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Acute haemodynamic instability is a natural consequence of disordered cardiovascular physiology during haemodialysis (HD).
Prevalence of intradialytic hypotension (IDH) can be as high as 20–30%, contributing to subclinical, transientmyocardial ischemia.
In the long term, this results in progressive, maladaptive cardiac remodeling and impairment of left ventricular function. This is
thought to be a major contributor to increased cardiovascular mortality in end stage renal disease (ESRD). Medical strategies
to acutely attenuate haemodynamic instability during HD are suboptimal. Whilst a programme of intradialytic exercise training
appears to facilitate numerous chronic adaptations, little is known of the acute physiological response to this type of exercise. In par-
ticular, the potential for intradialytic exercise to acutely stabilise cardiovascular hemodynamics, thus preventing IDH and myocar-
dial ischemia, has not been explored.This narrative review aims to summarise the characteristics and causes of acute haemodynamic
instability during HD, with an overview of current medical therapies to treat IDH. Moreover, we discuss the acute physiological
response to intradialytic exercise with a view to determining the potential for this nonmedical intervention to stabilise cardiovas-
cular haemodynamics during HD, improve coronary perfusion, and reduce cardiovascular morbidity and mortality in ESRD.

1. Introduction

Chronic kidney disease (CKD) has a world-wide preva-
lence of 5–10%, equating to ∼740 million individuals [1].
In the UK alone, approximately 5.9% of the population has
advanced CKD at stages 3–5 [2]. The disease is characterized
by the inefficiency of the glomerular to maintain fluid
homeostasis, resulting in metabolic acidosis through the
accumulation of creatinine, urea, and electrolytes [3]. This
leads to cardiovascular andhematological complications such
as hypertension, reduced arterial compliance, accelerated
atherosclerosis, cardiomyopathy, cardiac fibrosis, and anemia
[4–7]. It is common for quality of life to be impaired and life
expectancy to be reduced [3, 6, 8].

A glomerular filtration rate (GFR) of <15ml/min−1

1.73m2 is indicative of end stage renal disease (ESRD)
whereby patients may have to undergo renal replacement

therapy, more specifically haemodialysis (HD), to replace the
typical functions of the kidney. Despite HD being critical to
survival, it is associated with numerous side effects includ-
ing lethargy, fatigue, irritable legs, muscle cramps, nausea,
vomiting, dizziness, and perpetual systemic inflammation
[9]. Moreover, the rapid removal of excess fluid acutely com-
promises cardiovascular hemodynamics, reducing cardiac
output and mean arterial pressure (MAP). Haemodialysis
efficacy can be affected by the need to reduce filtration
rates or cease HD altogether, leaving patients above their
target dry weight [10–13]. In addition, an impaired cardiac
output during HD can lead to systemic hypoperfusion and
subclinical ischemia. Cerebral, splanchnic, and myocardial
hypoxia potentiates acute and chronic cognitive, gastroin-
testinal barrier and cardiac dysfunction [10–12, 14]. These
deleterious effects highlight the need for effective strategies to
attenuate hemodynamic compromise during HD. A solution
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to this problemwould likely have a positive impact on quality
of life, morbidity, and mortality in ESRD.

Currently, there are limited therapeutic options with
which to tackle hemodynamic instability during HD. Phar-
macological and nonpharmacological interventions have
been proposed, such as Midodrine, arginine vasopressin,
lower limb pneumatic compression, cooling dialysate,
hemodiafiltration, nocturnal HD, ultrafiltration, and sodium
profiling [10, 11, 14–21]. With limited success from these
methods, it is paramount that new strategies to counteract
hemodynamic compromise during HD be explored, thus
maximizing the efficacy of treatment and minimizing
the short and long-term risk to patients. The primary
acute effect of exercise is an enhanced cardiac output
and MAP in response to increased heart rate and left
ventricular (LV) stroke volume. Despite cardiovascular
and metabolic derangement in ESRD, this hemodynamic
response to exercise may also occur during HD. If so,
intradialytic exercise may have the potential to restore
cerebral, splanchnic, and myocardial perfusion. It is possible
that intradialytic exercise, which is accumulating a solid
evidence base in support of its efficacy and safety, could offer
a viable alternative to current therapies aimed at alleviating
hemodynamic instability during HD.

This review aims to characterize the acute effects of HD
on cardiovascular hemodynamics and discuss current strate-
gies to counteract these perturbations. Further, the poten-
tial for intradialytic exercise to resolve acutely comprised
hemodynamics will be explored.We will examine the current
evidence relating to the acute physiological response to
intradialytic exercise with a view to determiningmechanisms
by which “normal” cardiovascular hemodynamics might be
restored.

2. Cardiovascular Risk in
End Stage Renal Disease

Cardiovascular disease (CVD) is the most common cause of
death in ESRD [5]. Reduced kidney efficiency is linked to a
progressive deterioration in cardiovascular health, ultimately
leading to heart failure, myocardial infarction, and stroke
[23]. Patients with ESRDhave a cardiovascular risk far greater
than that explained by hypertension or other traditional CVD
lifestyle risk factors alone [12]. Indeed, heart failure and
sudden cardiac death are the most common causes of death
inHDpatients as opposed to atherosclerotic coronary disease
[21]. Cardiac pathology in ESRD is, therefore, attributed to
numerous CKD sequelae including chronic inflammation,
hypertension, increased oxidative stress, abnormal renin
angiotensin system activation, production of FGF-23, and
arrhythmias [3, 5]. This unique cardiovascular phenotype is,
in part, linked to HD treatment itself. Repeated bouts of tran-
sient myocardial ischemia, mediated by predialysis inflam-
mation and compromised intradialytic hemodynamics, are
known to contribute to maladaptive myocardial remodeling
with LV fibrosis, hypertrophy, and diastolic stiffening [11,
14, 24]. Myocardial oxygen demand is chronically increased
and prolongation of LV depolarization further impairs con-
tractile function [25, 26]. Thus, CKD, in combination with

hemodynamic instability during HD treatment, significantly
increases cardiovascular risk in patients with ESRD.

3. Hemodynamic Instability

In the absence of a functioning kidney, HD treatment may
be initiated to filter waste products and maintain fluid
homeostasis. Toxins such as urea, creatinine, and nitrogen are
removed, and fluid overload is reversed [3, 15]. However, a
large decrease in plasma volume can be problematic during
HD [15]. Hemodynamic instability can lead to intradialytic
hypotension (IDH) and reduced HD efficacy due to insuffi-
cient filtration rates and/or early cessation of treatment [27].
The rapid decline in blood serum volume during filtration
has a profound effect on cardiac output (Figure 1).Myocardial
preload is impaired by reduced venous return, and contractile
force is further compromised by myocardial ischemia [14,
18, 28]. Chronotropic incompetence, which may relate to
reduced catecholamine sensitivity because of impaired renal
clearance of circulating hormones, has also been observed
during HD. The combination of reduced stroke volume
and the absence of a compensatory increase in heart rate
can prevent the maintenance of appropriate cardiac output
[22]. In addition, when large fluid volumes are extracted,
there is a delayed reuptake of water from the interstitial
space, leading to an inability to normalize arterial plasma
volume [29]. In 20–30%of ESRDpatients, this cardiovascular
milieu corresponds to an overall decline in cardiac output
and reduced myocardial and systemic perfusion [11, 17–19].
Ultimately, systemic organ hypoperfusion contributes to the
genesis of multiple pathologies.

4. Systemic Effects

Hemodynamic perturbations during HD are known to
decrease perfusion of cerebral, splanchnic, and myocardial
tissue [10, 11, 14, 30, 31]. It has been reported that impaired
intradialytic hemodynamics result in reduced splanchnic
region blood flow and ischemic intestinal injury. Conse-
quently, increased gut permeability allows [16, 30] gut flora to
“leak” into the circulation, triggering translocation of endo-
toxin and a proinflammatory environment, clinical features
of which can include general malaise and an increased rate of
infection [16]. Levels of circulating endotoxin correlate with
reduced myocardial contractility and systemic inflammation
in CKD [30]. Therefore, ischemia is not localized during
HD, rather, there is potential for systemic hypoperfusion. A
common complication ofHD treatment is postdialytic fatigue
which is present in 60–97% of patients [16]. It is speculated
that this may be linked to impaired perfusion of the central
nervous system as a direct consequence of decreased cardiac
output due to hypovolemia and myocardial dysfunction
[16]. Patients can need over five hours of sleep to recover
from postdialysis fatigue, affecting both HD compliance
and quality of life [20]. Ultimately, decreased perfusion of
the cerebrum may lead to atrophy of the prefrontal lobe
and chronic cognitive impairment [20, 21, 32]. Patients who
experience postdialytic fatigue also have a significantly higher
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Figure 1: Continuous recording of (a) cardiac output; (b) heart rate; (c) stroke volume; and (d) thoracic fluid content (TFC) during dialysis.
Note the decrease in cardiac output/stroke volume and lack of sufficient heart rate compensation [22].

incidence of regionalmyocardial dysfunction [20, 33], further
indicating multiorgan hypoperfusion and ischemia.

Impaired coronary perfusion, which can result in acute
intradialytic myocardial ischemia and stunning, has been
extensively documented during HD [6, 10, 11, 14, 17, 18, 20,
24–26, 33–35]. The measurement of regional wall motion
abnormalities (RWMA) is commonly used to quantify this
phenomenon [10, 11, 14, 21, 24, 26]. Cardiac stunning
refers to myocardial segments that present as hypokinetic
(reduced ventricular wall/longitudinal thickening), akinetic
(no deformation), or dyskinetic (abnormal deformation),
whereby a >20% decline in regional cardiac function from
baseline is indicative of a stunned segment [10, 26]. In a
comprehensive echocardiographic study, nearly half of all
assessed myocardial segments developed ischemic RWMA
duringHD. Furthermore, ejection fraction and systolic blood
pressure were acutely reduced [10]. At 12 months, a third of
the acutely stunned segments at baseline had progressed to
fixed systolic function defects of >60%.The cumulative effect
of repeated subclinicalmyocardial ischemia, therefore, results
in maladaptive LV remodeling and permanent LV systolic
dysfunction. These findings were confirmed with magnetic
resonance imaging (MRI), with which LV contractility and
myocardial perfusion were shown to be compromised in
78% of patients [11]. A positive association between long axis
RWMA and ultrafiltration volume was observed with both

HD and hemodiafiltration (HDF) modalities. Stroke volume
progressively declined throughout HD, correlating with the
occurrence of ventricular RWMA (Figure 2). In this study,
reducedmyocardial perfusionwas predominantly considered
to be a result of reduced microcirculatory blood flow rather
than flow in themajor epicardial vessels; specificmechanisms
are yet to be identified. These data and others provide strong
evidence of acute and chronic cardiac dysfunction during and
further to HD treatment [6, 8, 9, 11, 17, 18, 24–26, 33, 34]. The
investigation of methods to counteract these hemodynamic
perturbations appears critical for both patient quality of life
and survival. An effective intervention would likely increase
MAP and cardiac output during HD, but how this may
relate to increased perfusion and reduced ischemic injury is
currently unknown.

5. Methods to Manage Intradialytic
Hemodynamic Instability

A key measure of hemodynamic instability—intradialytic
hypotension—is defined as a drop in systolic blood pres-
sure (BP) of 20mmHg or a fall in MAP of 10mmHg
during HD. These objective measures are accompanied by
symptoms including dizziness, lethargy, and nausea [34].
Intradialytic hypotension is reported to occur in 20–30%
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Figure 2: Haemodynamic instability during HD andHDF (a) decreasing stroke volume index identified from aortic flowmeasurement, with
a nadir after 230 mins, and partial recovery at 50 mins after dialysis; (b) number of stunned cardiac segments (long axis) over time (20%
reduction from baseline); (c) negative correlation between stroke volume and presence of RWMA [11]. ∗Significant difference between HD
and HDF. LA refers to long axis.

of HD treatments [32, 36] and complications include acute
hemolysis, air embolus, multiorgan ischemia, pericardial
tamponade, bleeding, and sepsis [37]. Strategies to counteract
IDH include strict monitoring of fluid/nutritional intake,
pharmacotherapy, lower limb pneumatic compression, and
different HD modalities [38]. Interventions target one of
two mechanisms in the cascade of hemodynamic instability
duringHD: (1) increasing venous return via vasoconstriction
or (2) avoiding a rapid drop in plasma volume. Mixed results
have been reported with all these methods, and it appears
that medical management of HD related complications is
challenging [36].

5.1. Pharmacotherapy. Pharmacological strategies to atten-
uate IDH are limited. Midodrine, an 𝛼

1
-agonist, may have

some efficacy in patients who present regularly with IDH
[39]. Activation of the alpha-adrenergic receptors of the
arteriolar and venous vasculature increases vascular tone
and MAP [39, 40]. This mechanism can improve systolic
BP in patients with orthostatic hypotension [41]; however,
little benefit was observed in the treatment of IDH [41].
Nevertheless, Midodrine is currently used in clinical practice
despite some uncertainty as to its safety and efficacy [39–
42]. Arginine vasopressin, (or antidiuretic hormone, ADH),
a hypothalamic polypeptide, has also been investigated [43].
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Although the action of vasopressin on the convoluted tubule
may have little influence on fluid balance in the diseased kid-
ney, vasopressin is a well-recognized vasoconstrictor when
bound to the V1𝛼 receptors in vascular smooth muscle.
Its application in IDH has proven somewhat effective [43];
howevermost studieswere of short duration,with small study
populations [44].

5.2. Pneumatic Compression. Intermittent pneumatic com-
pression of the lower limbs aims to mechanically augment
LV contractile force via increased venous return and LV
preload [45, 46]. In a randomized crossover trial, air filled
compression garments, which circumferentially constricted
the lower extremities, had little effect on hemodynamics
during HD [46]. More recent data, however, supported the
use of this technique, in preference to intradialytic exercise,
for the maintenance of MAP and reduction of hypotensive
episodes [19]. Neither intervention has been investigated to
determine the acute effect on cardiac stunning. Currently,
there is insufficient evidence to support the clinical applica-
tion of pneumatic compression for mitigating hemodynamic
instability during HD [19, 45, 46].

5.3. Cooling Dialysate. Dialysate fluid typically comprises
sodium, potassium, calcium, magnesium, bicarbonate, and
glucose which interact with blood flow via a semipermeable
membrane. With controlled cooling of dialysate, the associ-
ated increase in sympathetic drive has been shown to posi-
tively influenceMAP and reduce IDH [32, 47]. However, urea
compartmentalization may occur when dialysate is cooled,
due to increased vasoconstriction of vascular beds [32]. Con-
versely, the same vasoconstriction of systemic vasculature
may aid MAP and prevent dialysis induced vasodilation [32].
Nevertheless, there is the potential for significant patient
discomfort, a theoretical risk of hypothermia, and reduced
adequacy of dialysis [32, 47]. Despite evidence suggesting a
positive therapeutic effect of cooling dialysate, this procedure
is not universally adopted [47]. This is likely due to incon-
clusive evidence of the long-term effects on IDH, and the
lack of a consensus regarding optimal cooling procedures
[47]. Further investigation into the use of cooled dialysate is
warranted.

5.4. Hemodiafiltration. Alternative HD modalities such as
hemodiafiltration (HDF) utilize pressure gradients to remove
solutes over a wider molecular weight range than standard
HD [48].The combination of diffusive and convective dialysis
may help prevent IDHby the cooling effect of large convective
replacement volumes which can induce greater arterial vaso-
constriction and increase MAP [11, 48–50]. This appears to
result in greater solute removal, decreased IDH, and reduced
mortality and hospitalizations [48]. However, the incidence
of RWMA is similar to standard HD [51] suggesting a degree
of hemodynamic compromise persists. Evidence to support
the use of HDF over standard HD for the prevention of IDH
is currently inconclusive [52].

5.5. Nocturnal Dialysis. Large reductions in plasma volume
during three times weekly (3-4 hrs per session) HD con-
tribute to IDH [53, 54]. As an alternative, nocturnal HD is
performed 3–7 times weekly thus avoiding large interdialytic
weight gain and hypervolemia [7]. Long-term use has been
associated with better intradialytic blood pressure control
and solute removal, in addition to reduced LV hypertrophy
[54]. However, a meta-analysis of 22,508 patients showed
no difference in mortality between home based nocturnal
HD and conventional hospital HD [54]. Moreover, 3/4 of
nocturnalHDpatientswere unable to continue treatment due
to infection, catheter dysfunction, or ultrafiltration failure
[54].

5.6. Ultrafiltration and SodiumProfiling. The inability to refill
vascular beds during HD may also contribute to IDH [29].
Prolonged HD results in decreased blood plasma volume
from impaired reuptake of fluid from the interstitium [29].
Ultrafiltration profiling attempts to avoid large decreases in
plasma volume by alternating periods of filtration and recov-
ery to facilitate vascular refilling [29]. Theoretically, when
combined with ultrafiltration, dialysate sodium profiling
may further increase vascular osmotic pressure, preventing
movement of extracellular water from the plasma to the intra-
cellular space [55], and favorably influencing MAP. However,
longitudinal data supporting the use of sodium profiling
are inconclusive. Additionally, sodium profiling techniques
vary considerably in efficacy and each requires further
investigation [56]. A recent meta-analysis recommended the
use of sodium step wise profiling for clinical practice but
acknowledged that more evidence is required to determine
the impact on patient outcomes [56].

6. Intradialytic Exercise

Combating hemodynamic instability during HD is prob-
lematic, and it appears that current interventions can be
subtherapeutic. To date, studies have not fully investigated the
potential for intradialytic exercise to acutely attenuate IDH
and its associated outcomes (Table 1).The acute physiological
response to exercise in a healthy cardiovascular system is
typified by an increased cardiac output achieved through an
elevated heart rate and enhanced stroke volume. Sympathetic
activation increases heart rate and myocardial contractility
leading to higher stroke volume, cardiac output, and arterial
pressure. During submaximal exercise, cardiac output can
increase fourfold to match the oxygen demand of skeletal
muscle [57]. To further increase cardiac output, active skeletal
muscle acts upon vascular beds to promote venous return,
thus augmenting LV end-diastolic volume and contraction
[57]. Arterial vasodilation, supporting oxygen delivery to
working muscle, coincides with vasoconstriction in non-
active tissues, meaning cardiac output can be effectively
redistributed to the myocardium and skeletal muscle to
satisfy the metabolic demands of exercise [58]. It is plausible
that this acute response to exercise, specifically increased
cardiac output,MAP, and coronary perfusion,may be a viable
medium throughwhich hemodynamic instability and cardiac
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Figure 3: Effects of haemodynamic instability during haemodialysis and mode of action of current therapeutic interventions, and the
potential role of intradialytic exercise. HD: haemodialysis, MAP: mean arterial pressure, LV: left ventricular, RWMA: regional wall motion
abnormalities, and CKD: chronic kidney disease.

stunning during HD can be prevented (Figure 3). By virtue of
the fact that a progressive decline in cardiac output is known
to correlate with a deterioration in coronary perfusion during
HD [17], it would seem logical that an increase in cardiac
output, achieved by intradialytic exercise, would enhance
perfusion and reduce cardiac stunning. However, there is
currently very little evidence to support this hypothesis.
The acute physiological response to submaximal exercise in
ESRD is poorly defined, particularly during HD (Table 1),
presumably due to the challenges associated with collecting
this data.

6.1. Potential Therapeutic Effects. Some indication of the
acute physiological response to intradialytic exercise can be
derived from limited existing data. Patients with ESRD are

known to have a significantly impaired maximal functional
capacity (∼75% of normal), mediated by CKD maladap-
tive LV hypertrophy, loss of arterial compliance, and a
blunted chronotropic response [12]. This disordered physi-
ology would suggest that the acute cardiovascular response
to submaximal exercise is also likely to differ from that of
a healthy individual. In patients with ESRD, studies have
identified an altered cardiovascular response to submaximal
exercise performed offHD [61]. Heart rate and oxygen uptake
(VO
2
) appear to be blunted (∼10 & ∼45%, respectively) in

comparison to healthy individuals, but datasets are small
and inconclusive. With exercise during HD, a significant
increase in HR and BP was observed (∼15 & ∼13%, respec-
tively) with 30 minutes of low to moderate intensity cycling
when compared to standard HD without exercise [60]. A
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cardiovascular response to intradialytic exercise is, therefore,
evident and a concomitant increase in cardiac output and
coronary perfusion can be assumed but not confirmed. As
such, intradialytic exercise may acutely aid the regulation
of hemodynamic instability. Aerobic exercise during HD
can also lead to greater solute removal (e.g., Urea, H+, and
creatinine) [63, 64]. This increased dialysis efficacy (urea
reduction rate & Kt/V) is thought to be a result of increased
muscle blood flow and dilation of capillary tissue beds [65,
66].This acute physiological response to intradialytic exercise
may also help increase blood volume by inducing greater
reuptake of blood from tissue [65, 66]. It is possible that
this may contribute to hemodynamic stability and offset
IDH [62]. In Figure 3, we propose a model by which the
acute physiological response to intradialytic exercise may
positively influence multiple mechanisms in the cascade of
hemodynamic instability during HD.

6.2. Potential Negative Effects. Acute negative effects of intra-
dialytic exercise must also be considered. Systolic blood
pressure was shown to be lower at one hour after intradialytic
exercise compared to HD without exercise [60]. Although
patients were asymptomatic, and BP had normalized by the
end of HD, there may be a risk of “rebound” hypotension
associated with intradialytic exercise. Likewise, it has been
speculated that intradialytic exercise may further exacerbate
HD induced gastric ischemia via the redirection of blood
flow from splanchnic tissue to more metabolically active
tissue [16]. As with data supporting the potential acute
effects of intradialytic exercise, studies evaluating harm are
scarce. Indeed, longitudinal intradialytic exercise training
studies, whilst not specifically assessing the acute physiologi-
cal response, overwhelmingly support the safety of this inter-
vention. A variety of training modalities (cycling, resistance
exercise, and electrical muscle stimulation) have identified
numerous benefits with a negligible complication rate [4,
59, 67–71]. Peak oxygen uptake, muscular strength, arterial
compliance, inflammation, and QOL have all improved with
training. On balance, therefore, it does seem plausible that,
acutely, the physiological response to intradialytic exercise
may have a beneficial effect on hemodynamics and coronary
perfusion, thus mitigating IDH and cardiac stunning. Exer-
cise also has a proven advantage over other treatments in that
the benefitsmay extend not only to abrogating hemodynamic
instability during HD, but also to the numerous, well defined,
chronic physiological and psychosocial adaptations of cardio-
vascular and resistance training [4, 31, 71–75].

7. Conclusion

Haemodialysis, although essential for patient survival, can
predispose patients to cerebral, splanchnic, and coronary
ischemia due to compromised cardiovascular hemodynam-
ics. Despite the availability of a number of therapeutic
strategies to alleviate hemodynamic instability during HD,
the widespread adoption of these treatments is prevented
by medical complications, limited efficacy, and lack of good
quality evidence. Intradialytic exercise may offer a solution
to this treatment conundrum and may have the potential to

succeedwheremedical therapies are sometimes subtherapeu-
tic. By reducing IDH and increasing myocardial perfusion,
intradialytic exercise may ameliorate acute HD related com-
plications and have a meaningful effect on long-term cardio-
vascular risk and mortality. However, these potential mech-
anisms require further investigation to fully characterize the
acute physiological response to intradialytic exercise. It is also
possible that intradialytic exercise may exacerbate the acute
hemodynamic instability associated with HD. Either way,
whether therapeutic or nontherapeutic, experimentation in
this area will provide preliminary evidence, not only to
shape treatment, but ultimately to inform the development
of safe and effective guidelines for intradialytic exercise. We
propose that the acute physiological response to intradialytic
exercise be investigated, with the specific intention of treating
hemodynamic instability and cardiac stunning during HD.
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[19] V. R. C. Álvares, C. D. Ramos, B. J. Pereira et al., “Pneu-
matic Compression, but Not Exercise, Can Avoid Intradia-
lytic Hypotension: A Randomized Trial,” American Journal of
Nephrology, vol. 45, no. 5, pp. 409–416, 2017.

[20] R. F. Dubin, A. L. Beatty, J. R. Teerlink et al., “Determinants
of hemodialysis-induced segmental wallmotion abnormalities,”
Hemodialysis International, vol. 18, no. 2, pp. 396–405, 2014.

[21] A. Covic, D. Siriopol, and L. Voroneanu, “Dialysis-induced
segmental wall motion abnormalities, post-dialysis fatigue and
cardiovascularmortality:The newBermuda triangle?”Nephrol-
ogy Dialysis Transplantation , vol. 28, no. 10, pp. 2404–2406,
2013.

[22] N. Kossari, G. Hufnagel, and P. Squara, “Bioreactance: A new
tool for cardiac output and thoracic fluid content monitoring
during hemodialysis,” Hemodialysis International, vol. 13, no. 4,
pp. 512–517, 2009.

[23] C. Schneider, B. Coll, S. S. Jick, and C. R. Meier, “Doubling
of serum creatinine and the risk of cardiovascular outcomes
in patients with chronic kidney disease and type 2 diabetes
mellitus: A cohort study,” Journal of Clinical Epidemiology, vol.
8, pp. 177–184, 2016.

[24] S. Assa, Y. M. Hummel, A. A. Voors et al., “Hemodialysis-
induced regional left ventricular systolic dysfunction and
inflammation: A cross-sectional study,” American Journal of
Kidney Diseases, vol. 64, no. 2, pp. 265–273, 2014.

[25] C.-T. Chao, J.-W. Huang, and C.-J. Yen, “Intradialytic hypoten-
sion and cardiac remodeling: a vicious cycle,” BioMed Research
International, vol. 2015, Article ID 724147, 7 pages, 2015.

[26] Y. Nie, Z. Zhang, J. Zou et al., “Hemodialysis-induced regional
left ventricular systolic dysfunction,” Hemodialysis Interna-
tional, vol. 20, no. 4, pp. 564–572, 2016.

[27] E. Q. Lima, R. G. Silva, E. L. S. Donadi et al., “Prevention of
intradialytic hypotension in patients with acute kidney injury
submitted to sustained low-efficiency dialysis,” Renal Failure,
vol. 34, no. 10, pp. 1238–1243, 2012.

[28] M. P. M. Graham-Brown, A. S. Patel, D. J. Stensel et al.,
“Imaging of Myocardial Fibrosis in Patients with End-Stage
Renal Disease: Current Limitations and Future Possibilities,”
BioMed Research International, vol. 2017, Article ID 5453606,
2017.

[29] J. Yung, “Optimal ultrafiltration profiling in hemodialysis,”
Nephrology Nursing Journal, vol. 35, no. 3, p. 287, 2008.

[30] C. W. McIntyre, L. E. A. Harrison, M. T. Eldehni et al., “Cir-
culating endotoxemia: a novel factor in systemic inflammation
and cardiovascular disease in chronic kidney disease,” Clinical
Journal of the American Society of Nephrology, vol. 6, no. 1, pp.
133–141, 2011.

[31] U. G. Bronas, H. Puzantian, and M. Hannan, “Cognitive
impairment in chronic kidney disease: Vascular milieu and
the potential therapeutic role of exercise,” BioMed Research
International, vol. 2017, Article ID 2726369, 2017.

[32] S.M. Toth-Manikowski and S.M. Sozio, “Cooling dialysate dur-
ing in-center hemodialysis: Beneficial and deleterious effects,”
World Journal of Nephrology, vol. 5, no. 2, p. 166, 2016.

[33] L. Panicali, F. Brigante, and E. Mancini, “Hemodialysis and
cardiovascular outcome,”Giornale Italiano diNefrologia, vol. 34,
69, pp. 59–85, 2017.

[34] S. D. Navaneethan, J. D. Schold, S. E. Jolly et al., “Blood pressure
parameters are associated with all-cause and cause-specific
mortality in chronic kidney disease,” Kidney International, Jul
24 2017.

[35] A. Odudu and C. W. McIntyre, “An Update on Intradialytic
Cardiac Dysfunction,” Seminars in Dialysis, vol. 29, no. 6, pp.
435–441, 2016.

[36] P. N. Van Buren and J. K. Inrig, “Special situations: Intradialytic
hypertension/chronic hypertension and intradialytic hypoten-
sion,” Seminars in Dialysis, 30, Jun 2017.

[37] A. Gul, D. Miskulin, A. Harford, and P. Zager, “Intradialytic
hypotension,”Current Opinion inNephrology andHypertension,
vol. 25, no. 6, pp. 545–550, 2016.

[38] C. Mcintyre and J. O. Burton, The management of intradialytic
hypotension, vol. 14, 2009.

[39] S. Rubinstein, M. Haimov, and M. J. Ross, “Midodrine-induced
vascular ischemia in a hemodialysis patient: A case report and
literature review,”Renal Failure, vol. 30, no. 8, pp. 808–812, 2008.

[40] S. Prakash, A. X. Garg, A. P. Heidenheim, and A. A. House,
“Midodrine appears to be safe and effective for dialysis-induced
hypotension: a systematic review,” Nephrology Dialysis Trans-
plantation , vol. 19, no. 10, pp. 2553–2558, 2004.

[41] A. K. Parsaik, B. Singh, O. Altayar et al., “Midodrine for
orthostatic hypotension: A systematic review andmeta-analysis
of clinical trials,” Journal of General Internal Medicine, vol. 28,
no. 11, pp. 1496–1503, 2013.

[42] A. A. House, “Are there any contraindications to using mido-
drine for intradialytic hypotension?” Seminars in Dialysis, vol.
24, no. 4, pp. 402-403, 2011.

[43] S. S. Beladi Mousavi and M. R. Tamadon, “Vasopressin and
prevention of hypotension during hemodialysis,” Iranian Red
Crescent Medical Journal, vol. 16, no. 11, Article ID e20219, 2014.



10 BioMed Research International

[44] T. I. Chang, “Impact of drugs on intradialytic hypotension:
Antihypertensives and vasoconstrictors,” Seminars in Dialysis,
2017.

[45] J. G. Raimann and N. W. Levin, “Pneumatic compression
devices to avoid intradialytic morbid events,” Nephrology Dial-
ysis Transplantation , vol. 28, no. 4, pp. 779–781, 2013.

[46] D. J. Tai, S. B. Ahmed, L. Palacios-Derflingher, B. R. Hem-
melgarn, and J. M. MacRae, “Pneumatic compression devices
during hemodialysis: A randomized crossover trial,”Nephrology
Dialysis Transplantation , vol. 28, no. 4, pp. 982–990, 2013.

[47] J. W. Larkin, M. M. Reviriego-Mendoza, L. A. Usvyat, P.
Kotanko, and F. W. Maddux, “To cool, or too cool: Is reducing
dialysate temperature the optimal approach to preventing
intradialytic hypotension?” Seminars in Dialysis, 2017.

[48] F. G. Mora-Bravo, G. De-La-Cruz, S. Rivera, A. M. Ramı́rez,
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