles?

Certain service profiles mean that personal information can be synchro-

nised between two devices, which might impact privacy. Others may offer

more access to the system itself, either by broadening the attack surface

(such as by allowing Ethernet packets through e.g. through the PAN pro-

file) or bespoke services which may have implementation flaws. Suggestive

profiles (such as “Reflash Server” may help narrow the scope or provide

a target for an adversary. These affect the privacy rating and potentially

the operational rating.

• PIN behaviour:

– Was the PIN dynamic?
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– Was the PIN customisable by user?

– Was the PIN easily guessable?

Each of these questions (depending on a positive or negative answer) would

affect the risk of an adversary being able to compromise the Bluetooth con-

nection through, for example, eavesdropping. In the worst case scenario

of a static, fixed and easily-guessable PIN, the risk would be far greater

than if the PIN had been dynamic or customisable. This would affect both

operational and privacy ratings.

• Data returned by the vehicle:

– Was there information about the vehicle returned?

– Was there information about the user of the vehicle returned?

These questions would affect the privacy ratings given, with the latter

being the highest severity.

• The behaviour of the vehicle during testing:

– Was there discernible operational impact on the system during test-

ing?

– Was there a reaction on the user interface?

These questions were both used to discern the impact on the system, and

whether any alerting effects resulted. This affects the operational rating during

classification.

The combination of answers were used in conjunction with the findings of

the tests to generate tabulated ratings for each aspect of the test suite. Ratings

given to each of the test findings are labelled ‘ACT’ (for actual). Furthermore,

a potential severity level is also given (denoted by ‘POT’).

The rationale for ACT and POT ratings is hard-coded into the tool. This is

possible for the ACTUAL ratings, since EVITA provides concrete and discrete

rationale for each rating.
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The POT ratings are based on worst-case scenarios should an exploit or

attack be possible, or if a part of the system is inherently weak. An example

of this is an unchangeable short PIN, which in the worst case would allow an

attacker to compromise authentication with all the attendant risks. All are also

tied to the rationale outlined by EVITA.

Each rating is given as Spi, Soi where Sp represents the privacy severity

rating, and So the operational severity rating and where i ∈ {0− 4}.

The tool also checks through the tree to give automatic ratings. For exam-

ple, where there is no OBEX FTP, the mounting and traversal attacks were not

performed. This would automatically result in an Sp0 and So0 rating. Other

aspects such as vehicle tracking through the Bluetooth address (which affects

privacy), and whether there were open ports (which potentially affects opera-

tions) are pulled from the logs created on the findings and and also classified

automatically.

3.5. Extension of Methodology

We have used part of the methodology described above in our earlier work

[11]. This includes the threat modelling aspect (outlined in Section 3.1.1) and

the penetration testing aspect (Section 3.1.2). In this paper, we have expanded

in the breadth of application by:

• Expanding on the number of attack trees. This is synonymous with enu-

merating more attack goals. In this paper we add Denial of Service and

Vehicle Compromise, embodied in a software tool (see Section 3.4) ;

• Adding an additional vector through which vehicle compromise could take

place (i.e. compromise through the diagnostics port using an aftermarket

device) (see Section 4.2);

We have also extended the workflow of the methodology itself by:

• Adding to the methodology the assignment of severity levels to results of

the systematic evaluations. The severity level assignment process and how
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this could contribute to a security assurance case is also discussed above

(Sections 3.1.3 and 3.1.4).

• Experimental application of this new step in the workflow. This is de-

scribed in Section 5.

4. Experimental Application

We use the Bluetooth interface as a case study for our experimental appli-

cation. The reason for this is its ubiquity in automotive systems, whether that

be in-cabin (via the infotainment system) or through aftermarket devices that

attach to the vehicle for diagnostics. All features of the toolset as described

in Tables 2 and Tables 3 were used to acquire the data as given below. The

exception to this is where a specific implementation is required (such as the

presence of an OBEXFTP service), and these are marked in the experimental

results in the following sections.

4.1. Experimental Methodology – Infotainment System

Two attack trees (Figure 7 and Figure 8) with the attack goals of data

extraction and denial of service were predetermined using Bluetooth techniques

and attacks described in literature.

Vehicles were stationary and ignition was switched on, ensuring that it was

within the Class 2 (ten metre) range as no antennas were used to extend range.

If Bluetooth had to be enabled, then this was performed before the tool was

run. The vehicle was a small hatchback from a major manufacturer registered

in 2013.

For this study, primarily “legitimate” connections were used, with legitimate

defined here as a straightforward connection to the vehicle from a mobile phone,

without any attempt to compromise the Bluetooth communications protocol.

The reason for this was that the aim of the study was to explore Bluetooth as

implemented on the vehicular system, rather than the Bluetooth protocol itself,

since the security (or lack thereof) of the Bluetooth pairing mechanisms and the
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underlying protocols are well studied [36, 37, 38, 39]. A connection compromise

would thus exacerbate the risk of malicious actions rather than introduce a

new risk. The latter is especially significant since there are no access control

policies on the vehicle, i.e. access to Bluetooth services implemented was not

differentiated by user, but rather by device. Every device had access to every

service (assuming compatibility, which is a different issue). There was no need to

compromise the protocol to elevate privilege or gain access to restricted areas as

might be the case with a more traditional computing system. The single caveat

to this was the use of a spoofed device (at the local testing interface), to observe

whether the vehicle accepted the connection.

4.1.1. Attack goals

Two attack trees (according to two attack goals) were created for testing on

vehicles. They are discussed below.

Data extraction. from a vehicle through Bluetooth is largely an exercise in gath-

ering as much information as possible. Although the most overtly valuable is

information regarding the user of the vehicle, data from the vehicle itself (such

as cornering speed, braking times and so forth) can be used to fingerprint drivers

[40].

Other information that may be of use include the age of the technology

(which may indicate legacy flaws), the chip manufacturer (which may point to

analogous vulnerabilities or bugs), pairing mechanisms (where aspects such as

using a fixed PIN might make a system more insecure) or other reconnaissance

data that could enable targeted attacks. The attack tree used for this attack

goal is shown in Figure 7.

Denial of Service. involves flooding and fuzzing, as jammers were not available

at the time of testing. The aim was to cause disruption to the vehicle or any

component therein, with the primary target being the headunit. Because of the

nature of denial of service, and because the system under test is a black box,

most of the results are based on observation whilst trying to perform normal
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Figure 7: Attack tree with data extraction as an attack goal (adapted from [11])
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Figure 8: Attack tree with denial of service as an attack goal

actions (such as making a phone call), or on what might happen on the graphical

front end, rather than anything being returned by the vehicle. The attack tree

used for denial of service is shown in Figure 8.

Results from applying the tool in accordance with both the attack trees as

given above, as well as implications of these results is given in Table 4.

4.2. Experimental Methodology – Aftermarket Device

The experimental application of the toolset involves the ”Vehicle Compro-

mise” attack goal suite as seen in Table 3. The four attempted data extrac-

tion or vehicle compromise tools correspond to the final SAND:Cause Vehicle
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Table 4: Experimental Results: Vehicle 1 [11]

Interface characteristics Observation

Address: xx:xx:xx:34:8A:2D

Version: 2.0

Class: 0x340408

Services: HFP, SyncML Server,

A2DP, AVRCP, PBAP (Client),

OBEX OPP, MAP MNS

Open ports: RFCOMM 1,4 and

L2CAP 1,3,23,25

Bluetooth version 2.0 means that vehicle

is using legacy pairing exclusively. Vehicle

produces dynamic 6 digit PIN. Device class

interprets to an audio/video hands-free device

Services include a Synchronization Markup

Language (SyncML) Server (for phonebook,

message and calendar information synchroni-

sation). A SyncML client could be used to

extract personal information that is stored

on the vehicle (although connections through

this were unstable - no information was

found).

Tests Outcome

D
a
ta

e
x
tr
a
c
ti
o
n AT Commands

Filesystem mount and directory

traversal

Responds to all AT commands sent on channel

4 with AT+BRSF=39. Commands on other chan-

nels end with errors such as 103, Software

caused connection abort.

No OBEXFTP, so filesystem cannot be

accessed through this vector.

D
e
n
ia
l
o
f
se

r
v
ic
e Flood L2CAP ports

Repeated data push through OBEX

channels

Fuzz open RFCOMM channels

Two responsive L2CAP ports found, with

maximum transmission unit (MTU) size of

4096 and 242 respectively. Flooding of the

port with the larger MTU resulted in discover-

able mode disrupted intermittently when try-

ing to pair. Calls made had quality issues or

were dropped.

Additional observations

Time discoverable was limited to two minutes, and the user had to enable Bluetooth.

Audio and visual notice was given of successful pairing, and test device was added to

the paired list. User is not alerted to any of the attempted actions beyond pairing.

The vehicle recognised a spoofed device as one that has previously paired, although

authentication checks failed (probably due to incorrect location on the test laptop of

the link key acquired from a previously paired device).
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1-bit 11-bit 1-bit 1-bit 1-bit 1-bit 4-bit ≤ 64-

bit

16-bit 2-bit 7-bit 7-bit

SOF IDE RTR IDE r1 r0 DLC Data CRC ACK EOF IFS

Figure 9: CAN frame format [41]

Compromise branch in the attack tree as described in Figure 10.

Typically, messages that are sent into the OBD port are either raw Controller

Area Network (CAN) or diagnostic messages. These two areas of intra-vehicular

communications are introduced below.

4.2.1. CAN Messages

The CAN protocol is the primary mode of communication inside the vehicle.

The latest version is CAN 2.0, first specified in 1991 [41] and embodied as an

ISO standard (ISO11898) in 2003. These CAN messages carry much of the

information needed for the operation and control of the vehicle.

The standard CAN packet comprises (up to) 11 bits for the message ID,

followed by (up to) 8 bytes of data, then a cyclic redundancy check (16 bits) for

error detection. The full frame format is given in Figure 9, with descriptions of

each segment in Table 5. The extended CAN frame format uses 29 bits instead

for the message ID with slightly different configurations of bits to allow for this.

We concentrate here on the standard CAN message only. The full 8 bytes of

data need not be used. Information for a door sensor, for example, may only

require 1 bit. Conversely a message can be spread across many frames, with

various data lengths and offsets.

Arbitration, should nodes on the CAN network transmit simultaneously, is

based on message prioritisation. This prioritisation is determined using the

message ID, with the lowest ID being the highest priority. That being the

case, implementation usually means that mission-critical messages are the ones

assigned lower IDs.

Assignment of IDs along with data payload is manufacturer specific, how-

ever, reuse is common to save on the cost of redesigning a network [2]. Although

CAN data is not typically encrypted, reverse engineering can be a difficult pro-
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Acronym Description

SOF Start of File

IDE The Identifier Extension establishes the priority of

the message. The lower the binary value of the ID,

the higher its priority. A CAN message frame with

an 11-bit ID is a standard frame. One with a 29-bit

ID is an extended frame.

RTR Remote Transmission Request; if this bit is dom-

inant (i.e. 0), more information is necessary from

another node

r0/r1 Reserved bits originally, but now in use in some im-

plementations to identify XOR masked CAN mes-

sages

DLC The Data Length Code contains the number of

data bytes to be transmitted

CRC Cyclic Redundancy Check for error detection

ACK The Acknowledge bit is overwritten (from recessive

(1) to dominant (0)) to acknowledge validity

EOF End of File

IFS The interframe space contains time required to

move a received frame to the message buffer area

Table 5: CAN frame format descriptions [41]
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cess considering the volume and variety of content that is transmitted. This is

especially the case without a CAN database, which contains definitions for ev-

ery message and signal. This file is often highly confidential. However, specific

CAN messages for discrete events (such as unlocking doors) can be obtained in

a relatively straightforward manner through trial and error experiments.

CAN data is transmitted on a CAN network (in a bus configuration). There-

fore any Electronic Control Unit (ECU) on the network has access to all mes-

sages. There is no addressing; instead each ECU is programmed to listen to a

set of CAN IDs, which triggers some pre-determined functionality.

4.2.2. Diagnostic Messages

Parameter IDs (PIDs) are used to perform diagnostic functions or request

data from the vehicle specifically through the OBD-II port. This is done through

a query-response mechanism, where a PID query comprises the CAN ID 7DF,

followed by 8 data bytes. The first byte is the data length (usually 02) with

the second byte being the mode and the third byte typically being the PID.

The combination of modes and PIDs can then be sent into the CAN bus, and a

response should be received from whatever in-vehicle module is responsible (if

any). The response CAN ID is typically 8 (in hex) higher than the message ID

that the responding ECU answers to. A response of NO DATA usually indicates

that the vehicle has not returned anything, a response beginning with 7F in byte

2 means that the vehicle does not recognise the request.

The first ten modes (01 to 0A, described in SAE J1979 (E/E Diagnostic

Test Modes) [42], are standard and generic to all compliant vehicles. In these

standard modes, the PID is only the 2nd byte, with the 3rd to 8th byte unused.

With non-standard modes, the PIDs could extend to the 3rd byte. Manufac-

turers, are not obliged to implement all standard commands, and additionally

could also define functions for non-standard PIDs. There is much information

that could be gathered using PIDs to interrogate the vehicle. For example,

sending the mode 09 with PID 02 retrieves the Vehicle Identification Number

(VIN). The VIN is unique to the vehicle and is used for many activities, from
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vehicle maintenance to recovery of a stolen vehicle.

Another set of (related) diagnostic messages called Unified Diagnostic Ser-

vice (UDS) messages are embodied in ISO 14229-1 (Road Vehicles - Unified

Diagnostic Services) [43]. This standard specifies the requirements for diagnos-

tic services independent of the data link connection between vehicle and remote

device.

Like the J1979 OBD-II messages, UDS works to a request-response system.

Particular service IDs (SIDs) are sent to the vehicle (more specifically to ECUs

that support a particular service) in order to trigger a pre-determined function-

ality, whether that be to start a Diagnostic Management Session, interrogate

UDS-compatible ECUs or reset the ECU. Again, although the standard de-

termines what some of the UDS messages do (such as the ones given in the

examples above), manufacturers are able to define their own SIDs.

4.2.3. Setup

We concentrate on what combinations of diagnostic or CAN messages might

cause a reaction. We describe below the setup of the systematic evaluation of a

vehicle through an attached Bluetooth-enabled OBD-II device.

The OBDLINK MX dongle was connected to a single test vehicle. This

particular device was chosen as we could be sure that the chip was not coun-

terfeit and able to accept the full AT command set (a full list of supported

commands can be found in ELM’s AT command list [44]). Physical setup was

the same as that of the case study. From here the proof-of-concept tool used

a pre-determined attack tree (shown in Figure 10) to run through the entire

aftermarket device test suite.

Baudrate was set at 115200, which was the maximum based on the ELM

device (with the default connection being set at 9600). Time intervals for all

messages was set at 0.5 seconds in order to ensure that the OBD-II device had

time to read and transmit the data, although this is user customisable using

the proof-of-concept tool. Although a serial connection is slow compared to the

speed CAN busses could operate at (40Kbit/s to 1Mbit/s for high-speed CAN
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Figure 10: Attack tree used to test vehicles which have an aftermarket OBD-II device attached
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for example), the set interval was enough to be able to flood the bus with enough

messages to cause adverse reactions. Lower level bit-by-bit attacks, however,

would not be feasible using this method.

The systematic test was first performed with ignition on (but not engine),

with the assumption that, as long as the appropriate target ECUs were pow-

ered, that the vehicle would respond. Deciphering the content of the response

was considered out of scope at this point in time, as we had no manufacturer

CAN database available to interpret the CAN data acquired from the bus. The

experiments were then repeated with the engine on with the modes and PIDs

that either returned CAN data or caused a physical reaction from the vehicle.

Of the standard suite of modes, the vehicle returned information from in

three modes [42]:

• 01, which corresponds to “Show current data”;

• 06, which corresponds to “Test results, oxygen sensor monitoring for CAN

only” and

• 09, which corresponds to “Request vehicle information”

Of the non-standard suite of modes, the vehicle returned information for

nine different modes with all other modes returning NO DATA. Note that there

were modes and PIDs where the vehicle returned NO DATA, but that there was

a physical effect on the vehicle.

A summary of results can be seen in Table 6. Because non-standard modes

are manufacturer dependent, the exact modes and PIDs found to affect the

vehicle are not given.

Select raw CAN messages were also sent into the vehicle. These packets

were pre-determined through trial and error, but consisted of messages that

were known to cause an effect when trialled through a wired connection to the

OBD-II port. Unlike the diagnostic messages, some of the CAN messages sent

through only needed to be sent once. A summary of these results can be seen

in Table 7.
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Table 6: Results of systematic testing (Modes and PIDs)

Modes

found

Result Description

First mode CAN data

returned

for 2 PIDs

The first PID caused the headunit screen to display

“Diagnostics Mode On”, the second PID caused the

engine to refuse to start and the hazard lights (on

the cluster only) to flash, but required message flooding.

If engine is on, this causes the engine to stall.

Vehicle remains unresponsive thereafter as long as

message flooding continues. Once flooding stops, the

instrument cluster restarts but not the engine.

Second

mode

CAN data

returned

for 1 PID

The first PID had no physical effect, the second re-

turned NO DATA, but the electronics cut out, with the

instrument panel and ignition button non-responsive.

Third

mode

Not recog-

nised

7F returned by vehicle

Fourth

mode

CAN data

returned

for many

PIDs

12 of the PIDs each had 16 frames worth of CAN data

returned by the vehicle

Fifth mode Not recog-

nised

7F returned by vehicle

Sixth to

ninth mode

Not recog-

nised

7F returned by vehicle
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Table 7: Results of systematic testing (raw CAN messages)

Action Observation

Unlock doors Vehicle did not return any data, doors did not unlock, both

with key in-cabin or external to the vehicle

Sending Unified Diag-

nostic Service messages

Hazard lights came on, “crash” was displayed on the secondary

screen above the steering wheel. Vehicle doors continuously

locked and unlocked. The former happened if message is sent

once, the latter if message flooding is performed

Changing speed and

RPM indicators on the

instrument panel

CAN message flooding to this particular message ID caused

the needles to fluctuate

Disabling power steer-

ing

Successful, but only if the vehicle was stationary. This message

only needed to be sent once. Further message flooding had no

effect.

5. The Security Assurance Case

In this section, we discuss the classification of the results obtained (i.e. the

evidence) through systematic evaluations and the assignment of severity ratings

to this evidence. Methods used to acquire this evidence (i.e. test results) are

given in Tables 2 and 3. This follows the methodology as given in Section 3,

using the implementation as described in Section 3.4.2.

Recall that only the privacy and operational aspects of the EVITA classi-

fication scheme (see Section 3.4.2) were considered. The assignment of ratings

were based on the EVITA severity ratings (Section 2.2) and a rationale is given

for each of the ratings given.

5.1. Infotainment system

The severity ratings that were assigned for the data extraction and denial of

service attack goals are given in Figure 11 and Figure 12 respectively.
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Figure 11: Severity classification ratings for the data extraction test suite

The address, as a unique identifying factor of the headunit, could also be

used to track a vehicle. In terms of the Organisationally Unique Identity (OUI)

(which is the first three bytes of the Bluetooth address registered to a specific

manufacturer via IEEE), the fact that this organisation is known could then

lead to further reconnaissance (including research into known bugs or software

defects), which could lead to significant impairment. The operating system

could not be enumerated by the tool in this case, and so an automatic rating of

0 on both privacy and operational fronts was assigned. This could be adjusted

based on the results of manual observation.

The services discovered were all generic (no suggestive or bespoke services),

with no PAN services identified. This is based on tester observation (see Sec-

tion 3.4.2), although could be further automated based on a scan of the log

produced from the initial reconnaissance stage. This is all anonymous data

(Sp1), but operationally has no impact. Legacy pairing was identified, and so

given an actual operational rating of So1, since the impact is indiscernible, but

still presents a weakness. Potentially of course, the rating is much higher since

compromising the pairing could lead to any number of attacks (including against
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Figure 12: Severity classification ratings for the denial of service suite

privacy).

The presence of open ports meant that an actual operational rating of So1

was assigned, since this allowed us to acquire system information. However,

operationally, the right AT commands or number of packets to send could be

enumerated and this may result in a higher potential rating. Since there was no

OBEX FTP service on the vehicle, both the mounting and directory traversal

attacks were not carried out, and therefore both were automatically assigned

Sp0, So0 on all fronts.

The first sets of results from the denial of service tests in Figure 12 are

identical to the data extraction results since the reconnaissance aspects were

performed in the same vehicle. They are included in the figure for clarity. For

the purposes of the denial of service tests, only the last two set of results are

discussed.

Flooding caused no discernible impact, however, we were able to enumer-

ate the maximum transmission units of the open L2CAP ports on the vehicle,

therefore system information was available. This resulted in the assignment of

Sp1 (for anonymous data acquired), but since there was no discernible impact,

37



the operational rating was set at So0. Potentially, however, further testing (with

more specific unit sizes, or with more packets or over a longer period of time)

could cause a denial of service in any number of Bluetooth functionalities in the

worst case scenario.

Likewise, stressing open RFCOMM ports caused no impact, although again

system information was required (even if it was the fact that the action was

forbidden) and therefore given the same rating as above. Potentially, finding

the right combination and length of malformed data could also cause denial of

service, and the ratings adjusted accordingly.

5.2. Aftermarket devices

Following the same process as testing through the native headunit connec-

tion (Section 4), the severity classification was created based on findings and

observations (recall that Sp is the privacy severity rating, and So the operational

severity rating). The table given in Figure 13 gives an overview of the severity

classification for each of the results in conjunction with manual observation for

tests performed with aftermarket devices.

Figure 13: Severity classification from tests with aftermarket devices

As can be seen from the results, no personal data was acquired. This was to

be expected since we are interfacing with the CAN bus and its connected ECUs,

rather than the infotainment system where any personal data is most likely to

be stored. Only system information was acquired, which is the reason for the

Sp1 ratings. This may not hold true in a worst case scenario as CAN traffic can
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be used to profile individual drivers through usage patterns [40]. Therefore the

potential privacy rating was set at Sp4.

The VIN number was also acquired, which allows for the identification of the

individual vehicle, as well as individual characteristics including make, model,

year of registration, airbag type and more. With this, vehicle tracking may also

be possible, as there are many online tools such as determining tax status that

makes use of this number.

Finally, the last characteristic deals with whether there was significant op-

erational effect on the vehicle. As could be seen from the case study as well as

from the systematic evaluation, almost anything is possible on the vehicle should

the correct CAN message be determined. Reverse engineering the right CAN

message (including any diagnostic messages) allows for significant operational

impairment of the vehicle, hence the potential indicator of So3.

Potentially, many of these devices (being small and the OBD-II port hidden

from general view) could be planted, and a signal sent to every device within

range. This led to the assignment of the potential indicator of Sp1 (for anony-

mous data acquired) and So4 (for possible significant impairment on multiple

vehicles - even simultaneously should they all be in range at once).

Like the classification before, prioritisation could take place depending on

the results. The edge cases of Sp0,So0 and any S4 rating could be dealt with

straightaway. The former could be used as evidence in a security assurance

case that there is low risk associated with that aspect of the component, or as

evidence that there are sufficient countermeasures in place. The latter (as it

affects multiple vehicles severely) would be a priority in any case.

The middle cases (S2 and S3 ratings and combinations thereof) would require

other factors weighting it to form priorities (see Section 6). Since we are testing

the internal CAN network here, operational factors might be given precedence,

as typically there is very little personal data available on the CAN bus.

Recall that validation of a black box with unknown inputs and no set of

expected outputs is very difficult. The black box nature also means that formal

verification is unfeasible due to lack of knowledge of internal behaviours. There-
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fore validation of this classification was also performed through domain expert

review.

6. Discussion and Conclusions

Results from the classification process can be used to inform further devel-

opment immediately.

The assigned security levels can be used to prioritize the development of

countermeasures. Anything that is classified as Sp0,So0 can be added to the

security assurance case as low risk, and therefore low priority. Conversely, any-

thing with a classification of S4 in any aspect can be targeted for the develop-

ment of countermeasures since this rating indicates a risk to multiple vehicles.

When the development of these countermeasures is considered complete, com-

parisons can be drawn with the initial rating, and if considered acceptably ad-

dressed, a description of these countermeasures can also be added to the security

assurance case as evidence of risk analysis and risk reduction.

Deciding precedence between equal but different classifications, such as Sp1,So2

and Sp2,So1 would depend, in part, on the components being targeted. These

tests are performed on the headunit where personal data is most likely to be

stored, so privacy might potentially be given more precedence. For example,

given the choice between Sp1,So2 and Sp2,So1, the latter might be the more

likely candidate to target for improvement. Conversely, the aftermarket device

is directly connected to the CAN network on which vehicle operations are highly

dependent, but personal data is highly unlikely to be found. Therefore the op-

erational rating would take precedence although this may be apparent anyway

as no identifying data would mean the privacy rating would only ever remain

at Sp1.

The above may seem intuitive given only two parameters, but in the event

where all four aspects of the EVITA classification scheme are in play, this could

aid in the decision making process.

Finally, the rationale given for the worst-case scenario (or the potential rat-
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ings) is intended to be a guideline to the starting point for either new test cases

based on the information acquired during the reconnaissance phase. Alterna-

tively, these can be used as guidance to what might be done by a malicious

adversary to complete the attack, since many of the tests pull up just short of

an invasive attack due to the risk to test vehicles.

6.1. Contribution

Our contribution is the process we present in this paper to classify results

(Section 3.1.3 and Section 3.1.4) of a systematic security evaluation using sever-

ity ratings.

This process could be integrated into the appropriate vulnerability testing

and penetration testing activities recommended by J3061 during the develop-

ment phases at the system, hardware and software levels. Each of the actual

(ACT) ratings (resulting from the actual tests) can be considered absolute rat-

ings, and could be augmented with additional risk assessment factors such as

cost of attack, ease of attack, opportunity available and knowledge of the at-

tacker at the discretion of the manufacturer. These additional factors were

considered out of scope within this paper.

The potential (POT) ratings could be treated in a similar way. Since they

represent worst case scenarios, they could feature in the threat analysis and

risk assessment activities recommended by J3061 during the concept phase, and

again, additional risk weighting factors could be defined by the manufacturer.

This ensures flexibility to deal with different implementations and concepts.

Once these classifications take place, they could be used as evidence in secu-

rity assurance cases not dissimilar to the proposed Automotive Security Assur-

ance Levels (ASEALs) [3] or the cybersecurity integrity levels proposed in [45].

Placing it in such a structured manner could also help scope the breadth and

depth of tests to be performed, in accordance with the priority of the testers or

the owners of the systems-under-test.
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6.2. Conclusion

In conclusion, the systematic Bluetooth evaluation carried out enumerated

manufacturer-specific implementation details regarding both the information

and entertainment system as well as through the diagnostics port. We were able

to affect the vehicle by injecting both OBD-II specific and raw CAN messages.

Once testing was completed, severity ratings that were assigned could be

used to prioritise development of countermeasures and to add evidence to a

security assurance case. The rationale behind the worst-case scenario ratings

could be used as guidance for further tests. A severity classification for these

results was validated using domain expert review. Finally the wider issues of

Bluetooth discoverability, and what manufacturers could consider to counter

these dangers was briefly explored.

Future work includes extending the proposed test result classification to

include both the safety and financial aspects of the severity classification. An

extension of the methodology by including additional risk factors such as attack

cost or difficulty would also mean that a more granular classification could be

achieved. The question of how a feedback loop may be formed to the early stage

threat analysis and risk assessment should also be addressed. This question

highlights the need to consider security by design, and investigations into the

precise points in the design and implementation process this could be added

would be desirable.
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