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Abstract: 
Three connection design properties (dowel embedment strength, slip modulus and screw 

withdrawal capacity) were determined for one species of bamboo (Guadua angustifolia Kunth) using 

experimental methods adopted from timber engineering. 151 embedment strength and slip 

modulus tests were undertaken using smooth dowels with diameters ranging from 3 to 16 mm, 

whilst 240 screw withdrawal tests were undertaken using 3.5 to 5 mm diameter self-tapping screws. 

Using regression analysis, predictive equations for the three connection design properties were 

derived, based on fastener diameter, density and bamboo wall thickness. Coefficients of 

determination (R2) ranged from 0.45 to 0.82. The predictive equations for embedment strength and 

screw withdrawal were adapted to output characteristic values and then compared to similar 

equations derived for timber contained in Eurocode 5, the latter would seem inappropriate for 

bamboo. 
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Definitions and symbols 

D diameter of the culm 

d diameter of the dowel or outer thread diameter of screw 

d1 inner thread diameter of screw  

Fax Maximum withdrawal load or withdrawal capacity of screw 

fax withdrawal parameter  

fh Embedment strength 

Fyield Yield load 

Kser Slip modulus 

MC moisture content 

n sample size 

t thickness of bamboo culm wall 

ρk  characteristic density 

ρm  mean density 

ρtest density at the time of test 

ρ12 density adjusted to 12% moisture content 

  



1. Introduction 

Adoption of bamboo as a structural material has numerous environmental benefits, this is 

attributable to its fast growth and reproduction through rhizomes, resulting in a very effective 

carbon sink in well managed forests, with the potential to reduce pressure on other forest resources 

and substitute energy intensive products such as steel and concrete, and help recover degraded 

lands [1]. However, as stated by Janssen [2], making joints in bamboo is difficult due to its tapered, 

hollow, and not perfectly circular section, with nodes occurring at irregular intervals. Janssen adds 

that bamboo will only be truly accepted as a structural material once joint design has been resolved. 

Since the beginning of the 21st century a number of test, design and construction codes or standards 

have emerged throughout the world, including an international design standard [3]. To the authors’ 

knowledge only the Colombian design code (NSR-10) [4] contains any numerical values for joint 

design, and these are limited to Guadua angustifolia Kunth (Guadua a.k.) connected by through-

bolts combined with mortar infilled internodes (Fig. 1). NSR-10 does not provide a process for 

derivation of these design values, and does not provide slip moduli, Kser, either, without which 

accurate calculation of frame deformations is not possible. Research into bamboo joints, such as [5] 

has tended to focus on undertaking a small number of tests to determine the joint capacity for a 

configuration. This approach limits the reliable prediction and inference of joint capacities. More 

recent work has recorded other joint properties such as joint-slip and ductility, which are also 

required in design [6, 7], yet the size of the tested sample tends to be small (n  20). Overall, an 

attempt to describe and quantify the mechanics of bamboo joints in a statistically rigorous manner is 

uncommon, and potential similarities to timber connection design theory are often overlooked.  This 

paper seeks to address this shortcoming by attempting to edify a bamboo-specific approach for 

connection design using metal fasteners – specifically self-tapping screws, smooth dowels and bolts. 

Metal fasteners have been selected because of their ubiquity, ductility and potential to unleash 

innovation, though their applicability to bamboo should not be taken for granted – for example 



common woodscrews and nails should be avoided as they can induce splitting in bamboo. In the 

context of this paper, connections are deemed to be a subset of joints. Connections are interpreted 

to be the specific location where two or more members are joined by means of a metal fastener.  

 

Figure 1: schematic representation of bamboo culm with through-bolt and mortar infill 

1.1. Timber connection design theory 

Design of connections using metal dowel-type fasteners in modern timber design codes e.g. 

Eurocode 5 (EC5) [8] are based on the European Yield Model (EYM). The EYM originates from 

Johansen [9] and is based on the plasticity of both the fastener and the timber in direct contact 

under the dowel, known as embedment, or dowel-bearing, strength, fh. The model has been 

adopted because it provides a fairly accurate prediction of resistances and can be easily solved in a 

spreadsheet, however, it does not predict deformations or any other displacement related 

properties e.g. stiffness, ductility, or energy dissipation [10]. In terms of inference of joint stiffness – 

known as  joint slip - Wilkinson [11] proposed one of the earliest models.  

Use of the EYM is underpinned by a reliable knowledge of fh. Eq. (1) was adopted in EC5 to infer fh 

and was first proposed by Whale and Smith [12] following over 3200 tests to determine embedment 

properties and 420 full joint tests. The authors suggested that Eq. (1) was valid for softwood, 

hardwood and plywood. Empirical equations to infer the slip (or foundation) modulus, Kser, have also 



been derived. Eq. (2) from EC5 provides an estimate of Kser for a range of dowel-type fasteners 

excluding driven nails. 

𝑓ℎ,𝑘 = 0,082(1 − 0,01𝑑)𝜌𝑘   𝑁 𝑚𝑚2⁄  (1) 

Where: d is the diameter of the dowel type fastener, in mm; and ρk is the characteristic density for 

the timber strength class, in kg/m3. 

𝐾𝑠𝑒𝑟 =
𝜌𝑚

1,5𝑑

23
  𝑁/𝑚𝑚   (2) 

Where: d is the diameter of the dowel type fastener, in mm; and ρm is the mean density for the 

timber strength class, in kg/m3. 

Another property useful to connection design is screw withdrawal capacity, Fax. Blass et al. [13] 

derived Eq. (3) following 800 tests on spruce and screws with diameters ranging from 6 mm to 12 

mm. This equation to infer the characteristic withdrawal capacity was adapted and incorporated into 

EC5. Blass and Frese [14] expanded the previous work to 1850 withdrawal tests with self-tapping 

screws with a range of diameters from 4 mm to 14 mm. Hubner [15] derived equations for screw 

withdrawal in hardwoods following 671 tests.  

𝐹𝑎𝑥,𝑘 =
0,52∙√𝑑∙𝑙𝑒𝑓

0,9∙𝜌𝑘
0,8

1,2∙𝑐𝑜𝑠2𝛼+𝑠𝑖𝑛2𝛼
 (3) 

Where: d is the diameter of the dowel type fastener, in mm; lef is the penetration length of the 

threaded part of the screw, in mm; ρk is the characteristic density for the timber strength class, in 

kg/m3; and α is the angle between the screw axis and the grain direction. 

Table 1 contains extant data for fh in bamboo. Only Ramirez et al. [16] undertook regression analysis 

to determine equations that relate fh to dowel diameter, however, unlike Eq. (1), the effect of 

density was not considered.   

 



Table 1: Reported embedment strength values for bamboo 

Bamboo species Mean embedment strength parallel to fibres (N/mm2) Source: 

Laminated Guadua a.k. 47.5 – 73.0  [16] 

Gigantochloa atroviolacae 41.0 [17] 

Bambusa pervariabilis 44.3  [18] 

Guadua a.k. 43.5 – 74.7 [19], [20] 

 

This paper contains proposed experimental methodologies for the determination of fh, Kser and Fax 

for one species of bamboo and the empirical equations derived from the experimental results that 

could be employed in design, in a similar manner to Eqs. 1 – 3. The species used for all 

experimentation was Guadua a.k., arguably the most important species from the structural 

perspective in Latin America. 

2. Experimental Programme 

2.1. General considerations 

Currently there is no test procedure to determine connection design properties for bamboo, 

therefore a range of timber and bamboo standards were considered and adopted. The sample used 

was 4 m lengths of Guadua a.k. culms originating from the Colombian Coffee-region, the 

characteristics of the sample are listed in Table 2.  The sample was stored in the Structures Lab of 

the Sir John Laing Building at Coventry University, an environment with a relatively stable 

temperature and relative humidity, this is evident from the range of moisture contents listed in 

Table 4. Unfortunately storage in a conditioning room at 20C and 65% RH was not feasible. 

Specimens were extracted from the culms and then dimensioned using a band-saw.  

 

 



Table 2: Test matrix  

Sample size Embedment Screw withdrawal 

Distinct culm pieces 48 18 

Number of specimens 155 240 

Ages < 2 yrs 2-3 yrs 3-4 yrs 4-5 yrs >5 yrs unknown 

Embedment 50 27 23 15 31 9 

Screw Withdrawal 36 54 41 40 69 0 

Position along culm 

(from base) 

0 – 4 m 4 – 8 m 8 – 12 m Unknown 

Embedment 48 55 43 9 

Screw withdrawal 102 57 81 0 

 

Density, test, was measured according to ISO 22157-1 [21] using the dimensions and mass at the 

time of testing. Moisture content, MC, was measured immediately before testing using an FMC 

Brookhuis moisture meter, the validity and calibration of this approach is discussed in [22]. Density 

values were adjusted to MC 12% by means of Eq. 4. 

𝜌12 = 𝜌𝑡𝑒𝑠𝑡 [
1.12

1+𝑤
] (4) 

All testing was undertaken using a LLOYD LS100 designed for testing applications up to 100kN. For 

embedment tests data was recorded using a separate datalogger, load-cell and Linear Variable 

Displacement Transducers - LVDTs. 

2.2. Embedment  

The experimental work pioneered by Whale and Smith [23] used a full-hole procedure, similar to 

that contained in EN 383:2007 [24], to determine embedment properties. Whereas ASTM-D-5764 

[25] makes an allowance for either a full-hole or a half-hole procedure. Franke and Magniére [26] 

discuss the merits of the half-hole and full-hole procedures and conclude the half-hole test provides 

a more realistic embedding strength, as it applies a more even stress, and hence suits the EYM 

better. However, they note, the full-hole test provides a more realistic stiffness for connections, as it 

includes the bending of the fasteners. Correal and Echeverry [19] adopted [25] for round bamboo 



culms, using a dowel across a complete culm section as per Figure 2b. The two methodologies for 

dowel embedment were considered in this project. The full-hole methodology in accordance to [24] 

and the half-hole in accordance to [25]. As specimens were extracted from bamboo culms, not sawn 

timber, the configurations shown in Figure 2 were adopted.  

An adaptation of [24] (Fig. 2a) was trialled, but significant fastener bending was evidenced. In the 

interest of determining more reliable embedment strengths, fh, an adaptation of [25], similar to that 

used by Correal and Echeverry [19] was adopted. For dowels with a diameter, d, greater or equal to 

6 mm a whole culm section with two half-holes was tested; procedure referred to henceforth as 

large diameter dowel (LDD) tests (Fig. 2b). For dowels with d < 6 mm, LDD tests proved problematic, 

therefore a culm segment with a single half-hole was tested instead. This procedure will be referred 

to as small diameter dowel (SDD) tests (Fig. 2c). Specimens were dimensioned as shown in Fig. 2, 

where: t is the wall thickness, d is the fastener diameter and D the diameter of the bamboo culm. 

Trujillo [20] had identified that placing a dowel at a node increased the embedment strength by 

about 30%, therefore specimens did not contain nodes in the proximity to the dowels in order to 

obtain a result that reflected a more likely scenario in design. SDD tests used common smooth nails. 

For LDD tests smooth steel dowels were fabricated. No dowel bending was observed in either half-

hole procedure. Fig. 3 illustrates the specifics of the test set-up. Note that LVDT 1 was used to record 

dowel embedment, LVDT 2 was used to monitor any elastic shortening or settlement at the base, 

though this proved to be unnecessary. Table 3 summarises the characteristics of the sample tested. 

 

 

 



 

 

 

 

 

 

a) b) c) 

Figure 2: Specimen (showing dimensions) adapted from: a) EN 383:2007, b) ASTM D 5764-97a for 

LDD and c) for SDD. 



 

Figure 3: Set-up details, showing an SDD specimen 

Table 3: test matrix for embedment tests  

  n Mean CoV Min Max 

Culm diameters, D (mm) 

155 

101.2 14.1% 67.4 126.4 

Wall thicknesses, t (mm) 9.7 26.8% 6 15.8 

Moisture content, MC (%) 10.0 18.5% 7 15 

Density at time of test, 

test 

(kg/m3) 770 11.4% 574 1060 

d (mm) 3 mm 3.45 mm 4.5 mm 6 mm 8 mm 12 mm 16 mm 

N 28 30 28 4 4 58 3 

 



The nail or dowel was placed in the half-hole on top of the specimen and subjected to a compression 

force. The LVDT placed adjacent to the load-cell was used for recording dowel or joint slip. The test 

was performed at a constant rate of loading of 0.3 mm/min in order to meet the rate of loading 

requirements of [25]. Tests were terminated after 0.5d displacement. The slip modulus, Kser, was 

interpreted as the slope of the linear part of the load-deformation curve, whilst the yield load, Fyield, 

was interpreted as per [25], which states that the yield point is interpreted as the point of 

interception between the load-deformation curve and a straight line offset by 5% of the dowel 

diameter from the linear part of the curve. . Embedment strength, fh, was calculated from Eq. (5).  

𝑓ℎ =
𝐹𝑦𝑖𝑒𝑙𝑑

𝑑∙𝑡
 (5) 

2.3. Screw withdrawal  

The methodology for screw withdrawal testing was based on EN 1382:2016 [27]. The bamboo 

specimen sizes matched those for SDD in Fig. 2. As the largest diameter screw considered was 5mm, 

a length of 100mm and outer arc of 50 mm was selected. After recording all measurements, the 

screw was driven perpendicularly to the specimen’s convex surface, approximately at its centroid, 

ensuring the tip extended beyond the specimen, but the shank did not penetrate (Fig. 6a). The 

withdrawal force was applied along the fastener’s axis and restraints were placed at 3d from the 

fastener's axis (Fig. 4b). Tests were performed with a constant rate of loading of 2 mm/min in order 

to reach the maximum force, Fax, within 60  15 s. The test was stopped when the load dropped to 

80% of its maximum value. The withdrawal parameter, fax, was calculated from Eq. (6).  

𝑓𝑎𝑥 =
𝐹𝑎𝑥

𝑑∙𝑡
 (6) 



  

a) b) 

Figure 4: set-up for withdrawal test a) close-up, b) showing restraints. 

2.4. Screw types 

Conventional woodscrews are likely to induce splitting in bamboo unless they are driven into pre-

drilled holes, therefore the experiment focused on self-tapping screws, due to their simple 

installation. Three brands of self-tapping screws were tested. Prior to testing, the selected brands 

were vetted to ensure they did not induce splitting when fixed at 15 mm from the end (i.e. about 3d 

to 5d), which is less than EC5 requirements. The properties of the selected screws are summarised in 

Table 4 and the characteristics of the sample are summarised in Table 5. 

Table 4: Properties of tested screws. 

Screw 

ref. 

Brand Description d 

(mm) 

d1  

(mm) 

pitch 

(mm) 

3.5–b1 Brand 1: Turbo 

Gold® 

Cutting edge tip, self-tapping 

woodscrew. 

3.5 2.6 1.8 

4.0–b1 4.0 2.7 1.9 

5.0–b1 5.0 3.5 2.2 

4.0–b2 Brand 2: Spax® Serrated tip, self-tapping woodscrew. 4.0 2.5 2.3 

4.8–b3 Brand 3: 

Easidrive® 

Self-drilling roofing screw, with flanges 

filed down. 

4.8 3.8 1.6 

 

  



Table 5: characteristics of screw withdrawal test sample. 

  n Mean CoV Min Max 

Range of culm diameters, D (mm) 

240 

105.3 14.8% 73.3 128.0 

Wall thicknesses, t (mm) 10.5 24.5% 6.0 15.0 

Moisture content, MC (%) 8.6 8.6% 7.2 10.3 

Density at time of test, test (kg/m3) 755 11.2% 566 931 

Screw ref. 3.5–b1 4.0–b1 4.0–b2 4.8–b3 5.0–b1 

N 60 60 30 30 60 

3. Embedment results 

All bamboo specimens manifested primarily a bearing failure, though splitting during yielding was 

observed in two instances (Fig. 5). Fig. 6 displays the load-displacement curves for six specimens 

obtained from the same culm piece (culm piece reference: M12). These curves represent a range of  

post-yield behaviour, which could be characterised as oscillating around plasticity.  

Table 6 summarises the experimental values from the embedment tests. Note fh values are within 

the range of values listed in Table 1, and CoVs are within the range stated in [25]. Noticeably fh 

seems to decrease with diameter, d (refer also to Fig. 7), which is in line with Eq. (1). Outliers were 

checked in IBM SPSS ® and identified with a circle. The software labels values more than 1.5× IQR 

(interquartile range) from the end of the box as outliers. On this basis some values were identified as 

outliers in Fig. 7 for fh. However, other sources suggest 2.2× is a more valid approach for the 

determination of outliers [28]. On that basis there were no outliers present  

Fig. 8 indicates that fh does not seem to be strongly influenced by density, 12 .  Fig. 9 indicates that 

slip modulus, Kser, increases with d, which is in line with Eq. (2).  

 



  

a) b) 

Figure 5: a) Typical bearing failure, b) bearing failure with evidence of cracking. 

 

 

Figure 6: load-displacement graph for six specimens from the same culm 
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Table 6: summary of experimental results for embedment tests 

d n* fh Kser  
 Mean  CoV Mean  CoV 

(mm)  (N/mm²) (%) (N/mm) (%) 

3 28 62.4 24.0 5199 38.2 

3.45 30 57.4 14.5 5810 37.4 

4.5 28 58.2 17.1 6766 34.3 

6 4 57.9 13.8 6388 17.5 

8 4 53.3 15.4 9162 17.4 

12 55* 48.7 18.9 12759 30.2 

16 2* 37.1 12.1 12496 46.8 

All 151 54.9 21.3 8589 51.0 

* Sample size was revised to exclude data that was incomplete.  

 

 

 

Figure 7: box-plot for fh v d 



 

Figure 8: scatter graph for fh 

 

Figure 9: box-plot for Kser per dowel diameter 
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4. Screw test results 

The observed failure mode in all instances was pull-out of the screws (Fig. 10) in a fairly brittle 

manner (Fig. 11). Table 7 summarises the experimental values from the screw withdrawal tests. 

Evidently, withdrawal capacity, Fax, increases with d. However, withdrawal parameter, fax, indicates 

that smaller diameter woodscrews perform the best (Fig. 12). Fig. 13 indicates that withdrawal 

parameter, fax, increases with 12). Despite the indication in Fig. 12 that some values are outliers, 

they have not been excluded for the reasons presented in section 3. of this paper. 

 

Figure 10: typical withdrawal failure mode 

 



 

Figure 11: typical load-displacement graphs, these are for six specimens from the same culm 

 

Table 7: summary of screw withdrawal tests. 

Screw ref. Fax  CoV fax  CoV 

 (N) % (N/mm2) % 

3.5–b1 1264 28.19 34.43 17.11 

4.0–b2 1296 27.06 30.87 14.95 

4.0–b1 1342 29.29 31.81 10.72 

4.8–b3 1284 24.08 25.97 17.06 

5.0–b1 1505 29.26 28.65 12.02 

All 1350 28.94 30.83 16.85 
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Figure 12: Box-plot for fax per screw type 

 

Figure 13: scatter-plot for fax  
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5. Effect of age and position  
 

Bibliography compiled in Trujillo and Lopez (2016) [29] indicates that density and some mechanical 

properties increase along the culm, and that some mechanical properties are affected by the level of 

maturity at harvesting of the culm. Figs. 14 – 17 indicate the effect position along the culm and age 

at time of harvesting have upon fh and fax. Figures 14 and 16 indicate that age and position the culm 

has no discernible or significant effect on fax. Figure 15 suggests that fh peaks at around 2 – 3 years of 

age for Guadua a.k. which is not far removed from the observation made for compression parallel to 

fibres (which can arguably be linked to embedment) made by Correal and Arbeláez (2010) [30], 

which was that peak maturity occurred at 3 – 4 years.  Fig. 17 indicates that there is a small link 

between position along the culm and fh. This is in line with the findings from [30] for compression 

parallel to the fibres.  

From these observations it may be concluded that fax is seemingly unaffected by age or position 

along the culm, whereas fh obeys patterns observed for other mechanical properties such as 

compression. However, the authors have excluded data about position or age in subsequent 

analysis, as this information is not always readily available to fellow researchers or the end user. 



 

Figure 14: box-plot for fh per age group 

 

Figure 15: box-plot for fax per age group 



 

Figure 16: box-plot for fh per culm position 



 

Figure 17: box-plot for fax per culm position 

 

5. Discussion 

 

5.1. Regression Analysis 

One of the objectives of this project was to arrive at empirically derived equations for the inference 

of characteristic connection design properties (fh,k, Kser, Fax,k, fax,k) for bamboo on the basis of easily 

determinable properties such as d, t, and , in a similar manner as Eqs. (1), (2) and (3) are used in 

EC5.  Multiple linear and non-linear regressions using Analysis of Variance (ANOVA) were run for 

each connection design property. The linear models investigated followed the form: 



𝑦 = 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛−1𝑥𝑛−1 + 𝛽𝑛𝑥𝑛1
 

Whereas the non-linear (power) models followed the form:  

𝑦 = 𝛼𝑥1
𝛽1 ∙ 𝑥2

𝛽2 ∙ ⋯ ∙ 𝑥𝑛−1
𝛽𝑛−1 ∙ 𝑥𝑛

𝛽𝑛  

In a similar manner to [13], the linear models explored, the aforementioned properties (d, t and 12) 

were used as individual terms as well as their crossproducts and squares were included, as well as 

MC, arriving up to ten possible predictor variables altogether: d, t, 12, td, t12, d12, d2, t2, 2, MC. 

In order to find the highest coefficient of determination (adjusted R2) for a statistically valid model 

(p-values for all predictor variables  0.05), a script was written in Matlab® to compute R2 for all 

possible combinations of the ten terms. Altogether, for 1023 combinations for the linear model were 

returned. For the non-linear models explored, the four individual terms (d, t, 12, MC) were 

combined to produce up to 15 combinations. Table 8 summarises the empirical equations returned 

by the regressions with the highest adjusted R2 and their respective adjusted R2 values. In instances 

where the difference between the R2 values for the linear and non-linear models was small, the 

latter were preferred on the basis of their simplicity. Note that R2 values were much higher for Fax 

(R20.83) than for fax (R20.47) for both linear and non-linear models, therefore only results for Fax 

are listed. This is consistent with findings for timber [14]. Similarly, by excluding b3 screws (which 

are not wood screws) from the sample, R2 values increased from 0.79 to 0.83. As specimens were 

not conditioned, their moisture contents were lower than 12% benchmark used in timber testing, 

therefore MC was included in the regression analysis to control for any influence that MC may have 

effected on connection design properties.  

Figs. 18 a) b) and c) represent the observed (experimental) v predicted values for the three 

connection design properties. The model for Fax provides the strongest correlation, whilst the model 

for fh provides the weakest. The model for Kser, may have been affected by the change in 

methodology from LDD to SDD tests. Similarly, the sample size for dowels between 4.5 mm and 12 

mm was small, possibly creating a bias. 



Table 8: equations for models returning highest R2 

Fastener 

property 

Units 
Equation R2 

Equation 

Ref. 

fh  (N/mm2) 𝑓ℎ = 0.058𝑑−0.21 ∙ 𝜌12
1.09 0.4461 (7) 

Kser  (N/mm) 𝐾𝑠𝑒𝑟 = −1206.16 + 816.79𝑀𝐶 − 1550.05𝑑

− 0.0127𝜌12
2 + 2.72𝜌12 ∙ 𝑑 + 0.7𝑡

∙ 𝜌12 

0.6935 

(8) 

Fax  (N) 𝐹𝑎𝑥 = 0.03𝑑0.53𝜌12
0.92𝑡1.19𝑀𝐶0.48 0.8220 (9) 

  Note: d and t in mm, 12 in kg/m3, MC in %   
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5.2 Characteristic values 

The equations contained in Table 8 provide a prediction of the mean connection design properties. 

However, strength or capacity properties, such as fh and Fax, should be expressed as characteristic 

values for design purposes, as is the case for Eqs. (1) and (3). Connection design properties are 

calculated on the basis of characteristic density, k. According to EN 14358-2016 [31] characteristic 

values are determined at a confidence level equal to 75%. For simplicity, connection design 

properties and density were assumed to obey non-parametric distributions.  

For density, Eq. (10) is used to obtain the 5-percent lower tolerance limit with 75% confidence, 0.05 

is the 5th percentile from ranked density data from each test; CoV and n, as defined in this paper; 

and k0.05,0.75 is a multiplier to give the 5-percent lower tolerance limit with 75% confidence contained 

within [28].  The values for these are summarised in table 10.  

𝜌𝑘 = 𝜌0.05 (1 −
𝑘0.05,0.75𝐶𝑜𝑉

√𝑛
) (10) 

By substituting k into Eqs. (7) and (9) the output values are now significantly reduced, however that 

does not necessarily warrant that their output would also be deemed a characteristic value. To 

assess this, the percentage of predictions that exceeded the experimental value, Pfail, was 

determined, and compared against a maximum permitted percentage of predictions that exceeded 

the experimental value, Pfail,pemit, which was found using the term contained within brackets of Eq. 

(10) and multiplying it by 5%. In this instance CoV was obtained from the ratio fexperimental / fpredicted for 

all values for the connection design property. If the check failed, the constant multiplier a from the 

non-linear equations (7) and (9) was modified until acceptance. Key steps and final equations are in 

table 9.  

  



Table 9: final characteristic equations for connection design properties 

Property Units k0.05,0.75 k Pfail,permit Equation 
Eq 

ref. 
Pfail Pfail,EC5 

  - (kg/m3) (%) -  (%) (%) 

fh,k (N/mm2) 1.84 621 4.88 
𝑓ℎ = 0.051𝑑−0.21𝜌𝑘

1.09 
(11) 3.97 

 

26.49 

 

Kser (N/mm) - mean = 

780 

50 𝐾𝑠𝑒𝑟

= 6550 − 1550𝑑

− 𝜌𝑚𝑒𝑎𝑛(0.013𝜌𝑚𝑒𝑎𝑛

− 2.72𝑑 − 0.7𝑡) 

(12) 49.67 

 

15.23 

Fax,k (N) 1.82 578 4.92 𝐹𝑎𝑥,𝑘

= 0.083𝑑0.53𝜌𝑘
0.92𝑡1.19 

(13) 4.81 

 

66.35 

 

 Note: d and t in mm,  in kg/m3, MC in % 

     

It should be observed that Eq. (9) contains the term MC with a positive exponent. As this would 

indicate that at higher MC, higher Fax, which is potentially misleading if extrapolated. Therefore, this 

term was substituted with the mean experimental MC for the Eq. (13).   

5.3. Adoption of EC5 

Adoption of Eqs. (1), (2) and (3) from EC5 in lieu of equations (11), (12) and (13) – contained in Table 

9 - was investigated. Pfail,EC5 in table 9 indicates the percentage of predictions using the 

aforementioned EC5 equations that exceeded the experimental values. The outcome is that EC5 

equations would output excessively high values for fh and Fax. Whereas in terms of Kser, it would 

appear that EC5 underestimates stiffness. However, the equation for Kser obtained in this paper is 

derived from a half-hole embedment test, which has limitations as discussed in 2.2.   

5.4. Critique to yield criterion 

It is noticeable from tables 6 and 7, that CoV for fh (21.3%) is considerably higher than for fax (16.9%). 

As evidenced in table 2, numerous specimens were extracted from a single culm, particularly for 

screw withdrawal. In order to assess whether the higher CoV values for fh were a consequence of the 

experimental method, or the larger variability within the sample selected, the authors analysed the 



level of variation to either fh (or fax) for specimens originating from a single culm piece. Wherever 

five or more specimens originated from the same culm segment and were tested with the same 

fastener, the coefficient of variation, CoV, for the respective connection design property (either fh or 

fax) was assessed. Five groups of specimens for embedment and 11 for screw withdrawal were 

analysed and summarised in Table 10. On average, CoVs for fax ranged between 3.42% and 9.88%, 

whereas the CoVs for fh ranged from 9.65% and 14.80%. This seems to imply that the embedment 

test, or possibly the interpretation of Fyield, results in more variable results.  Fig. 6 suggests that the 

oscillations around the plastic behaviour compounded with the criteria used for the interpretation of 

Fyield could underlie this variability. To assess the effect the 0.05d offset criterion has on the data, the 

data for the five aforementioned groups of specimens for embedment were reanalysed using a 

range of offset criteria, ranging from 0% to 14%. It was found that an offset criterion of 0.12d 

resulted in an average CoV for fh across the five groups of 8.31%, which is more in line with the CoV 

for fax. This possibility of adopting this offset criterion across all data was considered, but rejected on 

the basis of comparability with other published data.  

Table 10: variation of connection properties within a culm 

Test CoV fh fax 

Embedment Average  11.02%  

Min 9.65%  

Max 14.80%  

Screw 

withdrawal 

Average   7.04% 

Min  3.42% 

Max  9.88% 

 

 

6. Conclusions, recommendations and further work 

As a contribution to the development of bamboo connection design theory, the basic properties for 

fastener-bamboo interaction were investigated for one species of bamboo (Guadua a.k.). 



Experimental methods developed for timber were adapted for this purpose, with some success. 

However, the findings are yet to be validated with full-scale connection tests, such as two bamboo 

member joints and steel-bamboo joints. This is particularly important for the assessment of joint-

slip. Interpretation of Fyield in embedment tests may underlie the higher levels of variability observed 

for embedment strength, fh, when compared to the other properties assessed. Alternative 

definitions for fh, such as those contained in [24] or ISO 10984-2:2009 [32], should be explored.  

Seemingly, the age at the time of harvesting of the culms and position along the culm influenced fh, 

but not withdrawal parameter, fax. Embedment of fasteners parallel to fibres exhibited some 

ductility, though splitting was observed in some instances. Screws subjected to withdrawal displayed 

little or no ductility.  

Predictive empirical equations for bamboo connection design properties based on basic properties, 

such as , d and t, were derived using regression analysis. R2 values of 0.45, 0.69 and 0.82 were 

returned for fh, Kser and Fax, respectively. These predictive equations were adapted to provide 

characteristic values, as per timber design codes. The obtained characteristic value equations 

differed significantly from those contained in Eurocode 5 for timber, which suggests that further 

work is required in order to derive bamboo specific connection design equations, similar to Eqs. 11, 

12 and 13 in this paper, but based on a larger sample, an improved definition of fh, subjected to 

more rigorous conditioning, and that includes a range of species  

Further work regarding the compatibility of bamboo with metal fasteners is also recommended, in 

particular to assuage concerns about the risk of splitting when specimens are subjected to changes 

in temperature and moisture content.  
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