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A concentrated citrate stabilised Au nanoparticle (NP) colloid has been prepared using a 

modified Frens procedure, and characterised using TEM and UV-vis absorption 

spectroscopy.  The average diameter determined from TEM images of concentrated Au 

NPs (16.57 ± 0.65 nm) is similar to the diameter reported by Frens (16 nm).  The surface 

plasmon band of the concentrated Au NPs UV-vis spectrum has a max at 522 nm.  Bare 

silica and iron-silica hollow microsphere surfaces have been functionalised with amino 

groups using the surfactant 3-aminopropyltrimethoxysilane (APTMS).  The Au NPs have 

been assembled onto the APTMS treated hollow spheres by dispersing a colloid of Au 

NPs into a suspension of hollow spheres at pH 4.5 (2 hrs).  The volume ratio of Au 

NPs:hollow spheres was adjusted until maximum deposition could be achieved in a 

single step.  TEM micrographs of ultrathin (80-100 nm) ultramicrotome sections through 

the Au NP coated hollow spheres reveal that a single layer of Au NPs is mainly 

distributed on (i) the external side of the shell wall for silica, and (ii) both sides of the 

shell wall for iron-silica.  UV-vis absorption spectra of the Au NP coated hollow spheres 

show that the surface plasmon band shifts (524-613 nm) and broadens as the density of 

Au NPs is increased on the shell surface. 
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1. Introduction 

The design of gold nanoparticle (Au NP) and silica sphere composites is application 

driven.  Examples of application areas include biomedical (i.e. drug delivery, cell 

labelling, and cell destruction) [1], catalysis [2], and sensors (i.e. opal structures) [3].  

As seen from the publications in this area a variety of approaches have been used to 

prepare Au-silica composites [1-29].  There are papers dedicated to adsorbing Au NPs 

inside [2-11], outside [12-25], or both sides [25-27] of silica spheres.  The surface of 



the silica or template would usually be chemically modified to allow the assembly the 

Au NPs or AuCl4
- precursors onto the surfaces of the spheres [29].  The advantage of 

using hollow spheres instead of dense beads is that the hollow spheres have a higher 

surface area, and a greater capacity to adsorb higher amounts of Au NPs. 

The advantage of having Au NPs or a Au phase on the internal side of the 

silica hollow sphere is that the silica will serve as a protective coating over the Au, 

while the porosity of the silica will allow chemicals to diffuse inside.  Au NPs can be 

distributed on the internal surface of a hollow sphere using different methods, i.e. 

reduction of HAuCl4 (aq) on the inside silica hollow spheres [4], preparation of 

sacrificial core-Au NP-silica or silica core-Au NP-silica composite [2, 5, 6], Au NPs 

interdispersed inside the silica shell [9], or Au-silica core-shell NPs have been 

assembled on polystyrene spheres [10].  However, the extent of Au NP coverage 

achieved by these methods is not high. 

There are three main routes for preparing Au coated silica hollow spheres, (i) 

direct deposition of Au NPs by mixing two colloids [12-18], (ii) in situ reduction of 

HAuCl4 [21], or (iii) deposition of Au NPs that act as “seeds” for the further growth 

of the Au shell from exposure to HAuCl4 (aq) [19, 22, 24].  The disadvantage of some 

of the current methods using route (i) is that the silica sphere is repeatedly exposed to 

colloidal Au and the unreacted Au NPs are washed out in order to gain dense 

coverage.  This process can be time consuming and expensive.  Some studies have 

shown that Au NP coverage on the outer surface of silica can be improved when the 

pH of the reaction is adjusted [13-15, 19, 24].  Furthermore, Osterloh et al. showed 

that citrate stabilised Au NPs desorb from amine functionalised silica spheres when 

the Au-silica composite is exposed to dilute HCl or KBr (0.1M) [15]. 



Aside from Au-silica composites there is also interest in preparing 

multifunctional Au-silica-Fe composite spheres [30-37].  Au-silica-Fe composite 

spheres are useful as magnetic drug delivery vectors or catalyst supports [32].  These 

type of structures can be built layer-by-layer (LBL) [33-36], or by covering the silica 

surface with a single layer made up of Au and iron oxide [30, 31].  The LBL approach 

involves coating the iron oxide based magnetic NPs with a layer of either silica, 

followed by an over coat of Au NPs [34-36], or Au-silica core-shell NPs [33].  The 

Au layer may adsorb by seeded growth [31, 34, 35], or direct deposition of Au NPs 

[30]. 

Papers demonstrating high single Au NP coverage concern silica particle sizes 

in the range 100-500 nm [13-15, 19].  For large particles (> 1 µm) the coverage of the 

silica surface is incomplete, unless the Au nanoshell is formed via seeded growth [19, 

22, 24].  Dense Au NP coverage of the silica surface is beneficial, as a maximum 

number of Au NP sites will be available and the Au-silica composite would become 

more effective in its application. 

Here we aim to demonstrate a procedure to coat amine functionalised silica 

and Fe-silica hollow spheres with a single uniform sub-monolayer of Au NPs (at pH 

4.5).  Maximum deposition of Au NPs was achieved in a single step by virtue of using 

a concentrated citrate stabilised Au sol.  Au NPs were loaded onto the internal and 

external surfaces of the Fe-silica, and only the external surface for the majority of the 

silica hollow spheres.  The Au NP decorated hollow spheres have been characterised 

by TEM and UV-vis to show the morphology and surface plasmon response.  The 

work presented here describes a novel one-pot methodology for achieving the highest 

loading of Au NPs on hollow spheres, allowing access to various potential 

applications [1-3]. Also, there are no reports to our knowledge demonstrating the 



adsorption of Au NPs onto Fe-silica hollow spheres, with potential application in 

magnetic drug delivery [32]. 

2. Experimental 

2.1 Materials 

The following chemicals were supplied by Sigma-Aldrich, 3-

aminopropyltriethoxysilane (APTMS), trisodium citrate, chloroform, and gold (III) 

chloride trihydrate.  The following chemicals and materials were supplied by Fisher, 

ethanol, hydrochloric acid, sodium hydroxide, and sodium chloride, and disposable 

UV-vis cuvettes with four clear sides.  The silica (‘Si’) and iron oxide-silica (‘FeSi’) 

hollow spheres were supplied by Exilica [38].  Ultra pure water (UPW) had a 

resistivity of 18 Mcm.  The chemicals and materials used for SEM and TEM 

experiments were purchased from Agar Scientific.  All the chemicals and materials 

were used as received. 

2.2 Immobilisation of Au NPs onto APTMS treated hollow spheres 

2.2.1 Preparation of APTMS coated ‘Si’ hollow spheres 

Dry hollow ‘Si’ spheres (100 mg) suspended in anhydrous ethanol (10 ml) were 

stirred under a N2 (g) atmosphere for 20 minutes.  Liquid APTMS (0.487 mmol, 

85 µL) was added to the suspension (using a micropipette) and heated under reflux for 

24 hrs.  The suspension was cooled and left to stir (1 hr).  The suspension was 

transferred to a centrifuge tube (50 ml), and was centrifuged at 3500 rpm (10-

15 minutes), and the supernatant syringed off.  The APTMS coated ‘Si’ particles were 

resuspended, sequentially in ethanol (40 ml (x1)), chloroform (40 ml (x1)), ethanol 

(40 ml (x2)), and UPW (40 ml (x1)) and centrifuged, syringing off the solution each 

time.  Finally the ‘Si’ particles were resuspended in UPW (5 ml) and stored until 

further use. 



2.2.2 Preparation of APTMS coated ‘FeSi’ hollow spheres 

The ‘FeSi’ hollow spheres were coated with APTMS using exactly the same 

procedure used for the ‘Si’ spheres. 

2.2.3 Preparation of concentrated Au NPs 

A HAuCl4 (aq) solution (50 ml, 0.08 wt%) was heated to reflux and Na3-citrate (aq) 

solution (1 ml; 0.8 wt%) was added.  The colour of the clear reaction mixture changed 

from yellow to grey to a deep maroon colour in a matter of seconds.  The reaction 

mixture was heated under reflux (6 minutes).  The colloidal suspension was cooled, 

and centrifuged at 3500 rpm (5 minutes).  The supernatant was syringed off.  The Au 

colloid was centrifuged once more, and the supernatant syringed off.  This process 

was repeated once more.  The supernatant containing the particles was kept. 

2.2.4 Attachment of Au NPs onto APTMS-‘Si’ hollow spheres 

The Au sol (0.66 ml,  



Table 1) was added to the APTMS-‘Si’ suspension (0.5 ml) with stirring.  The pH of 

the reaction mixture was reduced to 4.5 using HCl (100 mM, 10-100 L portions).  

The reaction mixture was left to stir (2 hrs).  The Au-APTMS-‘Si’ particles were 

centrifuged (3500 rpm, 15 minutes) suspended in UPW (45 ml, (x3)).  The centrifuge 

washings were tested (surface plasmon band) for Au NPs by UV-vis.  The washed 

Au- APTMS-‘Si’ particles were resuspended in UPW (30 ml) and tested by UV-vis.  

The Au- APTMS-‘Si’ particles were isolated by centrifuge and dried by vacuum 

overnight. 

2.2.5 Attachment of Au NPs onto APTMS-‘FeSi’ hollow spheres 

Au NPs were attached to the APTMS-‘FeSi’ hollow spheres using the same procedure 

used for the APTMS-‘Si’ hollow spheres.  Table 2 summarises the amounts of 

colloidal Au reacted with colloidal APTMS-‘FeSi’ hollow spheres (0.5 ml). 

2.3 Zeta-potential of the APTMS treated hollow spheres 

2.3.1 Sample preparation 

The APTMS treated hollow sphere aqueous suspension (1 ml) was diluted with UPW 

(30 ml).  An aliquot (1 ml) of the suspension was dispersed in aqueous NaCl 

(100 mM, 10 ml).  The pH of the dispersion was modulated by addition of aliquots of 

aqueous HCl (10-100 L, 10 mM) or NaOH (10-100 L, 10 mM), to yield 

suspensions with pHs between 3.5-9.0 in increments of 0.5.  Bare hollow spheres 

(~ 10-20 mg) dispersed in UPW (20 ml) at pH 6 were also characterised. 

2.3.2 Zeta-potential 

Zeta potential measurements were recorded using a Malvern Instruments Zetasizer 

1000Hs, operating with a variable power (5-50 mW) He-Ne laser at 633 nm. 



2.4 SEM characterisation of ‘Si’ hollow spheres 

2.4.1 Sample preparation 

Bare ‘Si’ (10 L from a suspension of ~ 10 mg ‘Si’:1 ml UPW) or APTMS-‘Si’ 

hollow spheres suspended in UPW (10 L) were placed on a glass cover slip mounted 

on an SEM stub using double sided carbon tape.  The SEM stub was left to stand in 

air to allow the water to evaporate.  The edges of the cover slip were painted with 

silver paint and the stub was coated with carbon by thermal evaporation using an 

Edwards 306 coating unit. 

2.4.2 Scanning Electron Microscope 

Secondary images of the bare ‘Si’ and APTMS-‘Si’ hollow spheres were acquired 

using a JEOL 7000 FEG SEM set at an acceleration voltage of 4 kV. 

2.5 TEM characterisation of the Au NPs and hollow spheres 

2.5.1 Preparation of the Au NP TEM grid 

The concentrated Au sol was diluted by a factor of eight.  The dilute Au colloid 

(5 L) was placed on a formvar coated copper grid for one minute.  The excess Au 

colloid dispersion was removed by adsorbing onto a filter paper. 

2.5.2 Preparation of the specimen block: addition of specimen to resin 

The araldite resin was formulated from Araldite CY212 (3 ml), EPON substitute Agar 

100 RESIN (5 ml), DDSA (hardner, 13 ml) and DBP (plasticiser, 0.6 ml) via stirring 

for 5 minutes.  The liquid accelerator (DMP 30, 0.5 ml) was added to the mixture 

while stirring resulting in a colour change from yellow to orange.  The mixture was 

placed under vacuum (20 minutes, 23 °C).  Two beam capsules (20 mm x 9 mm) were 

completely filled using a syringe (5 ml) containing the air free resin.  The powdered 

specimen (~0.5-1 mg) was added to each resin filled beam capsule, and the mixture 

inside the capsule was gently agitated to help the shells sink into the resin.  The beam 



capsules were heated (60 °C) under vacuum (30 minutes).  The resin was left to cure 

(60 °C) at ambient pressure overnight to yield a polymerised resin-specimen block. 

2.5.3 Preparation of ultramicrotome sections of Au NP coated hollow spheres 

The Araldite specimen blocks were trimmed by hand using a double-sided razor blade 

until the cutting face was pyramidal shaped and the hollow spheres were exposed and 

within the trapezoid-shaped pyramid top.  The block was secured into a REICHERT-

JUNG ultramicrotome, and was fine trimmed using a glass knife set at a clearance 

angle of 4°.  The glass ultramicrotome knife was prepared by breaking a glass strip 

(1 cm thick) using a knife maker (type 7801A).  Ultrathin (80-100 nm) sections of the 

block were obtained using a diamond knife set at a clearance angle of 6°.  The gold 

coloured sections were captured onto formvar coated grids by sweeping the section 

out of the water. 

2.5.4 Transmission Electron Microscope 

TEM bright field micrographs were obtained using the JEOL 1200EX TEM set at an 

acceleration voltage of 80 kV. 

2.6 UV of Au NPs, centrifuge washings and Au NP coated hollow spheres 

2.6.1 Sample preparation 

The concentrated Au NP colloid was diluted by a factor of two using UPW [39].  The 

centrifuge washings were tested by UV as prepared.  The Au coated hollow spheres in 

UPW (30 ml) were agitated and immediately transferred to a cuvette and tested 

without delay because most of the hollow spheres were aggregated and showed a 

tendency to sediment over time [40]. 



2.6.2 UV-vis spectrometer 

UV-visible absorption spectra of the colloidal Au and the suspensions of Au coated 

hollow spheres were obtained using a Hewlett Packard 8452A spectrometer 

(wavelength range= 400-800 nm). 

3. Results and Discussion 

3.1 Preparation of Au NP coated hollow spheres 

The overall process for the assembly of the citrate passivated Au NPs onto the hollow 

spheres is shown in Scheme 1.  The bare hollow spheres were coated with a self-

assembled monolayer (SAM) of APTMS from an anhydrous ethanol solution (Figure 

1), using a modified procedure by Badley et al.[41]  The suspension of ‘Si’ hollow 

spheres in ethanol was heterogeneous initially, i.e. the powder was caked and grains 

were floating in the dispersant.  The ‘FeSi’ hollow spheres were less heterogeneous 

before treatment with APTMS.  The APTMS hollow sphere dispersions formed by 

prolonged (24 hours) stirring under reflux produced a more homogenous dispersion 

than without APTMS.  The APTMS coated hollow spheres were also easier to 

disperse after sedimentation.  APTMS treated hollow spheres were washed 

successively with ethanol, chloroform, and ethanol to remove the excess APTMS and 

were finally transferred into UPW (5 ml).  The hollow spheres are partially ruptured 

when the organic template is removed by calcination [38, 40], therefore, the inner 

surface of the spheres should also be coated with an APTMS SAM (see later).  The 

predominant phase of the ‘FeSi’ hollow spheres is silica [40], therefore, it was 

possible to assemble an APTMS monolayer onto the ‘FeSi’ hollow spheres using the 

same chemistry used for the ‘Si’ hollow spheres.  The first reaction in Scheme 1 is a 

depiction of the reaction between APTMS and the hollow spheres.  The APTMS 

treated hollow spheres were then suspended in 100 mM NaCl (aq), the pH was 

modified over a pH range of ~ 3-9, and the zeta-potential was monitored (Figure 2). 



Au NPs were prepared by a modified Frens [42] procedure to afford a 

concentrated [43] colloidal suspension.  The colloidal Au NP suspension was then 

added to the colloidal suspension of APTMS treated hollow spheres (‘Si’ and ‘FeSi’) 

using several ratios ( 



Table 1 and Table 2), and the pH was adjusted to pH 4.5.  The pH was reduced 

in order to protonate the APTMS SAM to make it positively charged, and hence 

promote the electrostatic assembly of negatively charged Au NPs [44].  The ratio of 

the hollow spheres:Au NPs was adjusted systematically until the Au NPs were in 

excess as noted by the resulting supernatant having Au NPs present.  Thus, we 

reached a situation in which a maximum surface coverage of the Au NPs on the 

hollow surface was observed.  The excess citrate present in the Au was not removed 

because other authors [16] have shown that the presence of excess citrate in the Au 

colloid assists the self assembly process of the Au NPs onto amine functionalised 

silica beads.  Ultramicrotome sections through the Au NP coated hollow spheres (Au-

APTMS-‘Si’ and Au-APTMS-‘FeSi’) embedded in Araldite resin were prepared and 

imaged using TEM (Figures 4-6), and UV-vis spectra of suspensions of Au NP coated 

hollow spheres in UPW were recorded ( 



Table 1, Table 2 and Figure 7). 

3.2 Characterisation of the Au NP coated hollow spheres 

3.2.1 SEM characterisation of APTMS coated hollow ‘Si’ spheres 

The APTMS-‘Si’ hollow spheres were examined using low voltage (4 kV) SEM.  

JEOL 7000 FEG SEM images of carbon coated (a) bare ‘Si’ and (b) APTMS-‘Si’ 

hollow spheres are shown in Figure 1.  From these SEM images we can see that the 

surface morphology of the ‘Si’ hollow spheres does not significantly change after 

treatment with APTMS. 

3.2.2 pH dependent zeta potentiometry study of APTMS coated hollow spheres 

A plot of zeta potential (mV) vs. pH for dilute suspensions of (a) APTMS-‘Si’ and (b) 

APTMS-‘FeSi’ hollow spheres in UPW (1 ml) dispersed in NaCl solution (100 mM, 

10 ml) is shown in Figure 2.  The zeta-potential results from this study (Figure 2) 

show that the APTMS-‘Si’ and APTMS-‘FeSi’ coated hollow spheres are positively 

charged and are electrostatically stable in the pH range of 3.5-6.5 and 3.5-5.5, 

respectively.  Further increase of the pH caused a reduction in the zeta-potential and 

the conjugate bases are protonated.  Interestingly the APTMS-‘FeSi’ hollow spheres 

display significantly different behaviour at high pH than the APTMS-‘Si’ spheres.  

Presumably the iron phase chemistry is playing some pH dependent role.  The bare 

‘Si’ hollow spheres dispersed in UPW have a zeta-potential of -39.4 mV, and the 

‘FeSi’ hollow spheres: -38.2 mV (pH 6). 

3.2.3 Determination of the average diameter of concentrated Au NPs by TEM 

Frens showed (TEM) that Au NPs prepared using HAuCl4 (0.01 wt%, 50 ml) and 

trisodium citrate (0.1 wt%, 1 ml) have an average diameter of 16 nm [42].  In this 

study bright field TEM micrographs have been statistically analysed to determine the 

average diameter of the Au NPs prepared here using a modified route to produce a 



significantly more concentrated dispersion.  A bright field TEM micrograph of the 

concentrated Au NPs is shown in Figure 3a.  The TEM image shows that the particles 

are spherical and relatively monodisperse in size.  A histogram of frequency vs. 

diameter (nm) of the Au NPs is shown in Figure 3b.  The average diameter of the 

colloidal Au NPs is 16.57 ± 0.65 nm (n = 105) [45], which is in good agreement with 

the diameter reported by Frens (16 nm) [42]. 

3.2.4 UV-vis of the concentrated Au NP colloid 

The max of the surface plasmon band of the Au NPs is 522 nm which is within the 

expected range of 520-525 nm [46, 47] for citrate passivated Au NPs.  There was no 

evidence of the longitudinal band at longer wavelengths, suggesting the NPs were not 

aggregated [47]. 

3.2.5 TEM characterisation of Au-‘Si’ hollow spheres 

TEM images of ultramicrotome sections (Figure 4) show: (i) Au NPs adsorb onto 

APTMS-‘Si’ hollow spheres at pH 4.5 (Figures 4-5), (ii) the density of the Au NPs on 

the Au-APTMS-‘Si’ surface increases with increase in the volume of the Au NP 

dispersion, and (iii) most of the Au NPs adsorb onto the outer side of the Au-‘Si’ 

sphere wall. 

A minority of the APTMS-‘Si’ spheres had Au NPs assembled onto the inner 

surface (Figure 5), but only at the relatively high Au NP loading (Au-‘Si’D,  



Table 1).  Thus, the APTMS SAM presumably does form on the inner surface 

of some of the hollow spheres.  It is not clear at this point as to whether this low 

degree of assembly of the Au NPs to the inner surface is due to (i) poor SAM 

formation on the inner surface, or (ii) the inability of the Au NPs to pass through the 

rupture in the hollow sphere. 

3.2.6 TEM characterisation of Au-APTMS-‘FeSi’ hollow spheres 

Initially the volume ratio of APTMS-‘FeSi’:Au NPs colloid was the same as the ratio 

used for specimen Au-‘Si’D (Table 1).  Bright field micrographs of specimen Au-

‘FeSi’E (Table 2) are shown in Figures 6a and 6b, and show that the majority of the 

Au NPs attach to the Au-‘FeSi’ hollow spheres in a similar way to specimen Au-‘Si’D 

(Figure 4d), i.e. to the outer surface only.  For both cases (Figure 6a and Figure 4d) 

we can see the Au NPs are densely packed on the outer surface of the shell, and a few 

examples were found of hollow spheres where the Au NPs have adsorbed onto the 

internal surface. 

Further increase in the volume of Au NP dispersion (Au-‘FeSi’F, Table 2) in 

the reaction mixture yields hollow spheres coated with the highest density of Au NPs 

on the outer surface, and increasingly coated internal surfaces (Figures 6c and 6d).  

Figures 6a-6d suggest that the Au NPs assemble onto the outer surface initially as 

with the Au-APTMS-‘Si’ system.  Evidence from the Au NPs on APTMS-‘Si’ 

experiments showed that when the reaction mixture is saturated with Au NPs it is an 

indication that the maximum number of Au NPs have attached onto the shell surface.  

40 ml of Au NP colloid (Au-‘FeSi’G, Table 2) is required to saturate the Au-APTMS-

‘FeSi’ reaction mixture (more than twice the amount required for specimen Au-‘Si’D,  



Table 1), presumably due to the internal inner structures resulting in a large 

surface area.  TEM images (Figures 6e and 6f) of the specimen Au-‘FeSi’G (Table 2) 

show that the density of Au NPs immobilised inside the Au-APTMS-‘FeSi’ hollow 

spheres is similar to that on the outer shell surface.  Figures 6c-6f also suggest that the 

APTMS monolayer coated the internal surface of the shell as illustrated in Scheme 1. 

The TEM images (Figures 4-6) also show that the Au NPs do not coalesce and 

form a sub-monolayer due to the electrostatic repulsion between charged Au NPs on 

the hollow sphere surface. 

3.2.7 UV-vis spectra of Au coated hollow spheres 

The UV-vis spectra of the Au-APTMS-‘Si’ and Au-APTMS-‘FeSi’ systems as a 

function of the volume of the Au NP solution that was added are shown in Figures 7a 

and 7b.  Also plotted is the UV-vis spectrum of the initial colloidal Au dispersion with 

the max of the surface plasmon at 522 nm.  Clearly, it can be observed that as the 

volume of the Au NP colloidal dispersion was increased there is a significant shift and 

broadening of the Au NP surface plasmon band.  The Au-APTMS-‘Si’ system shifted 

48 nm to 570 nm ( 



Table 1), and the Au-APTMS-‘FeSi’ system shifted 91 nm to 613 nm (Table 2).  

These shifts are indicative of dipole-dipole coupling of neighbouring Au NPs, the 

shift being dependent proportionate to the separation of the Au NPs [2, 10, 16].  These 

shifts are in good agreement with the TEM analysis where the average Au NP 

separation decreases as the volume of the Au NP colloidal dispersion increases.  In 

addition no longitudinal band at > 700 nm appeared, supporting the TEM results that 

the Au NPs were not coalesced.  Furthermore, it should be noted that repeated 

washing of the Au-APTMS-‘Si’ and Au-APTMS-‘FeSi’ composite systems with 

water did not remove any of the assembled Au NPs from the sphere surfaces, as 

evidenced by no surface plasmon band appearing in the supernatant washings. 

4. Conclusion 

A concentrated citrate Au NP colloid has been prepared using a modified Frens 

procedure, and characterised using TEM and UV-vis absorption spectroscopy.  The 

average diameter determined from TEM image analysis of concentrated Au NPs 

(16.57 ± 0.65 nm) is similar to the average Au NP diameter (16 nm) reported by 

Frens.  The max (522 nm) of the concentrated Au NPs falls into the typical range 

(520-525 nm) usually observed for Au NPs with diameters 16-20 nm.  Bare ‘Si’ and 

‘FeSi’ hollow spheres have been functionalised with an APTMS SAM.  Low voltage 

(4 kV) SEM images of carbon coated bare ‘Si’ and APTMS-‘Si’ showed that 

treatment of the hollow spheres with APTMS does not lead to significant changes in 

surface morphology.  A pH study of the APTMS treated hollow spheres using zeta-

potential measurements revealed that the hollow spheres are positively charged in the 

pH ranges 3-6.5 (APTMS-‘Si’) and 3.5-5.5 (APTMS-‘FeSi’) and the surface charge 

decreases above pH 6.5 (APTMS-‘Si’) or 5.5 (APTMS-‘FeSi’).  Au NPs have been 

assembled onto the hollow spheres by mixing a colloid of Au NPs with a colloid of 



APTMS treated hollow spheres at pH 4.5.  The assembly appeared to take place in a 

two stage process whereby the Au NPs assemble onto the outer surface first and then 

the inner surface.  However, the majority of the APTMS-‘Si’ internal surfaces are not 

covered by the Au NPs and this raises the question as to whether the APTMS SAM 

has not formed efficiently on the inner surfaces, or the Au NPs cannot pass through 

the rupture in the shell surface.  Once the particles have been immobilised onto the 

hollow spheres they do not detach from the shell surface when resuspended in fresh 

UPW.  TEM micrographs of ultrathin (80-100 nm) ultramicrotome sections through 

the Au NP coated hollow spheres reveal that a single sub-monolayer of Au NPs is 

mainly distributed on (i) the external side of the shell wall for Au-APTMS-‘Si’, and 

(ii) both sides of the shell wall for Au-APTMS-‘FeSi’.  UV-vis absorption spectra 

corroborate the increased density of Au NPs on both sets of hollow spheres (TEM), as 

the surface plasmon band both shifts to higher wavelengths and broadens, showing 

coupling of the surface plasmons.  Such composite materials have a variety of 

potential applications ranging from catalytic reactors to drug delivery [1, 2, 32]. 
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Table 1.  Amounts of Au NPs reacted with APTMS-‘Si’ (0.5ml) to prepare Au-‘Si’A-

D, and max (of the Au NP surface plasmon band) from corresponding UV-vis spectra 

(Figure 7a) 

Label Au (ml) max (nm) 

Au NP - 522 

Au-‘Si’A 0.66 524 

Au-‘Si’B 4 541 

Au-‘Si’C 8 553 

Au-‘Si’D 16 570 
 



Table 2.  Amounts of Au NPs reacted with APTMS-‘FeSi’ (0.5ml) to prepare Au-

‘FeSi’E-G, and max (of the Au NP surface plasmon band) from corresponding UV-vis 

spectra (Figure 7b) 

Label Au (ml) max (nm) 

Au NP - 522 

Au-‘FeSi’E 16 575 

Au-‘FeSi’F 24 586 

Au-‘FeSi’G 40 613 

 



Scheme 1.  Preparation of APTMS functionalised hollow spheres and Au NPs; and 

self-assembly of Au NPs onto APTMS coated hollow spheres at pH 4.5 

 

Figure 1.  JEOL 7000 FEG SEM secondary electron micrograph (acquired at 4 kV) of 

carbon coated (a) bare-‘Si’ (b) APTMS-‘Si’ 

 

Figure 2.  Histograms of zeta potential (mV) vs. pH for aqueous suspensions of (a) 

APTMS-‘Si’ and (b) APTMS-‘FeSi’ 

 

Figure 3.  (a) JEOL 1200 TEM bright field micrograph and (b) histogram of 

frequency vs. diameter (nm) of Au NPs 

 

Figure 4.  JEOL 1200 TEM bright field micrographs of ultra thin (80-100 nm) 

sections through Au-‘Si’ shells (Au-‘Si’A-D,  



Table 1) embedded in Araldite resin 

 

Figure 5.  JEOL 1200 TEM bright field micrograph of ultra thin (80-100 nm) sections 

through Au-‘Si’ shells (Au-‘Si’D,  



Table 1) embedded in Araldite resin showing a silica shell that has Au NPs adsorbed 

on the both sides of the shell wall 

 

Figure 6.  JEOL 1200 TEM bright field micrographs of ultra thin (80-100 nm) 

sections through Au-‘FeSi’ shells (a) and (b) Au-‘FeSi’E, (c) and (d) Au-‘FeSi’F, (e) 

and (f) Au-‘FeSi’G (Table 2) 

 

Figure 7.  Normalised UV-vis spectra of (a) Au-‘Si’A-D ( 



Table 1) and (b) Au-‘FeSi’E-G (Table 2) 
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