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The formation of iterated structures, such as satellite and subsatellite drops, filaments, and bubbles, is a
common feature in interfacial hydrodynamics. Here we undertake a computational and theoretical study of
their origin in the case of thin films of viscous fluids that are destabilized by long-range molecular or other
forces. We demonstrate that iterated structures appear as a consequence of discrete self-similarity, where
certain patterns repeat themselves, subject to rescaling, periodically in a logarithmic time scale. The result is
an infinite sequence of ridges and filaments with similarity properties. The character of these discretely self-
similar solutions as the result of a Hopf bifurcation from ordinarily self-similar solutions is also described.
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Free-surface flows can produce a great diversity of patterns
such as filaments, drops, bubbles, pearls, etc. [1]. Amongst
them, probably the most intriguing and elusive to analyze
have been the so-called “iterated patterns,” i.e., “patterns
within patterns,” where the same structure repeats itself
at different time and length scales. Such structures appear
in a wide variety of physical, biological, and technological
settings—from natural phenomena with fractal features to
elasticity and composite materials [2]. In the context of
interfacial hydrodynamics, in particular, examples of iterated
structures are the formation of several generations of satellite
drops in capillary breakup [3], the cascade of structures
produced in viscous jets [4], and the iterated stretching of
viscoelastic filaments [5]. In thisLetter,we present for the first
time a scenario revealing how such structures may appear via
a bifurcation from self-similar solutions to discretely self-
similar ones where scale invariance occurs only at discrete
times, resulting in the infinite repetition of some pattern at a
discrete sequence of time and length scales. Discrete self-
similarity has proven to be present at some instances of
gravitational collapse [6] and has also been proposed as a
mechanism for the development of turbulence and formation
of singularities in Euler’s equation through chaotic self-
similarity [7]. Our study reveals the mechanism for discrete
self-similarity and ensuing complexity on all scales via a

model system consisting of a reduced-order hydrodynamic
evolution equation.
The physical situation we consider is the rupture of thin

films driven by a destabilizing effect. Liquid films are
ubiquitous in a wide spectrum of natural phenomena and
technological applications [8]. One well-studied effect is
that of long-range intermolecular or van der Waals forces;
when the film is sufficiently thin, these forces may cause the
film to destabilize and eventually rupture, and dewet the
substrate. In the long-wave approximation (appropriate for
slow flows with strong surface tension), the problem may
be formulated in terms of an evolution equation for the
film profile hðx; tÞ in the form ht ¼ −∇ · q, where q ¼
−ðh3=3μÞ∇p is the flow rate, with μ being the liquid’s
viscosity and p ¼ −σ∇2h − ΠðhÞ being the pressure. The
first p component is the Laplace pressure (surface tension
times linearized curvature), and the second is the disjoining
pressure, taken to be ΠðhÞ ¼ −A=hn. In one spatial dimen-
sion, and after a suitable nondimensionalization, the evo-
lution equation for h reads

ht þ
�
h3
�
hxx −

1

nhn

�
x

�
x
¼ 0: ð1Þ

In the context of rupture by van derWaals forces, A (strictly,
6πA) is the Hamaker constant, while n is almost always
taken to be 3 [9,10].
Atn ¼ 3, a remarkable property of the solutions of Eq. (1)

is the development of self-similar film rupture (h → 0 at a
single point) in finite time [9,10]. There is, however, good
reason to examine different values of n. Yatsyshin et al. [11]
show that the disjoining pressurewith n ¼ 3 is an asymptote
to DFT as the distance of the chemical potential from
saturation vanishes, assuming a Lennard-Jones potential

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW LETTERS 120, 034505 (2018)

0031-9007=18=120(3)=034505(5) 034505-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.034505&domain=pdf&date_stamp=2018-01-19
https://doi.org/10.1103/PhysRevLett.120.034505
https://doi.org/10.1103/PhysRevLett.120.034505
https://doi.org/10.1103/PhysRevLett.120.034505
https://doi.org/10.1103/PhysRevLett.120.034505
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


for pairwisemolecular interactions and neglecting screening
effects. Thus, the usual form with n ¼ 3 is only approached
for thick films. For thin films, there is a deviation from the
n ¼ 3 behavior, and dependent on the system, different
exponents might be possible. Furthermore, the behavior
on h might be nonlocal, a consequence of the nonlocal
character of the long-range intermolecular interactions (see
also Refs. [12,13]). However, a widely adopted algebraic
dependence offers ease of access to the corresponding
equations, facilitating their analytical-numerical scrutiny.
At the same time, a great deal of experimental study has
shown that the functional form of ΠðhÞ is highly dependent
on the nature of the dominant intermolecular force, which
is influenced by the substrate and liquid properties. For
example, Ref. [14] found that the effects of screening can
lead to an intermolecular potential better modeled with
n ¼ 4 in hydrocarbon-metal experiments with h > 40 nm,
while the contribution due to hydrogen bonding in water-
silica-glass experiments for very thin (<30 nm) films was
better approximated by n ¼ 1 (Pashley [15]). For water on
quartz, ΠðhÞ is estimated to also have n ¼ 1 for h < 80 nm
and n ¼ 2 for h > 120 nm [15]. For 80 nm < h < 120 nm,
it would then be appropriate to take 1 < n < 2. In any case,
given a liquid and a substrate, we can approximate, when
appropriate, ΠðhÞ for relatively thin films with a power law
by fitting a value of n. We emphasize that assuming a certain
form for the disjoining pressure and fitting appropriate
values of its parameters is common in the literature (e.g.,
Ref. [16]). There has also been recent interest in generalizing
the standard Lennard-Jones potential with attractive expo-
nent λa ¼ 6 to other exponents, leading to the so-called Mie
potential [17]; the corresponding disjoining pressure has
exponent n ¼ λa − 3 [18]. A good summary of different
contributions to the disjoining pressure may be found in
Ref. [19]. The dynamics of rupture under these different
values has not previously been examined.
As well as intermolecular forces, Eq. (1) models other

thin-film phenomena at different scales, such as destabi-
lization due to thermocapillarity [20] and density contrast
(Rayleigh-Taylor instability) [21]; in such cases, we may
define an equivalent “disjoining pressure” behaving as
lnðhÞ for the thermocapillary effect (essentially n ¼ 0),
or as h for the Rayleigh-Taylor instability (n ¼ −1). Instead
of self-similar rupture, these two examples exhibit cascades
of satellite droplets, similar to those discussed above, so it
is of great interest to understand how the two behaviors are
connected through variation in n.
Assuming that rupture occurs at a single point x0 at time

t0, it is natural to seek solutions in a coordinate system that
focuses on the point and time of rupture:

hðx; tÞ ¼ ðt0 − tÞαfðξ; τÞ; ξ ¼ x − x0
ðt0 − tÞβ ;

τ ¼ − lnðt0 − tÞ; ð2Þ
where, from simple dimensional arguments based on
Eq. (1), one finds α ¼ 1=ð2n − 1Þ; β ¼ ðnþ 1Þ=ð4n − 2Þ.

For a rupture solution to exist, we must assume n > 1=2, so
that α; β > 0. The scaled profile fðξ; τÞ then satisfies

fτ ¼ αf − βξfξ −
�
f3
�
fξξ −

1

nfn

�
ξ

�
ξ

; ð3Þ

subject to the condition that the interfacial velocity ht
remains finite at a finite distance from x0. As t → t0, one
has ξ → ∞ and, in order to cancel out singular dependence
on t0 − t, we must impose

fτ ∼ αf − βξfξ; jξj → ∞: ð4Þ
Steady states of Eqs. (3) and (4) represent self-similar
solutions of Eq. (1). Including τ dependence allows us to
examine the stability and dynamics in the vicinity of these
solutions.
Above a certain value of n, there are infinitely many

steady states of Eqs. (3) and (4). This was established for
n ¼ 3 in Ref. [9] and recently extended to general n by the
authors [22]. These solutions are symmetric and can be
arranged (for a given n) as a sequence f1; f2;… according
to their values at ξ ¼ 0 such that f1ð0Þ > f2ð0Þ > …. We
can thus depict solution branches as fjð0Þ over n (Fig. 1).
These solutions were computed using the open source
numerical continuation software AUTO-07p [23] (see also
Refs. [22,24]). As n is decreased, the solution branches
merge, with the first two branches merging at n ¼ nc ≈
1.499 15 [22]. Our focus is on the change in dynamics of
solutions to Eq. (1) close to this value.
First, we analyze the stability of f1ðξÞ as n varies. We

linearize Eq. (3) about f1ðξÞ and seek solutions of the
linearized problem in the form eστΦðξÞ, obtaining an
eigenvalue problem for σ ¼ σR þ iσI. As f1 is symmetric
in ξ, ΦðξÞ may be either symmetric or antisymmetric,
which we enforce by applying the appropriate boundary
conditions at ξ ¼ 0, in addition to the far-field conditions
arising from Eq. (4). For n ¼ 3, it has been shown [10] that
there are two trivial modes of perturbation, symmetric with

FIG. 1. Bifurcation diagram for self-similar solutions fðξÞ
satisfying Eq. (3), labeled by f0 ¼ fð0Þ. For sufficiently large
n, there are infinitely many solutions. At n ¼ nc ≃ 1.499 15,
there is a first turning point where the first and second branches
of solutions merge. Successive turning points exist at 1.391 41,
1.334 05, 1.299 93;…. The primary branch is stable for most
of its domain; however, it becomes unstable due to a Hopf
bifurcation pair ns ≈ 1.567, na ≈ 1.545 (see Fig. 2).
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σ1 ¼ 1 and antisymmetric with σ2 ¼ β, which correspond
to time and space translation of the singularity, respectively.
Otherwise, all eigenvalues have a negative real part, and so
f1 is stable. All other branches f2; f3;… have eigenvalues
with a positive real part and are unstable. Figure 2 displays
results for general n. As well as the two trivial eigenvalues,
we compute the two nontrivial eigenvalues with the largest
real parts corresponding to symmetric and antisymmetric
modes. These both have negative real parts at n ¼ 3 but
increase as n decreases, crossing the imaginary axis at Hopf
bifurcations close to n ¼ nc where f1 and f2 merge. These
points are labeled ns and na. In general, a Hopf bifurcation
leads to the existence of a branch of periodic orbits (in
scaled time τ, in this case) emanating from the bifurcation.
We now explore the implications of this loss of linear

stability on the nonlinear dynamics by computation of
the time-dependent equation both in the unscaled [Eq. (1)]
and scaled [Eq. (3)] coordinates. To compute solutions to
Eq. (1) that can capture details close to rupture, we
implement an adaptive finite difference scheme that
increases local mesh refinement near the minimum of h
whenever hmin is less than half of its value at the previous
mesh refinement. Figure 3 shows the results of the
computations for (a) n ¼ 1.7 and (b) n ¼ 1.5, which are
on either side of the Hopf bifurcation structure shown in
Fig. 1. Results for other n values are included in the
Supplemental Material [25]. The transition from classical
(continuous) self-similarity to the onset of cascading
oscillations of geometrically decreasing size is apparent.
The inset in Fig. 3(a) shows that the profiles approach a
classical self-similar profile [i.e., a steady state of Eq. (3)]
for n ¼ 1.7. In Fig. 3(b), we observe the repetition of the
same pattern on geometrically smaller scales, which
asymptotically approaches the scaled-time periodic solu-
tion to Eq. (3), which we describe next.

The computation of solutions to Eq. (3) is complicated
by the trivial eigenvalues corresponding to shifts in space
and time. These instabilities may be thought of as arising
from incorrect choices of x0 and t0 in scaling the initial
condition. We remove these instabilities by letting x0 and t0
be time-dependent estimates of the true rupture location,
which leads to a new equation of the form

f̂ξ̂ ¼ Qðτ̂Þðαf̂ − βξ̂f̂ξ̂Þ þ Pðτ̂Þf̂ξ̂ −
�
f̂3
�
f̂ξ̂ ξ̂ −

1

nf̂n

�
ξ̂

�
ξ̂

;

ð5Þ
where P and Q are extra degrees of freedom that may be
fixed by applying nonlocal constraints that ensure the
rupture remains at, or at least asymptotically approaches,
ξ̂ ¼ 0. We determine P and Q by approximately fixing
f̂ð0; τ̂Þ ¼ 1 in addition to an integral “pinning” condition
[26]. Solutions of Eq. (5) are scaled back to those of
Eq. (3) by

FIG. 2. The real part σR of eigenvalues governing the stability
of the primary solution branch f1ðξÞ as n varies. Symmetric and
antisymmetric modes of perturbation are shown as solid and
dashed lines, respectively. The upper two eigenvalues are the
trivial eigenvalues (σ1 ¼ 1, σ2 ¼ β). The lower two eigenvalues
are complex and lead to Hopf bifurcations at ns ≈ 1.567 and
na ≈ 1.545, for symmetric and antisymmetric modes, respec-
tively. The eigenvalues at each bifurcation are σ ¼ �0.912i and
σ ¼ �0.885i for the symmetric and antisymmetric bifurcations,
respectively.

(a)

(b)

FIG. 3. Evolution towards rupture from an initially perturbed
profile for (a) n ¼ 1.7 and (b) n ¼ 1.5. Rupture occurs at a point
at time t ¼ t0 (note that t0 is not the same for each simulation).
Inset are interface profiles near the singularity rescaled according
to Eq. (2), with the dotted lines showing (a) the stable self-similar
solution for n ¼ 1.7 and (b) the profile on the periodic solution
for n ¼ 1.5 corresponding to the time τ on the period at which
fminðτÞ ¼ minξfðξ; τÞ is smallest (profiles of the numerical
solution are chosen to correspond to this point in the periodic
orbit also). In each case, the scaled behavior asymptotes to the
stable steady state of Eq. (3) for n ¼ 1.7 and the periodic orbit for
n ¼ 1.5 (see Fig. 4).
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f ¼ Qαf̂; ξ ¼ Qβξ̂þ
Z

τ

0

Pðτ̂0Þdτ̂0;

τ ¼
Z

τ̂

0

Qðτ̂0Þdτ̂0: ð6Þ

In Fig. 4, we plot the results of computations of Eq. (5)
for n ¼ 1.5, transformed to solutions of Eq. (3) via Eq. (6),
starting with a generic (asymmetric) initial condition, and
running until it is clear that a periodic orbit has developed.
This provides numerical confirmation that stable periodic
solutions to Eq. (3) do exist. We find that the development
of a periodic orbit is sometimes prevented by rupture
occurring away from the origin in Eq. (5); this is particu-
larly dependent on the initial condition and becomes harder
to avoid for either n closer to the Hopf bifurcation structure
or small values of n. Of particular note in Fig. 4 is that the
periodic orbit is asymmetric, and it exhibits oscillations that
advect outward from the minimum of f to the far field.
These oscillations correspond to the cascade of oscillations,
seen in Fig. 3, that are asymptotically fixed in unscaled
space as t → t0.
A periodic orbit in self-similar coordinates implies that

the rupture of the film occurs in a discretely, rather than a
continuously, self-similar fashion; self-similarity of profiles
only holds at discrete times t1; t2;…, approaching the
rupture time t0 geometrically; if T is the period of the
orbit, then tNþ1=tN ¼ e−T . Such behavior has been referred
to as discrete self-similarity [27] and linked to the existence
of periodic orbits in scaled coordinates; the results in this
Letter comprise the first explicit computation of such
periodic orbits [28]. We may understand the outward
propagation of peaks and troughs in the solutions to
Eq. (3) in the scaled coordinates as the creation of “drops”
and necks between drops of geometrically shrinking scale

in solutions to the unscaled problem (1), thus leading to
fractal-like profiles at rupture [as seen in Fig. 3(b)].
The geometric factor in question depends both on α, β

and on T. Suppose the maxima h1; h2;… are located at
distances d1; d2;… from x0 (with dN → 0 as N → ∞).
Successive maxima correspond to the same maximum in
ðξ; fÞ at scaled times τ and τ þ T. Using h ¼ e−ατf
and x − x0 ¼ e−βτξ, we deduce dNþ1=dN ¼ e−βT;
hNþ1=hN ¼ e−αT . The period observed for n ¼ 1.5 is
T ≈ 6.1, while the periods at the symmetric/asymmetric
Hopf bifurcations are 2π=0.912 ≈ 6.9 and 2π=0.885 ≈ 7.1,
respectively.
Recently, the transition from continuous to discrete and

then chaotic self-similar dynamics has been observed in the
context of slip instabilities in elasticity—in particular,
simulations of the frictional sliding dynamics of two elastic
bodies in contact [29], in which there is a series of Hopf
bifurcations on the branch of (self-similar) steady states. As
far as we are aware, Eq. (1) is the first model in hydro-
dynamics in which a periodic orbit in self-similar variables
has been observed. Our future aim is to systematically
compute solution branches from the Hopf bifurcations.
While speculative at this point, one possibility is that on
such branches there may be additional bifurcations to
quasiperiodic solutions, and the system may become
chaotic (via, e.g., a Ruelle-Takens-Newhouse route) as n
decreases. For n ¼ 1 (see Fig. 5), a cascade of satellite
drops of successively smaller sizes is observed. However, at
the spaces between satellites, new cascades of subsatellites
develop. In between subsatellites at the same cascade,
subsubsatellites develop, etc. The result resembles a fractal-
like structure. The minimum height hmin does not follow (or
oscillate around) a predicatable power law, since the
position where it is reached keeps jumping from one
cascade of (sub)satellites to another. We do not study this
process in detail here, but present it to demonstrate the
complexity that develops as n is decreased.(a) (b)

FIG. 4. Periodic solutions to Eq. (3), for n ¼ 1.5: (a) Minimum
scaled thickness fminðτÞ vs logarithmic time τ. (b) Solution
profiles over one period at the points marked in (a) (τ increasing
from top to bottom). The profiles show oscillations with local
maxima and minima that advect from the minimum to the
far field.

(a) (b)

FIG. 5. (a) The development of satellite droplet structure for
n ¼ 1, at a late time t0 (inset is the profile where the film is
thinnest, showing further subsatellites). (b) The minimum film
thickness as a function of time before t0; the observable “kinks”
are times at which the position at which minimum thickness is
attained changes.
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As Supplemental Material [25], we include more details
on linear stability and numerical methods.
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