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Abstract—Visible light communications (VLC) is an alternative 
method of indoor wireless communications that requires sensitive 

receivers. Ideally, single photon avalanche detectors (SPADs) 

could be used to create more sensitive receivers. However, the 
dead-time, finite output pulse width and photon detection effi-

ciency of existing SPAD arrays limits their sensitivity and band-

width. In this paper an accurate equation for the impact of 

dead-time on the sensitivity of a SPAD array is presented. In 

addition the impact of the width of the output pulses on the on-off 
keying (OOK) data rate is investigated. Finally, a comparison 

between receivers containing an APD and a large array of SPADs 

shows that although the receiver containing the SPAD is more 

sensitive in the dark the APD-based receiver is more sensitive in 

normal operating condition. However, the models that predict the 
performance of both receivers suggest that newer SPAD arrays 

will enable significant improvements in receiver sensitivity.  

 
Index Terms— SPAD, APD, VLC, SPAD-based receivers, Visible 

light communication, optical wireless communication 

I. INTRODUCTION 

Optical wireless communications (OW C) has been proposed 

as an alternative method of indoor wireless communications, 

which avoids the problems that can occur when using ra-

dio-frequency (RF) communicat ions  [1,2]. The maximum rate 

at which data can be transmitted through any channel is de-

termined by the bandwidth and signal-to-noise ratio (SNR) of 

the channel.  

A key component of all OWC systems [3,4,5,6] is the pho-

todetector in the receiver, and, in order to maximise the SNR, 

some systems use a receiver based upon an avalanche photo-

diode (APD). In these devices, avalanche multip lication am-

plifies the signal. Unfortunately, it also generates excess noise 

that limits the maximum useful APD gain. The impact of this 

excess noise can be avoided by operating the APD at higher 

voltages to create a single photon avalanche detector (SPAD) 

[7,8]. Results obtained using optical receivers that incorporate 

SPADs have been recently reported [9-13].   

Since SPADs can detect single photons, particularly when  

operated in the wavelength range where they are most sensitive, 

they potentially  have a h igher sensitivity than APDs [9]. Ex-

isting SPADs, that are manufactured using complementary 

metal-oxide semiconductor (CMOS) processes , are typically 

most sensitive at visible wavelengths. Consequently, it is an-

ticipated that a SPAD-based visible light communicat ion (VLC) 

receiver will support a particular bit error rate (BER) with a 

lower received optical power in the visible band than an 

APD-based receiver.  

     Although SPADs are potentially  more sensitive than APDs, 

they currently have smaller active areas and can have low 

fill-factors when fabricated in arrays. Additionally, they are 

blinded for a short time (known as the dead-time), after a 

photon is detected. When combined with their high sensitivity, 

this dead-time  makes them potentially susceptible to ambient 

light. The potential impact of ambient light means that, alt-

hough SPADs have been used in other environments [14-18],  it  

is not obvious that they  should be preferred to APDs in the 

presence of ambient light. In  this paper, the first attempt to 

determine when SPADs should be preferred to APDs is re-

ported. In addition, the potential benefits of using SPADs , 

rather than APDs, in the presence of ambient light are quanti-

fied.  

     Section II introduces a small array of SPADs with a variable 

dead-time and presents an analysis of the effect of dead-time on 

the response of any array of SPADs. Sections III and IV then 

contain results from experiments on links , including this s mall 

SPAD array and an APD receiver respectively. To determine 

the performance of receivers containing larger arrays of SPADs,  

the results of experiments  on a commercial off-the-shelf array 

of SPADs are presented in section V. Finally, conclusions are 

drawn in section VI. 

II. THE SPAD ARRAY 

A SPAD is created by biasing a photodiode above its 

breakdown voltage. When operated in this mode, an avalanche 

event initiated by a photon will become self -sustained and is 

easily detected. Then, to detect a second photon, this 

self-sustained avalanche process has to be quenched. A load 

device is therefore added in series with the photodiode. 

Whenever an avalanche event occurs and a large current flows 

through the load, the otherwise self-sustained event is quenched 

by the resulting reduction in  the bias voltage across the photo-

diode.  It takes a fin ite time for the bias voltage to recover from 

this quenching process . Hence, each  avalanche event is fo l-

lowed by a period, known as the dead-time, during which the 

SPAD is insensitive to light. The impact of the dead-time can 

be mitigated by using arrays of SPADs[7,8]. In  these arrays, the 

illuminating photons are spread across the array, so that some 
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SPADs are always active  and therefore available to detect 

incident light.  

The impact of dead-time on the performance of SPAD arrays 

can be determined by comparing the dead-time of a SPAD to 

the average time between detected photons. For a SPAD with 

an active area, 𝐴𝑆𝑃𝐴𝐷 , the average time between detected pho-

tons is   

                 𝑡𝑖𝑛𝑡𝑒𝑟𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 =
𝐸𝑝

𝜂.𝐴𝑆𝑃𝐴𝐷.(𝐿𝑑𝑎𝑟𝑘+𝐿)
                          (1) 

 

where L is the  intensity of illuminating light in  Watts per unit 

area. Ldark is the equivalent intensity that represents the effect of 

unavoidable dark counts (which occur without any illumina-

tion), η is the SPAD photon detection probability  (PDP) and Ep 

is the energy of each photon. 

If the light intensity is low enough for 𝑡interdetected to be 

much longer than the dead-time, then the average number of 

counts for NSPADS SPADs in an array in a time T will be 

        𝑐𝑜𝑢𝑛𝑡𝑠 = 𝑁𝑆𝑃𝐴𝐷𝑆 . (𝐿𝑑𝑎𝑟𝑘 + 𝐿). 𝑇.
𝜂.𝐴𝑆𝑃𝐴𝐷

𝐸𝑝
          (2) 

This equation shows that, if the dead-time of the SPADs is 

orders of magnitude shorter than the time between counts per 

SPAD, the number of counts is proportional to the illumination 

intensity. In contrast, at high light intensities , photons will 

impinge on  SPADs that are inactive and the dead-time will 

reduce the number of counts. At extremely h igh light intensities , 

a photon will be detected as soon as the dead-time from the 

previous detected photon ends. This means that, for an array of 

SPADs with a dead-time of τ, the maximum number of counts 

in a time T will be 

                                     𝑐𝑜𝑢𝑛𝑡𝑠𝑚𝑎𝑥 =
𝑁𝑆𝑃𝐴𝐷𝑆 .𝑇

𝜏
                             (3) 

The expected linear response at low-light light intensities and 

saturation at high light intensities can be obtained using the 

function 

                        𝑐𝑜𝑢𝑛𝑡𝑠 =
𝑁𝑆𝑃𝐴𝐷𝑆 .𝛼 .𝑇 .(𝐿𝑑𝑎𝑟𝑘+𝐿)

1+𝛼 .𝜏 .(𝐿𝑑𝑎𝑟𝑘+𝐿)
                        (4) 

to calculate  the number of counts in a  time T from an arrays of 

NSPADS,  where for convenience  

𝛼 =
𝜂.𝐴𝑆𝑃𝐴𝐷

𝐸𝑝
                                   (5) 

Equation (4) is similar to the equation that has been used to 

determine the true count rate from the measured count rate for 

an actively quenched SPAD [19]. However, (4) included a term 

that takes into account the existence of dark counts.  

 
Table I: Summary of key parameters of the SPAD array. 

 

 

 

 

 

 

 

 

 

 
 

An array of 60 SPADs, whose parameters are listed in Table I, 

and which is described in more detail in [8], was used to de-

termine the accuracy of (4). In this array, the output from each 

SPAD is a current. This current is generated using a pair of 

transistors to steer the current from a constant current source to 

a common output whenever a photon has been detected. The 

current is steered to the common output during the SPADs 

dead-time and the output currents are summed to create a single 

output. This output is then converted to a voltage using a 50Ω 

load resistor[8]. Critically for these experiments , the dead-time 

of the SPADs can be varied using a user controlled input 

voltage. 

     Fig 1 shows the average number of counts in a predeter-

mined time against the product of the light intensity and 

dead-time. This data was obtained by varying both the intensity 

of light illuminating the SPAD array from a 650 nm Resonant 

Cavity Light-Emitting Diodes (RCLED) and the SPAD 

dead-time. In this figure, all the measured data falls on  the same 

curve when the x-axis is dead-time 𝜏 multiplied by light inten-

sity L. This occurs because the average number of detected 

photons depends on the ratio of dead-time and inter-photon 

time. For a fixed  dead-time, decreasing the inter-photon time 

increases the probability of photons hitting an inactive SPAD, 

resulting in a higher probability of photons being undetected. 

Similarly, for a part icular inter-photon time, increasing the 

dead-time will also increase the probability of photons hitting 

an inactive SPAD. Since the average inter-photon time is in-

versely proportional to the light intensity, 𝐿 , the ratio of 

dead-time to inter-photon time is proportional to the product of 

dead-time 𝜏 and light intensity. 

 
Fig. 1. The measured average number of counts as a function of the product 

of the intensity of the light falling on the SPAD array and the SPAD dead-time 

for four different dead-times. This data is compared to the results predicted 

using (4) and two previously proposed method of determining the impact of 

dead-time of the performance of an array of SPADs. 
 

Fig 1 also shows the expected number of counts under dif-

ferent conditions obtained using (4). For comparison, the re-

sults obtained using two previously proposed methods of the 

impact of dead-time[8,19] are  also shown. Adapting to the 

notation of this paper, one of these models [8] is 

 

 𝑐𝑜𝑢𝑛𝑡𝑠𝑎𝑟𝑟𝑎𝑦 =
𝑐𝑜𝑢𝑛𝑡𝑠 .𝑁𝑆𝑃𝐴𝐷𝑆

𝑁𝑆𝑃𝐴𝐷𝑆 −𝑐𝑜𝑢𝑛𝑡𝑠
                    (6) 

 

where counts is calculated using (2). The results in Fig  1 show 

that this is not an accurate model. The second model [19] is the 

same as (4) if Ldark=0 and, since the dark count rate (DCR) of 

the tested SPADs is so small, the results from (4) and this 

model are very similar.  A comparison of the data and these two 

Process 180nm 

Number of SPADs 60 

Breakdown Voltage 10.4V 

Diameter of Active Area 10μm 

Fill Factor 3.2% 

Minimum Dead-time 5 ns 

Average Dark Count Rate 90kHz 

Photon Detection Probability at 

650nm with an excess voltage of 1.6V 

6.9% 



models shows that, for this SPAD array, both these models  

accurately predict the response of the array. 

The nonlinear response due to the SPAD’s  dead-time is ef-

fectively a reduction in the sensitivity of the SPAD array. The 

effect of this reduction in sensitivity on data link performance is 

investigated in the next section. 
 

III. LINK RESULTS FOR THE SMALL SPAD ARRAY 

A. BER 

The SPAD array  was used as the receiver in an  optical link. 

The source in this link was a 650nm RCLED, driven by an 

HP1130A pattern generator so that it  transmitted an OOK 

modulated pseudorandom binary sequence (PRBS).  These 

experiments were performed with the laboratory lights 

switched off. However, an optical band-pass filter, with  a cen-

tre wavelength of 650nm and a 40nm bandwidth, was used to 

reduce the amount of ambient light from the laboratory 

equipment that reached the receiver. The output signal from the 

SPAD array was then captured using a ZS1500 active probe 

and a HDO6014-MS oscilloscope. 

    Fig 2 shows a raw eye-diagram from the oscilloscope when 

data was transmitted at 100Mbps. For th is experiment, a signal 

light intensity of 1.1 W m
-2

 was incident on the SPAD array, 

corresponding to -53dBm incident on the active areas of the 

device. A notable feature of this eye-diagram is its symmetry. 

This symmetry arises because the temporal response of the 

output is determined by the pair of t ransistors used to control 

the output current. These two transistors set a threshold voltage 

and they have identical responses when the SPAD bias voltage 

increases or decreases through this threshold.  It is therefore 

these transistors that generate the symmetry  in the eye-diagram.  

A BER of 7.9×10
-4

 was estimated by processing this eye 

diagram. This BER is below the level at which a standard 

Forward Error Correction (FEC) code can operate[20], and for 

convenience this BER was adopted as the reference level for 

later experiments reported in the paper. It can be seen that the 

noise is highly signal dependent, with much greater noise oc-

curring when a 1 is being transmitted. This is due to the photon 

shot noise, which is a significant, if not the dominant, noise 

source. 

B. Effect of dead-time 

 This type of SPAD array steers the output current associated 

with each  SPAD to  the common output during the SPAD’s 

dead-time. Th is means that the width of the output pulses from 

this array of SPADs equals the dead-time. If the dead-time, and 

hence the output pulse width, is much shorter than the bit-time, 

the responses to photons detected in each bit will not neces-

sarily be added together at the output. In contrast , using a 

dead-time, and hence output pulse width, that is longer than the 

bit-time will cause inter-symbol interference (ISI). These two 

effects lead to the conclusion that the lowest BER will be 

achieved when the bit-time is approximately  equal to the 

dead-time, and hence output pulse width. Fig  3 shows the 

measured BER for three different data rates at various 

dead-times. As expected, these results show that the best BER 

for a particu lar data rate is achieved when the dead-time of this 

type of SPAD array  is slightly shorter than the bit-t ime for the 

data rate. 

 

C. Probability density function (PDF) of received data. 

 
Fig 4 shows the histogram of number of SPADs that are 

contributing to the output voltage at the instant when the SPAD 

output is converted into a bit stream. This variable equals the 

effective number of detected photons per bit that are required to 

achieve a BER of 7.9×10
-4

. The results show that the number of 

photons detected when a zero  is  transmitted is a bimodal d is-

tribution. The lower peak is the ‘true’ zero PDF, set by the 

electronic noise of the system with no received photons (ap-

proximately 72mVpp). In addition, ISI causes a secondary peak 

with a maximum voltage that corresponds to approximately 3 

detected photons per bit.  When a “1” is transmitted, the mean 

increases and the shot noise from the additional photons causes 

a broader peak.  These results show that, with this SPAD array, 

 
Fig. 2. A raw eye-diagram at a data rate of 100Mbps when the BER is 

7.9×10
-4

. 

  

 
Fig.3. The measured BER at different dead-times for a data rate of 

100 Mbps, 50 Mbps and 17.9 Mbps. In each case the lowest BER is achieved  

for a dead time which is slightly shorter than the bit  t ime. 

 
 

Fig.4. The measured histograms of the number of SPADs that have fired 
within a dead-time of the end of each bit  period when the bit-time is 10 ns, the 

dead-time is 8.8 ns and the measured BER is 7.9×10
-4

. 

 

  



a BER of 7.9×10
-4

 can be achieved using approximately 15 

detected photons per bit. Decision feedback equalisation (DFE) 

can be used to reduce the impact of ISI [21,22]. In these ex-

periments, the least mean square (LMS) algorithm was used to 

find the optimum coefficients for a DFE equaliser. When this 

equalization is used, a 3dB improvement in receiver sensitivity 

can be achieved (corresponding to an average of 10.2 detected 

photons per bit).  

   For these experiments, the SPAD array was tested in the dark 

and a significant component of the noise when a 0 is transmitted 

is electronic no ise rather than Poisson noise. However, in the 

presence of ambient light, Po isson noise is expected to domi-

nate. For a system limited by Poisson noise, the BER can  be 

estimated using  

            𝐵𝐸𝑅 =
1

2
∑ (𝑁1)𝑘

𝑘!
𝑒−𝑁1𝑛𝑇

𝑘=0 +
1

2
∑ (𝑁0 )𝑘

𝑘!
𝑒 −𝑁0∞

𝑘=𝑛𝑇
           (7) 

 

where 𝑁0 is the number of counts detected for a zero, 𝑁1 is the 

number of detected counts when a one is transmitted and nT is 

the decision threshold.  In the absence of ambient light, the 

number of counts detected when a “0” is being transmitted is 

ideally zero. Under these conditions , (7) can be used to show 

that, for a system limited by Poisson noise, a BER of 7.9×10
-4

 

can be achieved with an  average of 6.5 detected photons per bit.  

In fact the SPAD array only requires an average of 10.2 de-

tected photons per bit to achieve this BER. When detected 

photons per bit are considered, the performance of the SPAD 

array is close to that of an ideal receiver (RX) that is limited by 

Poisson noise. 

D. Effect of ambient light. 

 
The link described in Section III.A was operated in the ab-

sence of ambient light. When a VLC system is operated in  

offices or homes, it will be impossible to always exclude am-

bient light. The link was therefore operated under normal levels 

of room lighting after an aperture had been added to the re-

ceiver described in  Section III.A. Th is aperture was used to 

restrict the FOV of the detector to approximately 24 degrees. 

This reduces the ambient light reaching the SPAD array, whilst 

maintaining a p ractical FOV. The amount of ambient light 

reaching the SPAD was then varied by dimming the room’s 

fluorescent lighting.  

Fig 5 shows the additional signal intensity required to 

achieve a BER of 7.9×10
-4

, after equalization (EQ), at 

100 Mbps for different background light levels. Fig 5 also 

includes a line that represents the additional signal intensity 

required to achieve this BER calculated using (7).  The most 

notable feature of the results obtained fro m (7) is the change in 

these results at approximately 6.5 mW m
-2

. Th is feature arises 

because the decision threshold in (7) is an integer. In particular, 

as the background light intensity increases from 1 mW m
-2

 to 

6.5 mW m
-2

, the probability of a transmitted “0”  being misin-

terpreted as a “1” increases. In order to achieve the target BER, 

the signal level has to increase so that the probability of a “1”  

being misinterpreted as a “0” is reduced.  However, once all the 

allowed errors are caused by “0”s being misinterpreted as “1”s, 

the decision threshold has to increase. Once this occurs almost 

all the errors are “1”s being interpreted as “0”s. As the back-

ground light intensity increases further, again the signal inten-

sity has to increase to maintain  the BER. Eventually the 

threshold has to change again and a feature similar to the one at 

6.5 mWm
-2

 will occur at a higher background light level. 

The excellent agreement between the measured data and the 

results of (7) confirms that, in ambient light, the dominant noise 

source in the SPAD array  is Poisson noise. Furthermore, these 

results show that, with straightforward precautions, links con-

taining SPAD arrays only require modest increases in trans-

mitted power to operate in realistic ambient light conditions.  

IV. LINK RESULTS FOR AN APD RECEIVER 

To allow a comparison with the small SPAD array, the sensi-

tivity of an AD1900-9-TO5i APD (3mm
2
 act ive area) and a 

MAX3665 transimpedance amplifier with a bandwidth of 

90MHz, has also been measured. When the APD was operated 

at its measured optimum bias (150V), -50dBm (corresponding 

to 3.44mW m
-2 

at the receiver) is  required to achieve the refer-

ence BER of 7.9×10
-4

 at 100Mbps in the dark.  

 When ambient light reaches the APD, the additional shot 

noise means that a higher signal power will be required to 

maintain the same SNR and hence BER. If the dominant noise 

source in a receiver is assumed to have a Gaussian distribution, 

the BER can be calculated using [21] 

                          𝐵𝐸𝑅 = 0.5. 𝑒𝑟𝑓𝑐(
𝑄

√2
)                                 (8) 

where Q is the signal to noise ratio. For an APD, Q is  

𝑄 =
𝑚.𝑅 .𝑃𝑠

√2𝑒 .(𝑅.(𝑃𝑏+𝑃𝑠)+𝐼𝑑).𝑏𝑤 .𝑚𝑥+2 +𝑖𝑡ℎ
2  +√2𝑒 .(𝑅.𝑃𝑏+𝐼𝑑).𝑏𝑤.𝑚𝑥 +2+𝑖𝑡ℎ

2  
  (9)                 

where m is the APD gain, R is the APD responsivity, Ps is the 

signal light power, Pb is the background light power, 𝐼𝑑 is the 

dark current, x is the excess noise index, bw is the bandwidth 

and 𝑖𝑡ℎ
2  is the thermal noise of the detector.  

 The denominator of (9) shows that the noise in the APD 

increases when the background light power increases. The 

effect of ambient light on the link containing the APD was 

measured using the same experimental p rocedure used to 

measure the effect of ambient light on the SPAD array. The 

measured signal penalties required at different ambient levels 

are shown Fig 6. Th is figure also shows the theoretical signal 

penalty required to obtain a BER of 7.9×10
-4

 calculated using 

(9) and the parameters in Table II. The results in this figure 

 
Fig. 5.  The signal penalty required for the SPAD to achieve a BER of 

7.9×10
-4

 at different background light levels, shown in both mW/m
2
 (bottom 

x-axis) and lux (top x-axis), for 100Mbps when equalization has been used to 

reduce ISI.  



show that (9) and the parameters in Table II can be used to 

accurately determine the increase in t ransmitted power needed 

to maintain a target BER in the presence of ambient light.  
 

Table II: Summary of parameters used to calculate the SNR of the APD. 
 

Characteristics  Value 

Active area 3 mm
2
 

Dark current  @ m=100 15nA   

Responsivity @ m=100  and λ= 650nm 35 AW
-1

 

APD gain      @ 150V 105  

Excess noise index 0.36   

Target BER 7.9×10
-4

 

Data rate 100Mbps 
 

 

V. LINK RESULTS WITH A LARGE ARRAY OF SPADS 

The signal intensities required to achieve the target BER show 

that the APD receiver is approximately 22dBs more sensitive 

than the small SPAD array. However, the active area o f the 

APD is approximately 640 t imes larger than the active area of 

the SPAD array but the SPAD array only requires 161 t imes the 

light intensity of the APD.  This suggests that larger arrays of 

SPADs could be used to create more sensitive receivers than 

APDs. 

A larger array of the SPADs described in section II could be 

manufactured and tested. This would give an opportunity to 

increase the sensitivity of the SPAD array by increasing its 

fill-factor, and hence photon detection efficiency (PDE). Un-

fortunately, any increase in fill-factor would be associated with 

a reduction in the number of SPADs per unit area. An optimum 

design for a SPAD array would therefore be based upon in-

formation about the minimum PDE needed for a SPAD-based 

receiver to match the sensitivity of an APD-based receiver.         

Large SPAD arrays can be purchased that are designed for 

photon counting. These arrays are not optimised for VLC, 

however, the performance of receivers containing a larger 

number of SPADs has been investigated using a C11209-110 

optical measurement module. The light sensitive part of this 

commercial off-the-shelf module is an array of SPADs, or 

multi-pixel photon counter (MPPC). The photodetector has a 

photosensitive area o f 1 mm by 1 mm, containing 10,000 indi-

vidual SPADs with a 10 µm p itch and a fill-factor of 33%. W ith 

an applied voltage of 5 V the measured PDP of this MPPC was 

24% at 650 nm, which means that at this wavelength the PDE 

of this device is 8%. 

 
At low light levels , the output from the module consists of 

discrete pulses and, since each pulse corresponds to a detected 

photon, the number of detected photons can be counted by 

counting output pulses. However, at higher light levels , the 

pulses overlap. Once this occurs , the manufacturer suggests 

that the output signal from the module should be treated as an 

analogue signal and low-pass filtered. When the module is used 

as a receiver, pulse counting gives the best BER for light in-

tensities less than 1.4 mW m
-2

. The target BER this light inten-

sity corresponds to a data rate o f 25 Mbps. For higher data rates , 

lower BERs were obtained when the module output was 

low-pass filtered with the cut-off frequency equal to the data 

rate. 

The measured signal intensities at the receiver needed to 

achieve the target BER of 7.9×10
-4 

at different data rates, in the 

dark, are shown in Fig 7. These results show that once the bit 

time becomes comparab le to 10 ns, which is the characteristic 

time of each output pulse, the transmitted signal intensity re-

quired to achieve the target BER increases rapidly. However, 

using DFE to reduce inter-symbol interference (ISI) signifi-

cantly reduces the required signal intensity. Consequently, 

when DFE is employed, the receiver needs 1.64 times more 

transmitted power to achieve the target BER at  100 Mbps than 

expected when a receiver is working at the Poisson limit.  

However, the two sets of results calculated using (7), and in-

cluded in Fig. 7, show that more than half of this increase in  

power is required to overcome the SPADs dark count rate. 

When this effect is included, the receiver only needs 1.17 t imes 

more transmitted power than calculated using (7). 

 Despite these power penalties and a PDE of 8%, the 

SPAD-based receiver achieves a BER of 7.9×10
-4

 at 100 Mbps 

with only 80% of the transmitted optical power required by the 

APD-based receiver. Th is means that, in the absence of ambient 

light, these larger SPAD arrays can be used to make receivers 

that are more sensitive than the receivers containing an APD. 

Again the effect of ambient light on the link performance 

was measured using the experimental procedure used with the 

 
Fig.6. The required signal penalty for the APD to achieve a BER of 

7.9×10
-4

 at various background light intensities. In this figure the data (stars) 

is compared to the predictions of (9). 

 
Fig.7. The transmitter signal intensity required to achieve a BER of 

7.9×10
-4

 at different data rates when the MPPC is used as the receiver. This 

measured data is compared to results obtained from (7) with and without the 

SPADs dark counts.  



other two receivers. The measured signal penalties required at 

different ambient levels are shown Fig 8. This figure also shows 

the theoretical signal penalty required to obtain  a BER of 

7.9×10
-4

 in the presence of shot noise created by the ambient 

light. The results in this figure show that (7) can be used to 

calculate the additional power needed to transmit data and 

achieve the target BER in the presence of ambient light. This 

means that shot noise from ambient light exp lains the additional 

power needed to transmit data in ambient light.  Since shot noise 

is the only noise source fo r the SPAD-based receiver, whilst the 

APD-based receiver also suffers from excess shot noise and 

thermal noise in the electronics associated with the APD, the 

SPAD-based receiver requires more additional transmitted 

power to operate in ambient light.  
 

 
 The ratio  between the powers needed to transmit data to the 

receiver containing the APD and to the receiver containing the 

MPPC is also shown in Fig. 8. These results show that , alt-

hough the MPPC-based receiver is more sensitive than the 

APD-based receiver in the dark, the APD-based receiver is 

more sensitive in ambient light.  

   The results in Figures 6 and 8 show that the behaviour of the 

two types of receivers can be predicted using either (7) or (8) 

and (9). These equations have therefore been used to determine 

the signal intensity that is expected to give the target BER at 

different background light intensities. The results in Fig. 9 

show that a receiver containing an MPPC with a PDE of 8% 

and a power penalty of 1.17 is expected to require more 

transmitter power than the APD-based receiver at background 

light intensities of more than 30 µW m
-2

. Consequently, when 

the ambient light level is 500 lux, the MPPC requires 1.45 t imes 

more trans mitted signal than the APD to achieve the target 

BER. 

The MPPC that has been used in these experiments  has a 

PDE of only 8%. However, since SPADs are a relatively new 

technology, new products have significantly better character-

istics than their predecessors . The PDE that is required for an 

MPPC to match the performance of an APD can be estimated 

by comparing the SNRs of the two devices under the same 

conditions. In particular, since shot noise dominates in the APD 

in ambient light, the SNRs of a SPAD-based receiver and an 

APD-based receiver at the same transmitter and ambient light 

intensities is 

𝑆𝑁𝑅𝑆𝑃𝐴𝐷

𝑆𝑁𝑅𝐴𝑃𝐷
= √

𝑚𝑥 .𝑃𝐷𝐸 (𝜆)

𝑄𝐸 (𝜆).𝑃𝑃
                          (10) 

where m, x and QE(λ) are the gain, excess noise factor and 

quantum efficiency of the APD, PDE(λ) is the photon detection 

efficiency of the MPPC and  PP  is the MPPC’s  power penalty. 

This is the ratio between the transmitted power needed by the 

real SPAD-based receiver and the transmitted power needed by 

an ideal, shot noise limited receiver. In ambient light, the dark 

count rate is insignificant compared to the count rate from the 

ambient light. The relevant power penalty for the tested MPPC 

is therefore 1.17. 

For the APD tested in this paper x is 0.36 and the measured 

optimum gain  is 105, hence m
x
=5.3.  At 650nm the quantum 

efficiency of the APD is approximately 65%. Equation (10) 

therefore suggests that an ideal SPAD array will need a PDE of 

14.3% to match the SNR of this APD when shot noise is the 

dominant noise source.  The results in Fig. 9 confirm that (10) 

gives an accurate estimate of the MPPC PDE that matches the 

performance of the APD.   

 
Unfortunately, the maximum PDE of the MPPC integrated 

into the C11209-110 that was used in these experiments is less 

than 14%. However, MPPCs have just become available with 

PDEs that are significantly higher than 14%. In particular, the 

recently released S12572-015C has the same output pulse 

width, and hence bandwidth as the tested MPPC; a comparable 

dark count rate and a maximum PDE of 40%. In addition, be-

cause less than 40 detected photons per bit will be required to 

transmit data using OOK, the 40,000 individual SPADs in this 

detector will mean that it will not be affected by the 

non-linearity observed in Fig. 1. 

The performance of an MPPC with a  PDE of 40% has been 

simulated and the results of this simulation have been included 

in Fig. 9. These results suggest that, under typical ambient 

lighting conditions, the APD is expected to require between 1.8 

and 2.1 t imes higher signal intensity than this new MPPC. 

However, these new devices may also require more transmitted 

power than an ideal receiver. Fig. 9 therefore also includes 

simulation results for an MPPC with a PDE of 34.2%, which 

corresponds to a PDE of 40% and a power penalty of 1.17. In  

this case, under typical ambient lighting conditions, a receiver 

containing the new MPPC is expected to be between 1.7 and 1.9 

more sensitive than a receiver containing an APD. 

 
Fig. 8.  The required signal penalty for the MPPC to achieve a BER of 

7.9×10
-4

 at various background light intensities. In this figure the data (stars) 

is compared to the predictions of (7) 
 

Fig. 9. The estimated signal intensities required by the tested APD based 

receiver and receivers including MPPCs with different PDEs to achieve 

the target BER at different intensities of background light. 



VI. CONCLUSIONS 

SPAD photodetectors produce an output pulse for each de-

tected photon but their sensitivity can be reduced by their  

dead-time and a low fill-factor. In  this paper an  expression for 

the impact of dead-time on the linearity of the response of an 

array of SPADs has been derived and shown to agree with 

results obtained with an  array  of SPADs with a variable 

dead-time. Results from this small array also show that if op-

erated at data rates where the b it time is longer than the output 

pulse width, then almost Poisson limited performance can  be 

achieved. Consequently, this receiver requires approximately  

45 t imes fewer detected photon per bit  than a state-of-the-art 

APD. Such an improvement is extremely  valuable.  However, 

the experimental SPAD array was too small to be used to create 

a receiver that can compete with an APD-based receiver. 

Results from experiments with a larger SPAD array  have 

also been presented.  These results show that, when this large 

SPAD array is used as a receiver, the transmitted power needed 

to obtain a target data rate increases rapidly once the bit time 

becomes shorter than the width of the array’s output pulses.  

The maximum OOK date rate at which  this receiver can operate 

efficiently  is therefore limited by the width of the output pulses.  

Results have also been presented which show that the SPAD 

array is more sensitive to ambient light than the APD. Conse-

quently, the receiver containing the APD is a more sensitive 

receiver in typical ambient light conditions. This situation 

arises because the particular SPAD array used in the experi-

ments has a PDE of only 8%.  

Unlike APDs, SPADs are a relatively new technology and so 

new products are becoming availab le that have significantly 

better characteristics than their predecessors.  Expressions for 

the SNRs of SPAD arrays and APDs have therefore been used 

to show that a receiver containing a SPAD array with a PDE of 

14% would match the sensitivity of the APD-based receiver. . 

Furthermore, simulation results  show that a receiver containing 

a recently released SPAD array with a maximum PDE of 40% 

is expected to be significantly more sensitive than an 

APD-based receiver.  

In the future, the simplest way  to increase the PDE of SPADs  

further will be to increase the area of each SPAD in an array. 

However, this will reduce the number of SPADs per unit area 

and this will be associated with a loss in sensitivity arising from 

the effect of dead-time. The optimum receiver sensitivity will 

therefore be achieved by using the equations in this paper to 

increase the PDE of each SPAD whilst limiting detrimental 

dead-time effects. The anticipated results will be additional 

increases in receiver sensitivity. 
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