The interaction of social and perceivable causal factors in shaping 'over-imitation'

Emily Burdett, Nicola McGuigan, Rachel Harrison and Andrew Whiten

Author post-print (accepted) deposited by Coventry University's Repository

Original citation & hyperlink:

Burdett, E. R., McGuigan, N., Harrison, R., & Whiten, A. (2018). The interaction of social and perceivable causal factors in shaping 'over-imitation'. *Cognitive Development*, *47*, 8-18. <u>https://dx.doi.org/10.1016/j.cogdev.2018.02.001</u>

ISSN 0885-2014

Publisher: Elsevier

NOTICE: this is the author's version of a work that was accepted for publication in *Cognitive Development*. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in *Cognitive Development*, Vol 47 (2018) pp. 8-18

© 2017, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.

This document is the author's post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it.

1	
2	The interaction of social and perceivable causal factors in shaping 'over-imitation'
3	
4	Emily R. R. Burdett ^{1,2,3} , Nicola McGuigan ⁴ , Rachel Harrison ^{1, 5} , and *Andrew Whiten ¹
5 6	¹ Centre for Social Learning and Cognitive Evolution, School of Psychology and Neuroscience, University of St Andrews, South Street, St Andrews, UK KY16 9JP
7 8	² Brain, Belief, and Behaviour Lab; Centre for Advances in Behavioural Science, Priory Street, Coventry, UK CV1 5FB
9	³ Institute of Cognitive and Evolutionary Anthropology, University of Oxford, Oxford, UK OX2 6PN
10	⁴ School of Life Sciences, Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS
11 12	⁵ School of Psychology, University of Birmingham, Hills Building, Edgbaston Park Rd., Birmingham, UK B15 2TT
13	
14	*Corresponding author: <u>aw2@st-andrews.ac.uk</u>
15	Email addresses: ac5944@coventry.ac.uk (E. R. R. Burdett), N.McGuigan@hw.ac.uk (N. McGuigan),
16	R.Harrison.1@bham.ac.uk (R. Harrison), aw2@st-andrews.ac.uk (A. Whiten)
17 18 19 20 21	Author Note: Emily R. R. Burdett and Rachel Harrison conducted this research while at the University of St Andrews. ERRB is now at the Centre for Advances in Behavioural Science, Coventry University and the Institute of Cognitive and Evolutionary Anthropology, University of Oxford, and RH is now at School of Psychology, University of Birmingham.
22	
23	
24	
25	
26	
27	
28	
29	
30	

Abstract

32	Over-imitation has become a well-documented phenomenon. However there is evidence that both
33	social and visible, physically causal factors can influence the occurrence of over-imitation in children.
34	Here we explore the interplay between these two factors, manipulating both task opacity and social
35	information. Four- to 7-year-old children were given either a causally opaque or transparent box,
36	before which they experienced either (1) a condition where they witnessed a taught, knowledgeable
37	person demonstrate an inefficient method and an untaught model demonstrate a more efficient
38	method; or (2) a baseline condition where they witnessed efficient and inefficient methods
39	performed by two untaught models. Results showed that the level of imitation increased with
40	greater task opacity and when children received social information about knowledgeability
41	consequent on teaching, but only for 6- to 7-year-olds. The findings show that children are
42	selectively attuned to both causal and social factors when learning new cultural knowledge.
43	Keywords: over-imitation, selective learning, cultural learning, social learning
44	
45	
46	
47	
17	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	

- 58 Highlights:
- Most over-imitation studies employ transparent artefacts yet opacity typifies real world
 objects
- Over-imitation was greater when children learned about an opaque rather than
 transparent artefact
- Over-imitation was greater for a model seen to be taught a skill than a naïve model
- These effects combined to elicit over-imitation despite seeing a more efficient model
- All such effects were evident in children aged 6-7 years but not in 4-5-year-olds

- / 1

- -

- -

The interaction of social and perceivable causal factors in shaping 'over-imitation'

88 1.1 Introduction

89 Compared to any other species, humans have an enormous propensity to acquire cultural 90 knowledge (Henrich, 2015; Pagel, 2013). This ability is commonly attributed, at least in part, to an early-developing tendency for high fidelity imitation of the behaviors, skills, and actions of others 91 92 (Dean, Kendal, Schapiro, Thierry, & Laland, 2012; Schillinger, Mesoudi, & Lycett, 2015; Tennie, Call, & 93 Tomasello, 2009; Whiten, McGuigan, Marshall-Pescini, & Hopper, 2009). The disposition to copy 94 others has been found to extend in some contexts to children and adults imitating apparently 95 indiscriminately, extending to the copying of even visibly irrelevant or causally superfluous actions 96 (Horner & Whiten, 2005; McGuigan, Whiten, Flynn, & Horner, 2007). It has been suggested that this 97 phenomenon, dubbed "over-imitation" (Lyons, Young, & Keil, 2007) can, in normal daily life, 98 facilitate the spread of cultural knowledge, particularly when skills pertain to tasks that are causally 99 opaque or too difficult for a naive learner to learn on his or her own (Lyons, Damrosch, Lin, Macris, & 100 Keil, 2011; Lyons et al., 2007; Nielsen, Mushin, Tomaselli, & Whiten, 2014), or to behaviors that are 101 associated with rituals or other normative conventions (Herrmann, Legare, Harris, & Whitehouse, 102 2013; Kapitány & Nielsen, 2015, 2017; Keupp, Behne, & Rakoczy, 2013; Keupp, Behne, Zachow, 103 Kasbohm, & Rakoczy, 2015; Legare, Wen, Herrmann, & Whitehouse, 2015; Watson-Jones, Legare, 104 Whitehouse, & Clegg, 2014; Wilks, Kapitány, & Nielsen, 2016). However, a number of other studies 105 have shown that children and adults are not necessarily indiscriminate imitators; in some contexts 106 they may be selective instead (see for example, Gergely, Bekkering, & Kiraly, 2002; Hilbrink, 107 Sakkalou, Ellis-Davies, Fowler, & Gattis, 2013; Nielsen, 2006). Identifying the potentially interacting 108 factors that modulate over-imitation is accordingly important to understanding how children learn 109 new skills and cultural knowledge from others. In this spirit the present study examines the limits 110 and selectivity of children's motivational tendency to copy others, exploring a potential interplay 111 between social and causal factors that may interact in underpinning over-imitation.

In many over-imitation experiments children and adults watch a model perform several actions, 112 113 some causally relevant and some visibly causally irrelevant. In an initial study, Horner and Whiten 114 (2005) showed children either an opaque or transparent puzzle box and performed a series of 115 causally irrelevant and relevant actions on it before extracting a reward from the box. Regardless of 116 whether the puzzle box was opaque or transparent (so in the latter, causal irrelevance appeared highly visible), children copied the irrelevant actions. What Lyons and colleagues later called "over-117 imitation", became identified as a pervasive tendency to imitate a series of actions even in the face 118 119 of visual information that these actions have no causal relevance to the task solution (Horner &

120 Whiten, 2005; Lyons et al., 2007). Later research has therefore concentrated much on the 121 transparent versions of such tasks, showing that children may continue to copy irrelevant actions 122 even under time constraints (Lyons et al., 2011; Lyons et al., 2007), even when they are given the 123 opportunity of prior experience with how the task works (Nielsen & Tomaselli, 2010), and even 124 when they have been schooled that irrelevant actions are 'silly and unnecessary' (Lyons et al., 2011; 125 Lyons et al., 2007). Such effects have further been documented after children's personal exploration 126 of tasks, despite an irrelevant action occurring after retrieving an award (Wood, Kendal, & Flynn, 127 2013a), with children who live in quite different cultures (Berl & Hewlett, 2015; Nielsen, Mushin, et 128 al., 2014; Nielsen & Tomaselli, 2010), and despite the absence of any social interaction or audience 129 (Whiten et al., 2016).

130 A large part of this literature has thus focused on investigating the motivation to over-imitate in 131 the kinds of transparent conditions that first revealed the phenomenon so starkly (Berl & Hewlett, 132 2015; Brugger, Lariviere, Mumme, & Bushnell, 2007; Carr, Kendal, & Flynn, 2015; Chudek, Baron, & 133 Birch, 2016; Flynn, 2008; Flynn & Smith, 2012; Freier, Cooper, & Mareschal, 2015; Frick, Clément, & 134 Gruber, 2017; Hoehl, Zettersten, Schleihauf, Grätz, & Pauen, 2014; Horner & Whiten, 2005; 135 Kenward, 2012; Kenward, Karlsson, & Persson, 2011; Keupp, Bancken, Schillmöller, Rakoczy, & 136 Behne, 2016; Keupp et al., 2015; Lucas et al., 2017; Lyons et al., 2011; Lyons et al., 2007; Marsh, 137 Pearson, Ropar, & Hamilton, 2013; Marsh, Ropar, & Hamilton, 2014; McGuigan, 2012, 2013; McGuigan & Burgess, 2017; McGuigan, Gladstone, & Cook, 2012; McGuigan, Makinson, & Whiten, 138 139 2011; McGuigan & Whiten, 2009; Moraru, Gomez, & McGuigan, 2016; Nielsen, 2013; Ronfard, Was, 140 & Harris, 2016; Schleihauf, Graetz, Pauen, & Hoehl, 2017; Simpson & Riggs, 2011; Taniguchi & 141 Sanefuji, 2017; Vivanti, Hocking, Fanning, & Dissanayake, 2017; Whiten et al., 2016; Wood et al., 142 2016; Wood, Kendal, & Flynn, 2012; Wood et al., 2013a). Less work has explored what is more likely 143 to be the natural functional context of over-imitation, the everyday world of largely opaque (and 144 moreover causally opaque) objects (Buchsbaum, Gopnik, Griffiths, & Shafto, 2011; Clay & Tennie, 145 2017; Gardiner, 2014; Gruber, Deschenaux, Frick, & Clement, 2017; Herrmann et al., 2013; Marno & 146 Csibra, 2015; McGuigan et al., 2007; Nielsen, Cucchiaro, & Mohamedally, 2012; Nielsen & Hudry, 147 2010; Nielsen, Moore, & Mohamedally, 2012; Nielsen, Mushin, et al., 2014; Nielsen, Tomaselli, Mushin, & Whiten, 2014; Subiaul, Krajkowski, Price, & Etz, 2015; Watson-Jones et al., 2014). 148

The world is full of such complex cultural artefacts and tasks that are physically and causally opaque, too difficult for a naïve learner to master on his or her own. One explanation for the prevalence of over-imitation in experimental, transparent contexts in our species is that humans developed this tendency as an adaptive strategy to acquire complex technological skills in contexts

of causal opacity, by copying the methods shown by experienced others as closely as possible (Lyons
et al., 2011; Lyons et al., 2007; Nielsen, Mushin, et al., 2014; Whiten et al., 2009). From this
perspective over-imitation can result from a pragmatic "rule of thumb" to imitate in a "copy-all,
refine later" functional strategy (Horner & Whiten, 2005). However, more research is required to
understand the motivations and flexibility behind imitating in the kinds of opaque conditions so
common in the real world. Accordingly we suggest that the context of social learning in relation to
opaque as well as transparent objects now merits more attention, and further research.

160 Based on prior work in transparent conditions where the irrelevancy of actions is visibly 161 apparent, we know that over-imitation can be limited or modulated by several factors. For example, 162 a dimunition of over-imitation can occur based on either social or causal cues. When children are presented with causal information via one model who demonstrates a more efficient method and 163 164 another model who demonstrates an inefficient one (McGuigan & Robertson, 2015; Nielsen & Blank, 165 2011; Schleihauf et al., 2017), or when there is visual confirmation that the actions are superfluous 166 (Gardiner, 2014), they are less likely to over-imitate, instead tending to adopt the relatively efficient 167 method. Additional research shows that children are sensitive to the relevance of the 168 communicative intent of others, and over-imitation may decrease when children receive a salient 169 social cue from a model that only the casually relevant elements of the demonstration need to be 170 copied (Brugger et al., 2007; Buchsbaum et al., 2011; Gergely et al., 2002; Nielsen, 2006; Southgate, 171 Chevallier, & Csibra, 2009; Vredenburgh, Kushnir, & Casasola, 2015).

Other social factors have been shown to encourage over-imitation. More specifically, studies 172 173 demonstrate that children are more likely to imitate irrelevant actions when they perceive ostensive 174 or pedagogical cues that the demonstrator is going to communicate relevant information (Gergely & 175 Csibra, 2005) and that this is the way an action "ought to be done" (Bonawitz et al., 2011; Herrmann 176 et al., 2013; Kapitány & Nielsen, 2015, 2017; Kenward et al., 2011; Keupp et al., 2013; Keupp et al., 177 2015; Watson-Jones et al., 2014). More normative framing (e.g., doing something that "ought to be 178 done") and goal demoted actions (e.g., actions with no known goal) increases children's imitative 179 fidelity compared to instrumental framing (e.g., doing something "to get prizes") and tasks with a 180 clear goal (e.g., retrieving prizes or putting an object in a box) (Clegg & Legare, 2016b; Legare et al., 181 2015; Nielsen, Kapitány, & Elkins, 2015; Wilks et al., 2016).

Despite this burgeoning literature examining various social and causal factors (see supplementary Table S1 for a listing of 78 experimental studies that explore a variety of physical and causal factors), no previous work has directly tested the potential interplay between task opacity and social and causal factors. Examining this interplay is needed to shed light on the nature and

186 functions of over-imitation and the kind of flexible decision making that shapes it. Accordingly, in 187 the present study we explored, for what is to our knowledge the first time, the interplay between the physically causal factors and the social factors that underpin over-imitation. In a 2 x 2 design, 188 189 participants in four conditions watched two (live) adult models, in a counterbalanced sequence, 190 perform either an inefficient method (incorporating causally-unnecessary elements) or an efficient 191 method (lacking the causally-unnecessary element). In each of the four conditions we held the one 192 inefficient model/one efficient model design constant while we manipulated two factors that may 193 be predicted to increase or decrease the likelihood of over-imitation: first, whether children 194 experienced a transparent or opaque puzzle box, and second whether children received social 195 information (in combination with experiencing a transparent or opaque puzzle box) regarding which 196 model was more knowledgeable (see Table 1). For the latter, we designed a social information 197 condition where the 'inefficient' model was taught, in the presence of the participant, to use the 198 inefficient method by another person. This design enabled us to explore whether witnessing the 199 teaching episode would be sufficiently influential to override the greater efficiency of the alternative 200 method modelled by the naïve demonstrator. We tested participants from two different age groups 201 (4- and 5-year-olds and 6- and 7-year-olds), as previous work has shown that over-imitation tends to 202 increase with age (McGuigan & Graham, 2010; McGuigan et al., 2007).

203

[Table 1 here]

204 We predicted that increased physical causal opacity would drive the tendency to copy more 205 irrelevant actions, and that this tendency would be further amplified with the addition of social 206 information that indicated that the inefficient model was demonstrating the "correct" approach (i.e., 207 when the inefficient model had received teaching). Because prior work has shown a relative 208 dimunition of copying of irrelevant actions when the task is framed as an instrumental task (Legare 209 et al., 2015) and when one of two models demonstrates a more efficient action, we predicted less 210 copying of irrelevant actions in the transparent baseline condition (McGuigan & Robertson, 2015; 211 Nielsen & Blank, 2011). More specifically, we predicted that the participants in the baseline 212 conditions, who were acting without social information, would tend to omit the causally irrelevant 213 actions, with the greatest degree of omission (and lowest levels of over-imitation across conditions) occurring in the transparent box condition where the irrelevant actions were most obviously 214 215 redundant (i.e., no physical causal opacity or social information). In the Taught conditions, noting 216 studies showing that pedagogical cues and normative framing increase copying of irrelevant actions 217 (Herrmann et al., 2013; Kapitány & Nielsen, 2015, 2017; Keupp et al., 2013; Keupp et al., 2015; 218 Legare et al., 2015; Watson-Jones et al., 2014; Wilks et al., 2016), we predicted that the presence of

219 social information would lead to an increase in the level of over-imitation from that witnessed at 220 baseline irrespective of box transparency, with the greatest increase (and highest levels of over-221 imitation across conditions) occurring in the opaque box condition where the lack of causality of the 222 irrelevant actions was less apparent, potentially leading to greater reliance on the social information 223 provided (i.e., physical causal opacity plus social information). Thus in summary, copying of 224 irrelevant actions was predicted to be lowest in the Transparent - Baseline condition but increase 225 across the series: Transparent - Taught, Opaque - Baseline, and Opaque - Taught. Finally, because 226 prior work has shown that older children are more likely to imitate irrelevant actions (McGuigan & 227 Graham, 2010; McGuigan et al., 2007), we predicted that older children would copy more irrelevant 228 actions compared to younger children.

229

2.1 Method

230 2.1.1 Participants

231 Two age groups were recruited for each of four experimental conditions: a 4-to-5-year-old group (n232 = 83, 41 females, 42 males; mean age = 59 months, SD = 7.09 months, range 48-72 months) and a 6-233 to-7-year-old group (n = 82, 48 females, 34 males; mean age = 83 months, SD = 6.96 months, range 234 72 - 106 months). Forty children (20 4-to-5-year-olds and 20 6-to-7-year-olds) were assigned to a 235 Transparent box - Baseline condition, 46 children (23 4-to-5-year-olds and 23 6-to-7-year-olds) to a 236 Transparent - Taught condition, 39 children (19 4-to-5-year-olds and 20 6-to-7-year-olds) to an 237 Opaque - Baseline condition, and 40 children (21 4-to-5-year-olds and 19 6-to-7-year-olds) to an 238 *Opaque - Taught* condition.

239 2.1.2 Apparatus

240 We used the same two cube-shaped boxes from the original study of Horner and Whiten (2005, see Fig. 1). These measured 20 cm on each side and were identical in features except that one box was 241 242 opaque and the other was transparent. Both boxes displayed two 2 cm x 2 cm holes; one in the front of the box and the other on top, each obstructed by different covers. To access the top hole, two 243 bolts had to be slid aside, through guides holding them in place. The hole in the front could be 244 245 accessed once a small hatch-door was either slid aside or opened as a hinged flap. Only the front 246 hole allowed access to a prize (a small toy attached to a metallic paperclip) which lay in a small 247 opaque tube, initially covered by the door at the front. A plastic stick-tool, 22 cm long with a 248 magnetic tip, was available to be inserted through the front hole to magnetically seize the prize 249 hidden in the tube. If the tool was inserted into the top hole, it could not reach the opaque tube,

- 250 instead hitting a partition that divided the box horizontally. Only actions on the front hole were
- causally relevant for retrieving the prize (figure 1).
- 252

[Figure 1 here]

253 2.1.3 Design

Children in each age group were randomly assigned to one of four conditions in a between
participants design. In two *Baseline* conditions (*Transparent* versus *Opaque* boxes), half of the
children witnessed an unfamiliar adult model perform both causally relevant and causally *irrelevant*actions (thus overall, an inefficient method), and then a second unfamiliar adult model perform only
the causally relevant actions (efficient method: procedural details and experimenter scripts are
described further below). Half the children saw the same two models in the opposite order.

The *Taught* conditions were likewise completed with either the opaque or transparent box. The experimenter declared they would teach one of the two models how to open the puzzle box and did so using the inefficient method, with the accompanying audible cues of tapping the stick tool inside the box. All models in all conditions then said, "I think this is how to get the prize out," and in turn performed either the efficient or inefficient method allocated to them, in counterbalanced order.

266 2.1.4 Procedure

267 All children were tested individually in a large gazebo in a quiet area of Edinburgh Zoo. Children and 268 their parents were invited to participate and if they agreed, the child was led into the gazebo and 269 seated at a small table across from the experimenter. The experimenter then invited the child to 270 pick out a prize (e.g., a small plastic monkey) that they would like to earn. The experimenter told the 271 child, "Here is the puzzle box. In a little while I'm going to put your prize inside the box. But, the box 272 is very tricky. So, I'm going to see if I can find two people in the zoo and see if they can come help 273 you figure out the box. If you sit here, I'll go see if I can find some helpers. I'll be right back." The 274 box was placed under the table and out of sight before the experimenter left the gazebo. Two 275 confederates of the experimenter were waiting outside the testing area and were brought inside 276 and asked to sit on either side of the child, where they then acted as the two alternative models in 277 the experiment.

After the confederates and child were seated, the experimenter said, "Thank you - all of you - for helping me today. My name is [experimenter's name]. What are your names? Great. Now, [Child's name] gets to try and get a prize out of a box that I have brought in, but I want both of you

[models 1 and 2] to help [child's name] by showing her/him what you would do to try to get the
prize out. Before we get started, I want to show you this stick. This stick here has sticky stuff on it
that can pick up a prize. See, like this!" The experimenter then showed the child how a magnetized
end of a stick could pick up the prize (attached to the metal paper clip).

285 Following this instruction, children in the pedagogical condition were told, "Now, I'm going 286 to teach [one of the models] how to get the prize out. While I'm doing this, I'm going to put up the curtain so you and [other model] cannot peek. We'll be back in a minute." The experimenter pulled 287 288 up a poster-board screen that hid the puzzle box so that the child and the other model could not see 289 the puzzle box, but the screen was short enough that the child and other model could see both the 290 taught model and experimenter. We used a screen to cover the puzzle box so that the child could 291 appreciate that one model was being taught, but the child and the other model would have only an 292 obscured view of what the experimenter actually taught the model. We did this so that the child 293 understood that a model was being taught information without seeing the given method. This was 294 important so that when each model demonstrated their method, the child would see each method 295 demonstrated only once from each model. The experimenter taught both the irrelevant and relevant actions to the model by saying, "This is how to get the prize out" and then performed the 296 297 actions loudly, striking the stick against the platform inside the box, so that the child could hear what 298 was being done. After teaching this model, the experimenter took away the screen. The baseline 299 condition did not have this added pedagogical component.

300 Both conditions then proceeded in exactly the same way. The experimenter acknowledged both 301 models and said, "Before I put the prize in and before I give this box to [child's name] so she/he can 302 have a go at getting the prize, I wonder if each of you could show [child's name] how you think you 303 get the prize out." Children watched as one model demonstrated the efficient method and the 304 other model demonstrated the inefficient method (in neither case extracting the prize, which was 305 still held by the experimenter). 'Causally relevant' actions were opening the door on the front of the 306 box, inserting the magnetic tipped tool into the box, and thence retrieving the prize. 'Causally 307 irrelevant' actions involved using the stick tool to displace the bolts to reveal the top hole, then 308 inserting the tool and tapping it down on the inner partition three times. The actions focused on the 309 top hole were causally irrelevant but were only visible in the transparent box, where the role of the 310 inner partition could be seen.

Models were not seen to extract the prize, which at this stage was still held by the
experimenter, because we did not want children to see that both methods would be successful.
After each model's demonstration, the box was reset (bolts put back in and front door closed) by the

314 experimenter and out of sight of the child. After the demonstrations were complete, the

experimenter thanked both models for their help and both models left. At this point the

316 experimenter asked the child to turn around and cover his or her eyes so that the experimenter

317 could put the prize into the puzzle box. The experimenter then said, "Ok, you can turn around now.

318 Now you can try and get the prize out."

Following the actions, the experimenter then asked, "could you tell me why you decided to get the prize out this way?" and pointed to the actions that the child used.

321 2.1.5 Coding

322 The experimenter live recorded the number of causally irrelevant actions performed 323 (number of bolt removals and number of taps on the inner partition of the box), the number of 324 causally relevant actions performed (opening the door on the front of the box, and extracting the 325 reward?), and whether the child repeated the efficient or/or inefficient actions. All actions were 326 mutually exclusive and the design of the box was such that live recording of children's responses was 327 unambiguous. This coding was recorded on a check sheet at the time of the child's actions. To check 328 the reliability of such coding, 30 random videos across conditions were chosen to compare to these 329 check sheets. All videos and sheets matched with 100% reliability.

330 We also coded an "irrelevance index." This index ranged from 0 to 6. Children were awarded one point for each bolt removed (maximum 2) and one point for each tap, up to four. Only 331 12 children tapped more than three times; these children tapped between 5-8 times and were 332 333 spread across all four conditions; accordingly we judged that capping scores in this way was the 334 most apt approach. A score of 0 thus indicated that children did not perform any irrelevant action. 335 A score of 5 was given to children who reproduced the irrelevant actions exactly as in the 336 demonstration by the inefficient model (removing two bolts and tapping three times) and a score of 337 6 was given to children who performed even more (e.g., tapping more than three times).

338

3.1 Results

All children successfully extracted the reward. We first used binomial tests to establish whether children in each age group were more likely to adopt the method used by either the efficient model or the inefficient model in each of the four conditions. Here we used strict coding where any use of irrelevant actions was coded as that child adopting the inefficient method. The analyses indicated that the older children were significantly more likely to copy the efficient model than the inefficient model in both *Transparent* box conditions (proportion of choosing efficient model in *Baseline* (0.8) and *Taught (0.74)* against a chance score of .5), *ps* < 0.02, see Fig. 2. This pattern was reversed in

the *Opaque-Taught* condition where the older children were now significantly more likely to copy the inefficient model rather than the efficient model (a proportion of 0.74 inefficient against a chance a score of 0.5, p = 0.03). In the *Opaque - Baseline* condition, older children's responses were at chance (0.5), p > 0.05. In contrast to the pattern of responding witnessed in the older children, the responses of the younger children differed from chance only in the *Transparent - Taught* condition, where the younger children were significantly more likely to copy the efficient model over the inefficient model, in a proportion of 0.69 against a chance score of 0.5, p = 0.046.

[Figure 2 here]

We further tested whether children's responses differed significantly across conditions and according to age. As a more sensitive measure, we examined children's responses using an "irrelevance index". This index ranged from 0 to 6, with a score of 0 indicating that children did not perform any irrelevant action to a score of 6 indicating that children performed all of the irrelevant actions.

We ran a between subjects ANOVA to examine whether there was an effect of age group (4to-5-year-olds or 6-to-7-year-olds) and condition (*Transparent - Baseline, Transparent - Taught, Opaque - Baseline,* or *Opaque - Taught*) on the participant's irrelevant action score. This analysis revealed that there was a significant main effect of condition, F(3, 157) = 3.024, p = 0.031, and an interaction between age group and condition, F(3, 157) = 18.03, p = 0.007, Fig. 3. There was no main effect for age group, p = 0.20.

365 Post-hoc comparisons using Least Significant Differences revealed that there were significant 366 differences in the number of irrelevant actions performed across conditions in only the older group 367 of children (6-7 years). As predicted, the level of imitation differed according to whether the box 368 was Opaque or Transparent. Across Baseline conditions, older children reproduced more irrelevant 369 actions in the Opaque box condition, M = 2.3, SD = 0.46, compared to the Transparent box condition, 370 M = 0.5, SD = 0.46, p = 0.007. Level of imitation also increased based on the social information 371 compared to other conditions. Older children also used more irrelevant actions (evidence that they 372 were copying the taught-inefficient model) in the Opaque - Taught condition, M = 3.21, SD = .47, 373 than in the Transparent - Baseline condition, M = 0.5, SD = 0.46, p = 0.0001, and the Transparent -374 Taught condition, M = 1.13, SD = 0.43, p = 0.002. However there were no significant differences in 375 older children's responses between Baseline versus Taught conditions. Specifically, there were no 376 differences in level of imitation in either the Opaque box, Baseline, M = 2.30, SD = 0.46, Taught, M =

3.21, SD = 0.48, p = 0.25; or the Transparent box, Baseline, M = 0.5, SD = 0.46, Taught, M = 1.13, SD =
0.43, p = 0.25.

- A further comparison showed one other difference but between age groups. In the *Opaque* - *Taught* condition, there were significant differences in the adoption of irrelevant actions between age groups, with the older children reproducing significantly more irrelevant actions, M = 3.21, SD =2.37, than the younger group, M = 1.38, SD = 1.98, p = 0.006.
- 383

384

[Figure 3 here]

4.1 Discussion

385 We believe the present study is the most detailed exploration to date of an interplay between 386 children's recognition of social and physically causal factors underpinning and modulating their 387 tendency for over-imitation. We explored factors modulating children's responses through a 2 x 2 388 experimental design that manipulated both the challenge of the task in terms of its opacity versus 389 transparency, and the type of social information in the form of taught information transmitted to 390 the model. We predicted that both task opacity and social information would influence the rate of 391 over-imitation. In line with this prediction we found that the copying of irrelevant actions increased 392 with the availability of social information (in this case, concerning an observed pedagogic 393 interaction) and with the physical opacity of the task, but only for older children. Results 394 demonstrate that children can be flexible in their decision-making regarding whether to copy 395 irrelevant actions or not. Below we first discuss the relationship of imitation and task opacity and 396 then consider the influence of social information on imitation.

397 4.1.1 Acquiring skills in a world of opaque and transparent objects

The world is full of complex cultural artefacts and skills that require time and effort for mastery. It 398 399 has been hypothesized that in order to learn how to use complex artefacts or to acquire related 400 skills, humans developed a tendency to over-imitate as an adaptive strategy (Lyons et al., 2011; 401 Lyons et al., 2007; Nielsen, Mushin, et al., 2014; Whiten et al., 2009). This is because many artefacts 402 in the human world are quite causally opaque, and typically physically opaque too. Copying what 403 experienced others, like adults, do with them is thus a very helpful practice. In this real world 404 context, the label 'over-imitation' is arguably inaccurate; an expression more like 'strong imitation' 405 might be more apt. The phenomenon only really becomes 'over' imitation in the manipulated world 406 of experiments that incorporate unnecessary actions into physically transparent contexts.

407 Although it may thus make functional sense to copy faithfully in opaque contexts where the 408 perceptual evidence is lacking, the strength of the phenomenon of "over-imitation" in transparent 409 contexts has remained a puzzle. Over-imitation in a transparent context starkly reveals that 410 children may seem to follow an 'imitation imperative' despite the transparency of what they can see 411 indicating that certain acts of the model are causally unnecessary. A suite of studies has shown that 412 children will over-imitate when presented with a transparent artefact in a variety of circumstances 413 including under time-limited pressure (Lyons et al., 2011; Lyons et al., 2007), prior experience 414 (Nielsen & Tomaselli, 2010), when encouraged to recognize that irrelevant actions are "silly" (Lyons 415 et al., 2011; Lyons et al., 2007), when the irrelevant action occurs after retrieving an award (Wood et 416 al., 2013a), and when in a context where there is no direct social interaction with the model (Whiten 417 et al. 2016). This led Lyons et al. (2017) to infer that over-imitation involves 'automatic encoding' of 418 the model's actions as causal.

419 However, new work has shown that children have some flexibility and can be selective when 420 copying. The above studies were presented with only one model demonstrating an action. When in 421 our experiment we included a second model who omitted the unnecessary action with the 422 transparent box, the modal response in both baseline and taught conditions, and in both age groups, 423 was to copy this model and thus not to display over-imitation (left half of Fig. 2). This suggests that 424 over-imitation is not automatic, insofar as children across this age range are generally quick to 425 recognize, through the more efficient actions of one model and the transparency of what happens in 426 the transparent box, that certain actions are not worth copying, even though they do not see 427 whether the approaches of either model are successful or not. This suggests that although over-428 imitation can be a robust phenomenon in one-model contexts, it is at the same time fragile in being 429 undermined by contrary information derived from the actions of others. This conclusion is consistent 430 with the results of some other experiments that employed two models that differed in displaying necessary and unnecessary acts (Hoehl et al., 2014; McGuigan & Robertson, 2015; Nielsen & Blank, 431 432 2011), or otherwise showed that over-imitation can be flexibly, and arguably rationally, adjusted to 433 contextual variables (Keupp et al., 2015, 2016). Nevertheless, we must note that over-imitation was 434 still displayed in the two-model and transparent artefact conditions; around as many as one third of 435 the children copied what the inefficient model did (33% in the Transparent - Baseline and 28% in the 436 Transparent - Taught conditions; left half of results in Fig. 2).

The modal tendency not to copy irrelevant actions in the transparent conditions was not
replicated in the opaque conditions, at least for the older age group, where the adoption of
unnecessary actions was significantly greater in opaque-baseline than transparent-baseline

440 conditions, and in opaque-taught than transparent-taught conditions (Fig. 3). This effect was 441 strongest in the taught condition where 6- to- 7-year-olds were even prepared to copy the inefficient 442 actions of the model who had been taught, in preference to the more efficient actions shown by the 443 uninformed model, but the trend was also evident in the condition where neither model was taught. 444 The first of these two effects concerns children's appreciation of the significance of third party 445 pedagogy, which is discussed further below, but the second effect suggests that by this age, children 446 recognize that in the conditions of uncertainty created by opaque artefacts (where they cannot 447 directly see what appears causal or not, like in the transparent box), actions by adults may often be 448 worth copying even though (and indeed perhaps because) they are more elaborate and 'inefficient' 449 than the routine displayed by another adult (Figs. 2 and 3).

450 **4.1.2** The influence of social information: third party pedagogy

451 The strongest tendency to copy irrelevant actions occurred in the opaque box condition with the 452 older children, who showed a significant inclination to copy the more elaborate procedure of the 453 informed model over the more efficient approach of the uninformed model. There was thus 454 effectively a three-way interaction here between age, opacity of task (and presumably thus, 455 uncertainty) and children's perception of pedagogic information transfer to the model who then 456 performed the more elaborate, although in reality, causally unnecessary actions. The past decade of 457 research has seen a growing numbers of studies identifying how children's social learning may be 458 affected by a model's characteristics, epistemic states, and abilities, described as "selective trust" 459 (e.g., Harris, 2012) or "social learning strategies" (Price, Wood, & Whiten, 2017; Wood, Kendal, & 460 Flynn, 2013b). For example particularly in action based tasks, children are more likely to copy a 461 majority than an individual (Haun, Rekers, & Tomasello, 2012; Herrmann et al., 2013; Hu, 462 Buchsbaum, Griffiths, & Xu, 2013), and a competent over an incompetent person (DiYanni, Nini, 463 Rheel, & Livelli, 2012; Scofield, Gilpin, Pierucci, & Morgan, 2013). The present study adds to this 464 body of work by recognizing a stage at which children will also take into account when models have 465 received relevant third-party pedagogic information.

At first sight it may appear paradoxical that on the one hand, the older children were the more sophisticated, in taking into account the combination of pedagogic information transfer and task opacity in their choice of task solution, yet on the other, they performed more over-imitation, leading them to adopt the solution that was least effective because it incorporated causally unnecessary elements. The latter is consistent with earlier studies finding more over-imitation in older and more cognitively sophisticated children (and indeed in adults), not less (McGuigan et al. 2011; Nielsen & Tomasselli, 2010). We submit that in fact there is no paradox here, insofar as the

older children's 'error' arose simply because of the experimental manipulation, in which it was the
taught model who performed the irrelevant actions specifically in order to test for over-imitation on
an opaque task. In the real world, this will rarely happen; instead, an adult acting on an object or
task will normally offer a good model worth copying, because it typically reflects their mature
expertise. Indeed as we suggested above, when we focus on such a real world functionality of 'overimitation' it is not over-imitation, but should perhaps better be described with a term like 'strong' or
'habitual' imitation.

480 It is perhaps a little surprising that the response seen in the older children was not apparent 481 in the younger ones, given that the literature would expect the latter to have reached a stage where 482 they recognize distinctions between knowledge and ignorance, and even false belief (e.g., Wellman, 483 Cross, & Watson, 2001). It appears the scenario we presented was more challenging. Although 484 young children's imitation is influenced by pedagogic cues directed directly to them (Gergely & 485 Csibra, 2005), they may not understand third-party pedagogy sufficiently well; for example they may 486 not yet understand the value of taught knowledge, like being shown "the right way" to solve a 487 problem (Clegg & Legare, 2016a, 2016b; Legare et al., 2015) possibly because they do not yet have 488 so much experience in formal education. Future research could explore these alternatives.

489 Our results are based on the behavior of children living the UK. Another question for future 490 research is to examine whether children in other cultural contexts respond differently on this task 491 (Nielsen, Haun, Kartner, & Legare, 2017). Several recent studies have suggested the possibility that 492 children may interpret pedagogical cues differently (Corriveau et al., 2017; Csibra & Gergely, 2009). 493 For example, one explanation for why first generation Asian-American children compared to 494 Caucasian-American children were more likely to use an inefficient tool over an efficient one to 495 "crush a cookie", is because they interpreted the pedagogical cues normatively and the Caucasian-496 American were less inclined to do so (Corriveau et al., 2017). Even though our task was framed 497 instrumentally and is an instrumental task, children in a different cultural context with different 498 values, may interpret the pedagogical cues (e.g., "This how you get the prize out") as normative. 499 Future work could examine this cross-culturally.

500 **4.1.3 Conclusion**

High-fidelity imitation is thought important in acquiring the skills and knowledge base to acquire
complex cultural knowledge. Faithful imitation can be particularly useful for learning causally
opaque or difficult-to-acquire knowledge (Lyons et al., 2011; Lyons et al., 2007; Nielsen, Mushin, et
al., 2014). In this study we explored children's imitation in both causally transparent and opaque

- tasks, creating a test of over-imitation that could apply to both of these by incorporating causally
- 506 unnecessary elements into the demonstrations of a model the child could see was being taught what
- 507 to do. The results demonstrate that children aged 6- to- 7-years-old become selective social learners
- 508 who typically opt to preferentially copy a model they have reasons to believe is knowledgeable
- about what to do, particularly in the context of opaque tasks. Most over-imitation paradigms exploit
- 510 transparent artefacts to test for the effect, but given that in the real world children experience many
- 511 physically and causally opaque artefacts, it is important to extend methodologies to incorporate
- 512 both contexts, as we did here, along with other social factors. Further study of how other factors
- 513 contribute to the complexity of children's social-learning promises to provide insight into children's
- 514 interactions with our culturally-rich worlds.
- 515 Acknowledgments. We thank Natalia Fedorova, Sahaj Kang, and Vanessa Burgess for their help with
- data collection. This work was supported by a John Templeton Foundation grant ID 40128 to AW andK Laland.

-	\mathbf{r}	\mathbf{n}
ר	- 5	ч
-	-	-

References

540	Berl, R. E. W., & Hewlett, B. S. (2015). Cultural variation in the use of overimitation by the Aka and
541	Ngandu of the Congo Basin. <i>PLoS ONE, 10</i> (3), e0120180. doi: 10.1371/journal.pone.0120180
542	Bonawitz, E., Shafto, P., Gweon, H., Goodman, N. D., Spelke, E., & Schulz, L. (2011). The double-
543	edged sword of pedagogy: Instruction limits spontaneous exploration and discovery.
544	Cognition, 120(3), 322-330. doi: 10.1016/j.cognition.2010.10.001
545	Brugger, A., Lariviere, L. A., Mumme, D. L., & Bushnell, E. W. (2007). Doing the right thing: Infants'
546	selection of actions to imitate from observed event sequences. Child Development, 78(3),
547	806-824. doi: 10.1111/j.1467-8624.2007.01034.x
548	Buchsbaum, D., Gopnik, A., Griffiths, T. L., & Shafto, P. (2011). Children's imitation of causal action
549	sequences is influenced by statistical and pedagogical evidence. Cognition, 120(3), 331-340.
550	doi: 10.1016/j.cognition.2010.12.001
551	Carr, K., Kendal, R. L., & Flynn, E. G. (2015). Imitate or innovate? Children's innovation is influenced
552	by the efficacy of observed behaviour. <i>Cognition, 142</i> (0), 322-332. doi:
553	http://dx.doi.org/10.1016/j.cognition.2015.05.005
554	Chudek, M., Baron, A. S., & Birch, S. (2016). Unselective overimitators: The evolutionary implications
555	of children's indiscriminate copying of successful and prestigious models. Child Development,
556	<i>87</i> (3), 782-794. doi: 10.1111/cdev.12529
557	Clay, Z., & Tennie, C. (2017). Is overimitation a uniquely human phenomenon? Insights from human
558	children as compared to bonobos. <i>Child Development</i> . doi: 10.1111/cdev.12857
559	Clegg, J. M., & Legare, C. H. (2016a). A cross-cultural comparison of children's imitative flexibility.
560	Developmental Psychology, 52(9), 1435-1444. doi: 10.1037/dev0000131
561	Clegg, J. M., & Legare, C. H. (2016b). Instrumental and conventional interpretations of behavior are
562	associated with distinct outcomes in early childhood. <i>Child Development, 87</i> (2), 527-542.
563	doi: 10.1111/cdev.12472
564	Corriveau, K. H., DiYanni, C. J., Clegg, J. M., Min, G., Chin, J., & Nasrini, J. (2017). Cultural differences
565	in the imitation and transmission of inefficient actions. <i>Journal of Experimental Child</i>
566	<i>Psychology, 161,</i> 1-18. doi: 10.1016/j.jecp.2017.03.002
567 568	Csibra, G., & Gergely, G. (2009). Natural pedagogy. <i>Trends in Cognitive Sciences, 13</i> (4), 148-153. doi: http://dv.doi.org/10.1016/j.tics.2000.01.005
569	http://dx.doi.org/10.1016/j.tics.2009.01.005 Dean, L. G., Kendal, R. L., Schapiro, S. J., Thierry, B., & Laland, K. N. (2012). Identification of the social
570	and cognitive processes underlying human cumulative culture. <i>Science</i> , <i>335</i> (6072), 1114-
571	1118. doi: 10.1126/science.1213969
572	DiYanni, C., Nini, D., Rheel, W., & Livelli, A. (2012). 'I won't trust you if I think you're trying to deceive
573	me': Relations between selective trust, theory of mind, and imitation in early childhood.
574	<i>Journal of Cognition and Development, 13</i> (3), 354-371. doi: 10.1080/15248372.2011.590462
575	Flynn, E. (2008). Investigating children as cultural magnets: do young children transmit redundant
576	information along diffusion chains? <i>Philosophical Transactions of the Royal Society B:</i>
577	Biological Sciences, 363(1509), 3541-3551.
578	Flynn, E., & Smith, K. (2012). Investigating the mechanisms of cultural acquisition: How pervasive is
579	overimitation in adults? . Social psychology, 43(4), 185-195. doi: 10.1027/1864-
580	9335/a000119
581	Freier, L., Cooper, R. P., & Mareschal, D. (2015). The planning and execution of natural sequential
582	actions in the preschool years. Cognition, 144, 58-66. doi: 10.1016/j.cognition.2015.07.005
583	Frick, A., Clément, F., & Gruber, T. (2017). Evidence for a sex effect during overimitation: boys copy
584	irrelevant modelled actions more than girls across cultures. Royal Society Open Science,
585	4(12). doi: 10.1098/rsos.170367
586	Gardiner, A. K. (2014). Beyond irrelevant actions: understanding the role of intentionality in
587	children's imitation of relevant actions. Journal of Experimental Child Psychology, 119, 54-72.
588	doi: 10.1016/j.jecp.2013.10.008

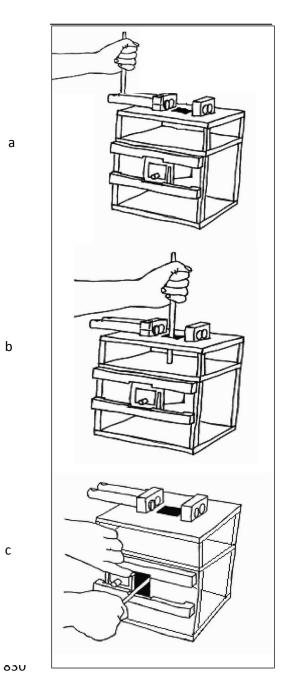
- 589 Gergely, G., Bekkering, H., & Kiraly, I. (2002). Developmental psychology: Rational imitation in 590 preverbal infants. *Nature, 415*(6873), 755-755.
- Gergely, G., & Csibra, G. (2005). The social construction of the cultural mind: Imitative learning as a
 mechanism of human pedagogy. *Interaction Studies, 6*(3), 463-481. doi: 10.1075/is.6.3.10ger
- 593 Gruber, T., Deschenaux, A., Frick, A., & Clement, F. (2017). Group membership influences more social
 594 identification than social learning or overimitation in children. *Child Development*. doi:
 595 10.1111/cdev.12931
- Harris, P. L. (2012). *Trusting what you're told: How children learn from others*. Cambridge,
 Massachussetts: Harvard University Press.
- Haun, D. B. M., Rekers, Y., & Tomasello, M. (2012). Majority-biased transmission in chimpanzees and
 human children, but not orangutans. *Current Biology*, *22*, 727-731.
- Henrich, J. (2015). *The secret of our success: How culture is driving human evolution, domesticating our species, and making us smarter*. Princeton: Princeton University Press.
- Herrmann, P., Legare, C. H., Harris, P. L., & Whitehouse, H. (2013). Stick to the script: The effect of
 witnessing multiple actors on children's imitation. *Cognition*, *129*, 536-543.
- Hilbrink, E. E., Sakkalou, E., Ellis-Davies, K., Fowler, N. C., & Gattis, M. (2013). Selective and faithful
 imitation at 12 and 15 months. *Developmental Science*, *16*(6), 828-840. doi:
 10.1111/desc.12070
- Hoehl, S., Zettersten, M., Schleihauf, H., Grätz, S., & Pauen, S. (2014). The role of social interaction
 and pedagogical cues for eliciting and reducing overimitation in preschoolers. *Journal of Experimental Child Psychology*, *122*(0), 122-133. doi:
 http://dx.doi.org/10.1016/j.jecp.2013.12.012
- Horner, V., & Whiten, A. (2005). Causal knowledge and imitation/emulation switching in
 chimpanzees (Pan troglodytes) and children (Homo sapiens). *Animal Cognition, 8*, 164-181.
 doi: 10.1007/s10071-004-0239-6
- Hu, J., Buchsbaum, D., Griffiths, T. L., & Xu, F. (2013). When does the majority rule? Preschoolers'
 trust in majority informants varies by domain. Paper presented at the 35th Annual Meeting
 of the Cognitive Science Society, Berlin, Germany.
- Kapitány, R., & Nielsen, M. (2015). Adopting the ritual stance: The role of opacity and context in
 ritual and everyday actions. *Cognition*, *145*, 13-29. doi: 10.1016/j.cognition.2015.08.002
- Kapitány, R., & Nielsen, M. (2017). The ritual stance and the precaution system: the role of goaldemotion and opacity in ritual and everyday actions. *Religion, Brain & Behavior, 7*(1), 27-42.
 doi: 10.1080/2153599X.2016.1141792
- Kenward, B. (2012). Over-imitating preschoolers believe unnecessary actions are normative and
 enforce their performance by a third party. *Journal of Experimental Child Psychology*, 112(2),
 195-207.
- Kenward, B., Karlsson, M., & Persson, J. (2011). Over-imitation is better explained by norm learning
 than by distorted causal learning. *Proceedings of the Royal Society. Biological sciences*,
 278(1709), 1239-1246. doi: 10.1098/rspb.2010.1399
- Keupp, S., Bancken, C., Schillmöller, J., Rakoczy, H., & Behne, T. (2016). Rational over-imitation:
 Preschoolers consider material costs and copy causally irrelevant actions selectively.
 Cognition, 147, 85-92. doi: http://dx.doi.org/10.1016/j.cognition.2015.11.007
- Keupp, S., Behne, T., & Rakoczy, H. (2013). Why do children overimitate? Normativity is crucial.
 Journal of Experimental Child Psychology, *116*(2), 392-406.
- Keupp, S., Behne, T., Zachow, J., Kasbohm, A., & Rakoczy, H. (2015). Over-imitation is not automatic:
 Context sensitivity in children's overimitation and action interpretation of causally irrelevant
 actions. *Journal of Experimental Child Psychology, 130*, 163-175. doi:
 http://dx.doi.org/10.1016/j.jecp.2014.10.005
- Legare, C. H., Wen, N. J., Herrmann, P., & Whitehouse, H. (2015). Imitative fidelity and the
 development of cultural learning. *Cognition*, *142*, 351-361. doi:
 10.1016/j.cognition.2015.05.020

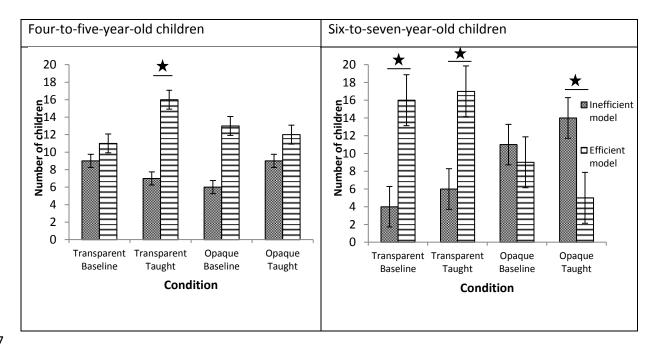
640 Lucas, A. J., Burdett, E. R. R., Burgess, V., McGuigan, N., Wood, L. A., Harris, P. L., & Whiten, A. 641 (2017). Children's selective copying of their mother versus an expert. Child Development, 88, 642 2026-2042. doi: 10.1111/cdev.12711 643 Lyons, D. E., Damrosch, D. H., Lin, J. K., Macris, D. M., & Keil, F. C. (2011). The scope and limits of 644 overimitation in the transmission of artefact culture. Philosophical Transactions of the Royal 645 Society of London B: Biological Sciences, 366(1567), 1158-1167. 646 Lyons, D. E., Young, A. G., & Keil, F. C. (2007). The hidden structure of overimitation. Proceedings of 647 the National Academy of Sciences, 104(50), 19751-19756. doi: 10.1073/pnas.0704452104 648 Marno, H., & Csibra, G. (2015). Toddlers favor communicatively presented information over 649 statistical reliability in learning about artifacts. PLOS ONE, 10(3), e0122129. doi: 650 10.1371/journal.pone.0122129 651 Marsh, L. E., Pearson, A., Ropar, D., & Hamilton, A. (2013). Children with autism do not overimitate. 652 Current Biology, 23(7), R266-R268. doi: http://dx.doi.org/10.1016/j.cub.2013.02.036 653 Marsh, L. E., Ropar, D., & Hamilton, A. F. C. (2014). The social modulation of imitation fidelity in 654 school-age children. PLOS ONE, 9(1), e86127. doi: 10.1371/journal.pone.0086127 655 McGuigan, N. (2012). The role of transmission biases in the cultural diffusion of irrelevant actions. Journal of Comparative Psychology, 126(2), 150-160. doi: 10.1037/a0025525 656 657 McGuigan, N. (2013). The influence of model status on the tendency of young children to over-658 imitate. Journal of Experimental Child Psychology, 116(4), 962-969. doi: 659 10.1016/j.jecp.2013.05.004 660 McGuigan, N., & Burgess, V. (2017). Is the tendency to conform influenced by the age of the 661 majority? Journal of Experimental Child Psychology, 157, 49-65. doi: 662 http://dx.doi.org/10.1016/j.jecp.2016.12.007 McGuigan, N., Gladstone, D., & Cook, L. (2012). Is the cultural transmission of irrelevant tool actions 663 664 in adult humans (Homo Sapiens) best explained as the result of an evolved conformist bias? 665 PLOS ONE, 7(12), e50863. doi: 10.1371/journal.pone.0050863 McGuigan, N., & Graham, M. (2010). Cultural transmission of irrelevant tool actions in diffusion 666 667 chains of 3- and 5-year-old children. European Journal of Developmental Psychology, 7(5), 668 561-577. doi: 10.1080/17405620902858125 669 McGuigan, N., Makinson, J., & Whiten, A. (2011). From over-imitation to super-copying: Adults 670 imitate causally irrelevant aspects of tool use with higher fidelity than young children. British 671 Journal of Psychology, 102(1), 1-18. doi: 10.1348/000712610X493115 McGuigan, N., & Robertson, S. (2015). The influence of peers on the tendency of 3- and 4-year-old 672 673 children to over-imitate. Journal of Experimental Child Psychology, 136(0), 42-54. doi: 674 http://dx.doi.org/10.1016/j.jecp.2015.03.004 675 McGuigan, N., & Whiten, A. (2009). Emulation and "overemulation" in the social learning of causally 676 opaque versus causally transparent tool use by 23- and 30-month-olds. Journal of 677 Experimental Child Psychology, 104(4), 367-381. doi: 10.1016/j.jecp.2009.07.001 678 McGuigan, N., Whiten, A., Flynn, E., & Horner, V. (2007). Imitation of causally opaque versus causally 679 transparent tool use by 3-and 5-year-old children. Cognitive Development, 22, 353-364. doi: 680 10.1016/j.cogdev.2007.01.001 Moraru, C-A., Gomez, J-C., & McGuigan, N. (2016). Developmental changes in the influence of 681 682 conventional and instrumental cues on over-imitation in 3- to 6-year-old children. Journal of 683 Experimental Child Psychology, 145, 34-47. doi: http://dx.doi.org/10.1016/j.jecp.2015.11.017 684 685 Nielsen, M. (2006). Copying actions and copying outcomes: social learning through the second year. Developmental Psychology, 42(3), 555-565. doi: 10.1037/0012-1649.42.3.555 686 687 Nielsen, M. (2013). Young children's imitative and innovative behaviour on the floating object task. 688 Infant and Child Development, 22(1), 44-52. doi: 10.1002/icd.1765

689 Nielsen, M., & Blank, C. (2011). Imitation in young children: when who gets copied is more important 690 than what gets copied. Developmental Psychology, 47(4), 1050-1053. doi: 691 10.1037/a0023866 692 Nielsen, M., Cucchiaro, J., & Mohamedally, J. (2012). When the transmission of culture is child's play. 693 PLoS ONE, 7(3), e34066. doi: 10.1371/journal.pone.0034066 694 Nielsen, M., Haun, D., Kartner, J., & Legare, C. H. (2017). The persistent sampling bias in 695 developmental psychology: A call to action. Journal of Experimental Child Psychology, 162, 696 31-38. doi: 10.1016/j.jecp.2017.04.017 697 Nielsen, M., & Hudry, K. (2010). Over-imitation in children with autism and Down syndrome. 698 Australian Journal of Psychology, 62(2), 67-74. doi: 10.1080/00049530902758613 699 Nielsen, M., Kapitány, R., & Elkins, R. (2015). The perpetuation of ritualistic actions as revealed by 700 young children's transmission of normative behavior. Evolution and Human Behavior, 36(3), 701 191-198. doi: http://dx.doi.org/10.1016/j.evolhumbehav.2014.11.002 702 Nielsen, M., Moore, C., & Mohamedally, J. (2012). Young children overimitate in third-party 703 contexts. Journal of Experimental Child Psychology, 112(1), 73-83. doi: http://dx.doi.org/10.1016/j.jecp.2012.01.001 704 705 Nielsen, M., Mushin, I., Tomaselli, K., & Whiten, A. (2014). Where culture takes hold: "overimitation" 706 and its flexible deployment in Western, Aboriginal, and Bushmen children. Child 707 Development, 85(6), 2169-2184. doi: 10.1111/cdev.12265 708 Nielsen, M., Tomaselli, K., Mushin, I., & Whiten, A. (2014). Exploring tool innovation: A comparison 709 of Western and Bushman children. Journal of Experimental Child Psychology, 126, 384-394. 710 doi: http://dx.doi.org/10.1016/j.jecp.2014.05.008 711 Nielsen, M., & Tomaselli, Keyan. (2010). Overimitation in Kalahari Bushman children and the origins 712 of human cultural cognition. Psychological Science. doi: 10.1177/0956797610368808 713 Pagel, M. (2013). Wired for culture: The natural history of human cooperation. London: Penguin 714 Books. 715 Price, E., Wood, L. A., & Whiten, A. (2017). Adaptive cultural transmission biases in children and 716 nonhuman primates. Infant Behavior and Development, 48, 45-53. doi: 717 doi.org/10.1016/j.infbeh.2016.11.003 718 Ronfard, S., Was, A. M., & Harris, P. L. (2016). Children teach what they could not discover. Journal 719 of Experimental Child Psychology, 142, 107-117. 720 Schillinger, K., Mesoudi, A., & Lycett, S. J. (2015). The impact of imitative versus emulative learning 721 mechanisms on artifactual variation: implications for the evolution of material culture. 722 Evolution and Human Behavior. doi: http://dx.doi.org/10.1016/j.evolhumbehav.2015.04.003 723 Schleihauf, H., Graetz, S., Pauen, S., & Hoehl, S. (2017). Contrasting social and cognitive accounts on 724 overimitation: The role of causal transparency and prior experiences. Child Development. 725 doi: 10.1111/cdev.12780 726 Scofield, J., Gilpin, A. T., Pierucci, J., & Morgan, R. (2013). Matters of accuracy and conventionality: 727 Prior accuracy guides children's evaluations of others' actions. Developmental Psychology, 728 49(3), 432-438. doi: 10.1037/a0029888 729 Simpson, A., & Riggs, K. J. (2011). Three- and 4-year-olds encode modeled actions in two ways 730 leading to immediate imitation and delayed emulation. Developmental Psychology, 47(3), 731 834-840. doi: 10.1037/a0023270 732 Southgate, V., Chevallier, C., & Csibra, G. (2009). Sensitivity to communicative relevance tells young 733 children what to imitate. Developmental Science, 12(6), 1013-1019. doi: 10.1111/j.1467-734 7687.2009.00861.x 735 Subiaul, F., Krajkowski, E., Price, E., & Etz, A. (2015). Imitation by combination: Preschool age 736 children evidence summative imitation in a novel problem-solving task. Frontiers in 737 Psychology, 6(1410), 1-14. doi: 10.3389/fpsyg.2015.01410

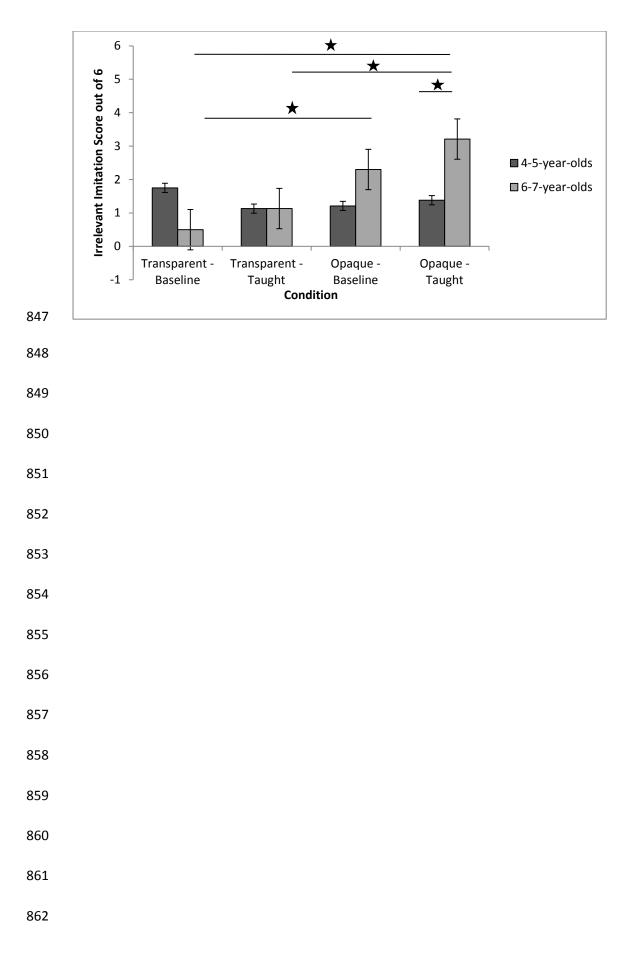
- Taniguchi, Y., & Sanefuji, W. (2017). The boundaries of overimitation in preschool children: Effects of
 target and tool use on imitation of irrelevant actions. *Journal of Experimental Child Psychology, 159*, 83-95. doi: 10.1016/j.jecp.2017.01.014
- Tennie, C., Call, J., & Tomasello, M. (2009). Ratcheting up the ratchet: on the evolution of cumulative
 culture. *Philos Trans R Soc Lond B Biol Sci, 364*, 2405-2415.
- Vivanti, G., Hocking, D. R., Fanning, P., & Dissanayake, C. (2017). The social nature of overimitation:
 Insights from Autism and Williams syndrome. *Cognition*, *161*, 10-18. doi:
 10.1016/j.cognition.2017.01.008
- Vredenburgh, C., Kushnir, T., & Casasola, M. (2015). Pedagogical cues encourage toddlers'
 transmission of recently demonstrated functions to unfamiliar adults. *Developmental Science, 18*(4), 645-654. doi: 10.1111/desc.12233
- Watson-Jones, R. E., Legare, C. H., Whitehouse, H., & Clegg, J. M. (2014). Task-specific effects of
 ostracism on imitative fidelity in early childhood. *Evolution and Human Behavior*, 35(3), 204210. doi: 10.1016/j.evolhumbehav.2014.01.004
- Wellman, H. M., Cross, D., & Watson, J. (2001). Meta-analysis of theory of mind development: The
 truth about false belief. *Child Development*, 72(3), 655-684. doi: 10.1111/1467-8624.00304
- Whiten, A., Allan, G., Devlin, S., Kseib, N., Raw, N., & McGuigan, N. (2016). Social learning in the realworld: 'Over-Imitation' occurs in both children and adults unaware of participation in an
 experiment and independently of social interaction. *PLoS One*, *11*(7), e0159920. doi:
 10.1371/journal.pone.0159920
- Whiten, A., McGuigan, N., Marshall-Pescini, S., & Hopper, L. M. (2009). Emulation, imitation, over imitation and the scope of culture for child and chimpanzee. *Philosophical Transactions of the Royal Society London B Biological Sciences*, *364*, 2417-2428.
- Wilks, M., Kapitány, R., & Nielsen, M. (2016). Preschool children's learning proclivities: When the
 ritual stance trumps the instrumental stance. *British Journal of Developmental Psychology*,
 34(3), 402-414. doi: 10.1111/bjdp.12139
- Wood, L. A., Harrison, R. A., Lucas, A. J., McGuigan, N., Burdett, E., & Whiten, A. (2016). "Model agebased" and "copy when uncertain" biases in children's social learning of a novel task. *Journal of Experimental Child Psychology, 150*, 272-284. doi: 10.1016/j.jecp.2016.06.005
- Wood, L. A., Kendal, R. L., & Flynn, E. G. (2012). Context-dependent model-based biases in cultural transmission: children's imitation is affected by model age over model knowledge state.
 Evolution and Human Behavior, 33(4), 387-394. doi:
- 770 <u>http://dx.doi.org/10.1016/j.evolhumbehav.2011.11.010</u>
- Wood, L. A., Kendal, R. L., & Flynn, E. G. (2013a). Copy me or copy you? The effect of prior
 experience on social learning. *Cognition*, *127*(2), 203-213. doi:
 10.1016/j.cognition.2013.01.002
- Wood, L. A., Kendal, R. L., & Flynn, E. G. (2013b). Whom do children copy? Model-based biases in
 social learning. *Developmental Review*, 33(4), 387-394. doi: 10.1016/j.dr.2013.08.002
- 776

- 778
- 779
- 780


782 Table 1.


A 2 x 2 design exploring over-imitation according to task opacity and social information

			Social Information				
		Baseline Untaught	Taught				
Task Opacity	Transparent	Transparent(Untaught)	Transparent (Taught)				
	Opaque	Opaque (Untaught)	Opaque (Taught)				


804 Figure Captions

805	Figure 1. The 'model' demonstrates a series of actions, some of which are causally irrelevant to goal
806	retrieval (removing bolt defence, inserting tool into top hole), and some which are causally relevant
807	to goal retrieval (removing door defence, inserting tool into lower hole). These actions are illustrated
808	above: (a) causally irrelevant moving top bolt; (b) causally irrelevant tool insertion into top hole; (c)
809	causally relevant tool insertion into the front hole.
810	
811	Figure 2. Number of children who copied the efficient and inefficient models, by age group and
812	condition. * denotes $p < 0.05$; see text for details.
813	
814	<i>Figure 3</i> . Mean number of irrelevant actions by condition and age group. * denotes $p < 0.05$.
815	
816	
817	
818	
819	
820	
821	
822	
022	
823	
824	
825	
826	
020	
827	
828	

- 863 Table S1. Table of over-imitation and related studies. The table lists studies that (i) include over-
- 864 imitation in the title or abstract, or in our judgement, otherwise address questions most closely
- 865 allied to over-imitation; and (ii) include manipulation of objects, whether transparent, opaque, or
- 866 both, and thus most relevant to our own study. Accordingly we have leaned to being inclusive rather
- than be over-strict in the coverage of studies here listed, so as to be maximally helpful to those
- 868 examining or planning to develop research in this area.

Study	Transpare nt Object/Ac tivity	Irrelevant actions	Opaque Object/Ac tivity	Type of model demonstration
2002				
Gergely, G., Bekkering, H., & Kiraly, I. (2002). Developmental psychology: Rational imitation in preverbal infants. <i>Nature, 415</i> (6873), 755-755.	Tough light with hands	Touch light with head	Touch light with forehead	Experimenter demonstrated
2005	Γ	Γ	r	
Horner, V., & Whiten, A. (2005). Causal knowledge and imitation/emulation switching in chimpanzees (Pan troglodytes) and children (Homo sapiens). Animal Cognition, 8, 164- 181. doi: 10.1007/s10071- 004-0239-6	Transpare nt box	Remove bolt, tap into hole on top of box three times	Opaque box	Experimenter demonstrated
2006		1		
Nielsen, M. (2006). Copying actions and copying outcomes: social learning through the second year. <i>Developmental</i> <i>Psychology</i> , <i>42</i> (3), 555-565. doi: 10.1037/0012- 1649.42.3.555		Object directed actions to activate box	Three opaque boxes	Experimenter demonstrated
2007				
Brugger, A., Lariviere, L. A., Mumme, D. L., & Bushnell, E. W. (2007). Doing the right thing: Infants' selection of actions to imitate from observed event sequences. Child Development, 78(3), 806- 824. doi: 10.1111/j.1467- 8624.2007.01034.x	Box, tube, music box, Toy dog	Undo non- functional latch, patting head with hand, remove barrier, close a trap, take rod out of tube and		Experimenter demonstrated

	1			,
		place in		
	· · ·	another		
Lyons, D. E., Young, A. G., & Keil, F. C.	Horner/W	Remove		Experimenter
(2007). The hidden structure	hiten box	bolt, tap		demonstrated
of overimitation.	in	into hole		
Proceedings of the National	addition	on top of		
Academy of Sciences,	to several	box three		
<i>104</i> (50), 19751-19756. doi:	other	times		
10.1073/pnas.0704452104	transpare			
	nt boxes			
McGuigan, N., Whiten, A., Flynn, E.,	Horner/W	Use tool	Horner/W	Watched live or video
& Horner, V. (2007).	hiten box	to remove	hiten box	demonstration, or no
Imitation of causally opaque		bolt, tap		demonstration
versus causally transparent		into hole		
tool use by 3-and 5-year-old		on top of		
children. <i>Cognitive</i>		box three		
Development, 22, 353-364.		times		
doi:				
10.1016/j.cogdev.2007.01.00				
1				
2008				
Flynn, E. (2008). Investigating	Horner/W	Use tool	Horner/W	Experimenter then
children as cultural magnets:	hiten box	to remove	hiten box	child demonstrated
do young children transmit		bolt, tap		
redundant information along		into hole		
diffusion chains?		on top of		
Philosophical Transactions of		box three		
the Royal Society B:		times		
Biological Sciences,				
363(1509), 3541-3551.				
McGuigan, N., & Whiten, A. (2009).	Horner/W	Use tool	Horner/W	Experimenter then
Emulation and	hiten box	to remove	hiten box	child demonstrated
"overemulation" in the social		bolt, tap		
learning of causally opaque		into hole		
versus causally transparent		on top of		
tool use by 23- and 30-		box three		
month-olds. Journal of		times		
Experimental Child				
Psychology, 104(4), 367-381.				
doi:				
10.1016/j.jecp.2009.07.001				
2009				
Southgate, V., Chevallier, C., &	Small	Нор,		Experimenter
Csibra, G. (2009). Sensitivity	cardboard	slide,		demonstrated
to communicative relevance	house	place		
tells young children what to		, object in		
imitate. <i>Developmental</i>		house		
<i>Science, 12</i> (6), 1013-1019.				
doi: 10.1111/j.1467-				
7687.2009.00861.x				
McGuigan, N., & Whiten, A. (2009).	Horner/W	Use tool	Horner/W	Experimenter

	1	1	1	
Emulation and "overemulation" in the social learning of causally opaque versus causally transparent tool use by 23- and 30- month-olds. Journal of Experimental Child Psychology, 104(4), 367-381. doi: 10.1016/j.jecp.2009.07.001	hiten box	to remove bolt, tap into hole on top of box three times	hiten box	demonstrated
2010				
McGuigan, N., & Graham, M. (2010). Cultural transmission of irrelevant tool actions in diffusion chains of 3- and 5- year-old children. <i>European</i> <i>Journal of Developmental</i> <i>Psychology, 7</i> (5), 561-577. doi: 10.1080/1740562090285812 5	Horner/W hiten box	Use tool to remove bolt, tap into hole on top of box three times	Horner/W hiten box	"Expert" child demonstrator and then, a transmission chain of 8 children
Nielsen, M., & Tomaselli, K. (2010). Overimitation in Kalahari Bushman children and the origins of human cultural cognition. <i>Psychological</i> <i>Science</i> . doi: 10.1177/0956797610368808		Use tool to tap, swirl, or wipe box	Three opaque boxes (one from Whiten et al. (1999)).	Experimenter demonstrated
Nielsen, M., & Hudry, K. (2010). Over-imitation in children with autism and Down syndrome. <i>Australian Journal</i> of Psychology, 62(2), 67-74. doi: 10.1080/0004953090275861 3		Object directed actions to activate box	Three opaque boxes	Experimenter demonstrated (Children with ASD and DS)
2011				
Buchsbaum, D., Gopnik, A., Griffiths, T. L., & Shafto, P. (2011). Children's imitation of causal action sequences is influenced by statistical and pedagogical evidence. <i>Cognition, 120</i> (3), 331-340. doi: 10.1016/j.cognition.2010.12. 001		Knock, stretch, roll toys	Blue ball and stuffed toy with rings/tabs attached	Experimenter demonstrated
Kenward, B., Karlsson, M., & Persson, J. (2011). Over-imitation is better explained by norm learning than by distorted	Rectangul ar box with two side-by-	Make a paddle rotate by fitting		Experimenter demonstrated

causal learning. Proceedings	side	tool into a		
of the Royal Society.	left/right	bolt on a		
Biological sciences,	compartm	dial and		
<i>278</i> (1709), 1239-1246. doi:	ents	spinning		
10.1098/rspb.2010.1399				
Lyons, D. E., Damrosch, D. H., Lin, J.	Exp1 & 3:	Pull		
K., Macris, D. M., & Keil, F. C.	Novel	wooden		
(2011). The scope and limits	puzzle	dowel		
of overimitation in the	box based	Move		
transmission of artefact	on	wooden		
culture. Philosophical	Horner/W	arm		
Transactions of the Royal	hiten box			
Society of London B:	Exp 2:			
Biological Sciences,	Novel			
366(1567), 1158-1167.	prize box			
McGuigan, N., Makinson, J., &	Horner/W	Disconnec		Child or adult
Whiten, A. (2011). From	hiten box	ted		demonstrator
over-imitation to super-		actions		
copying: Adults imitate				
causally irrelevant aspects of				
tool use with higher fidelity				
than young children. British				
Journal of Psychology,				
<i>102</i> (1), 1-18. doi:				
10.1348/000712610X493115				
Nielsen, M., & Blank, C. (2011).		Swipe or	2	Selective-2 adult
Imitation in young children:		tapp	Wooden	models
when who gets copied is		outside of	apparati	Condition 1: Both
more important than what		the box	apparati	adults modeled
gets copied. <i>Developmental</i>		the box		irrelevant actions
Psychology, 47(4), 1050-				Condition 2: one
1053. doi:				efficient model who
10.1037/a0023866				stays
10.1037/80023800				Condition 3: one
				efficient model who
Simpson A. & Biggs K. L. (2011)	Puzzle	Open top		leaves Experimenter
Simpson, A., & Riggs, K. J. (2011).		Open top		demonstrated
Three- and 4-year-olds encode modeled actions in	box	aperture		uemonstrateu
two ways leading to immediate imitation and				
delayed emulation.				
Developmental Psychology,				
47(3), 834-840. doi:				
10.1037/a0023270				
2012	Llaure her	11	Llaure her	First endine in the s
Flynn, E., & Smith, K. (2012).	Horner/W	Use tool	Horner/W	Experimenter
Investigating the	hiten box	to remove	hiten box	demonstrated
mechanisms of cultural		bolts, tap		
acquisition: How pervasive is		into hole		
overimitation in adults?		on top of		

Г.		1.		Γ
Social psychology, 43(4),		box once		
185-195. doi: 10.1027/1864-		or three		
9335/a000119		times		
Flynn, E., & Whiten, A. (2012).	Horner/W	Use tool	Horner/W	Adult
Experimental	hiten box	to remove	hiten box	model/experimenter/
"microcultures" in young		bolts, tap		confederate
children: identifying		into hole		demonstrated
biographic, cognitive, and		on top of		depending on exp
social predictors of		box once		
information transmission.		or three		
Child Development, 83(3),		times		
911-925. doi:				
10.1111/j.1467-				
8624.2012.01747.x				
Kenward, B. (2012). Over-imitating	Push and	Push		Experimenter
preschoolers believe	hook	jewels to		demonstrated
unnecessary actions are	boxes	open		
normative and enforce their		space and		
performance by a third		clean/poli		
party. Journal of		sh		
Experimental Child				
Psychology, 112(2), 195-207.				
McGuigan, N. (2012). The role of	Horner/W	Use tool	Horner/W	Experimenter
transmission biases in the	hiten box	to remove	hiten box	demonstrated
cultural diffusion of		bolts, tap		
irrelevant actions. Journal of		into hole		
Comparative Psychology,		on top of		
126(2), 150-160. doi:		box once		
10.1037/a0025525		or three		
· · · · , · · · · · ·		times		
McGuigan, N., Gladstone, D., & Cook,	Horner/W	Use tool		One or three adults
L. (2012). Is the cultural	hiten box	to remove		models demonstrated
transmission of irrelevant		bolts, tap		
tool actions in adult humans		into hole		
(Homo Sapiens) best		on top of		
explained as the result of an		box once		
evolved conformist bias?		or three		
<i>PLoS ONE</i> , 7(12), e50863.		times		
doi:				
10.1371/journal.pone.00508				
63				
Nielsen, M., Moore, C., &		Use tool	Three	Third party
Mohamedally, J. (2012).		to tap,	opaque	demonstrations
Young children overimitate		swirl, or	boxes	
in third-party contexts.		wipe box	(one from	
Journal of Experimental Child		mpc box	Whiten et	
<i>Psychology, 112</i> (1), 73-83.			al.	
doi:			(1999)).	
http://dx.doi.org/10.1016/j.j			(1555)]].	
ecp.2012.01.001				
Nielsen, M., Cucchiaro, J., &		Use tool	2 wooden	Experimenter
INICISEII, IVI., CULLIIIdI U, J., &		038 (00)	z woouen	Experimenter

Mohamedally, J. (2012). When the Transmission of Culture Is Child's Play. <i>PLoS</i> <i>ONE</i> , 7(3), e34066. doi: 10.1371/journal.pone.00340 66 Wood, L. A., Kendal, R. L., & Flynn, E. G. (2012). Context- dependent model-based biases in cultural transmission: children's imitation is affected by model age over model knowledge state. <i>Evolution</i> <i>and Human Behavior, 33</i> (4), 387-394. doi:	Horner/W hiten box	to slide Use tool to remove bolt, tap into hole on top of box three times	boxes	demonstrated and then child transmission chain (play vs functional way) Adult/child models demonstrated (professing ignorance/knowledge)
http://dx.doi.org/10.1016/j.e				
volhumbehav.2011.11.010 2013				
Herrmann, P., Legare, C. H., Harris, P. L., & Whitehouse, H. (2013). Stick to the script: The effect of witnessing multiple actors on children's imitation. <i>Cognition, 129</i> , 536-543.		Various actions to move pegs and mallet	Various objects (hammer, peg, board)	Experimenter/s demonstrated
Hilbrink, E. E., Sakkalou, E., Ellis- Davies, K., Fowler, N. C., & Gattis, M. (2013). Selective and faithful imitation at 12 and 15 months. <i>Developmental Science</i> , 16(6), 828-840. doi: 10.1111/desc.12070		Remove a strap to open a lid on a box (necessar y condition) or remove a strap then opening a lid (unnecess ary condition)	Opaque boxes	Experimenter demonstrated
Keupp, S., Behne, T., & Rakoczy, Hannes. (2013). Why do children overimitate? Normativity is crucial. Journal of Experimental Child Psychology, 116(2), 392-406.	Plastic boxes	Tapp, brush, turn		Experimenter demonstrated
Kiraly, I., Csibra, G., & Gergely, G. (2013). Beyond rational imitation: learning arbitrary means actions from communicative	Tough light with hands	Touch light with head	Touch light with forehead	Experimenter demonstrated

	1	1	1	
demonstrations. Journal of				
Experimental Child				
Psychology, 116(2), 471-486.				
doi:				
10.1016/j.jecp.2012.12.003				
Marsh, L., Pearson, A., Ropar, D., &	Plastic	Tap, slide,		Experimenter
Hamilton, A. (2013). Children	boxes	stroke,		demonstrated
with autism do not		turn		
overimitate. Current Biology,				
<i>23</i> (7), R266-R268. doi:				
http://dx.doi.org/10.1016/j.c				
<u>ub.2013.02.036</u>				
McGuigan, N. (2013). The influence	Horner/W	Disconnec		Video demonstrators
of model status on the	hiten box	ted		differing in status
tendency of young children		actions		(Head teacher, class
to over-imitate. Journal of				teachers, unfamiliar
Experimental Child				adult, familiar
Psychology, 116(4), 962-969.				experimenter, and
doi:				unfamiliar adult)
10.1016/j.jecp.2013.05.004				
Nielsen, M. (2013). Young Children's	Floating	Small and		Experimenter
Imitative and Innovative	peanut	large cups		demonstrated
Behaviour on the Floating	task	used to		
Object Task. Infant and Child		pour		
Development, 22(1), 44-52.		water		
doi: 10.1002/icd.1765		from		
		bottle		
		into		
		peanut		
		tube		
Nielsen, M., Slaughter, V., &		Swipe	Three	Experimenter
Dissanayake, C. (2013).		stick	opaque	demonstrated
Object-directed imitation in		across	boxes	
children with high-		box in		
functioning autism: testing		circular		
the social motivation		motion		
hypothesis. Autism Research,		three		
<i>6</i> (1), 23-32. doi:		times,		
10.1002/aur.1261		press		
		mallet		
		onto box		
		three		
		times, use		
		a steel		
		plate like		
		a stamp,		
		wipe		
		spanner		
		three		
		times		
		across		

		box		
Scofield, J., Gilpin, A. T., Pierucci, J., & Morgan, R. (2013). Matters of accuracy and conventionality: Prior accuracy guides children's evaluations of others' actions. <i>Developmental</i> <i>Psychology</i> , <i>49</i> (3), 432-438. doi: 10.1037/a0029888		Dax the clips, Nedd the ring, bikk the blocks, fepp the stick	Various objects	Two experimenters: One experimenter was unconventionally successful and the other conventionally unsuccessful
Wood, L. A., Kendal, R. L., & Flynn, E. G. (2013a). Copy me or copy you? The effect of prior experience on social learning. <i>Cognition</i> , 127(2), 203-213. doi: 10.1016/j.cognition.2013.01. 002	Sweep- drawer box	Irrelevant actions after the prize fell		Puppet demonstrated
2014				
Gardiner, A. K. (2014). Beyond irrelevant actions: understanding the role of intentionality in children's imitation of relevant actions. Journal of Experimental Child Psychology, 119, 54-72. doi: 10.1016/j.jecp.2013.10.008	Three- step transpare nt boxes	There were three possible steps to release a prize across three compartm ents. If the prize was in the second compartm ent the first step was unnecess ary.	Three- step opaque boxes	Experimenter demonstrated (Intentional/accidenta I)
Hoehl, S., Zettersten, M., Schleihauf, H., Grätz, S., & Pauen, S. (2014). The role of social interaction and pedagogical cues for eliciting and reducing overimitation in preschoolers. <i>Journal of</i> <i>Experimental Child</i> <i>Psychology, 122</i> (0), 122-133. doi: <u>http://dx.doi.org/10.1016/j.j</u> <u>ecp.2013.12.012</u>	Transpare nt boxes	Clap, rub disconnec ted parts		Experimenter demonstrated (non/pedagogical demonstrations)

		·		
Marsh, L. E., Ropar, D., & Hamilton,	Plastic	Tap, slide,		Experimenter
A. F. C. (2014). The social	boxes	stroke,		demonstrated (via
modulation of imitation		turn		video or live
fidelity in school-age				demonstration)
children. PLOS ONE, 9(1),				
e86127. doi:				
10.1371/journal.pone.00861				
27				
Nielsen, M., Kapitány, R., & Elkins, R.		Tap using	Four	Experimenter
(2014). The perpetuation of		tools	opaque	demonstrated (change
ritualistic actions as revealed			boxes	of location task and
by young children's				using opaque boxes)
transmission of normative				··· 0 · · · · · · · · · ,
behavior. Evolution and				
Human Behavior, 36(3), 191-				
198. doi:				
10.1016/j.evolhumbehav.20				
14.11.002				
	Puzzle	Slida tana	Duzzlo	Exporimenter
Nielsen, M., Mushin, I., Tomaselli, K.,		Slide, taps	Puzzle	Experimenter demonstrated
& Whiten, A. (2014). Where	box		box	demonstrated
culture takes hold:				
"overimitation" and its				
flexible deployment in				
Western, Aboriginal, and				
Bushmen children. Child				
Development, 85(6), 2169-				
2184. doi:				
10.1111/cdev.12265				
Simpson, A., & Riggs, K. J. (2011).	Transpare	Insert		Experimenter
Three- and 4-year-olds	nt box	tool into		demonstrated
encode modeled actions in		top of		
two ways leading to		box		
immediate imitation and				
delayed emulation.				
Developmental Psychology,				
47(3), 834-840. doi:				
10.1037/a0023270				
Watson-Jones, R. E., Legare, C. H.,		Tap, clap	Objects	Experimenter
Whitehouse, H., & Clegg, J.			(pegs and	demonstrated (primed
M. (2014). Task-specific			other	non/ostracism)
effects of ostracism on			objects)	, ,
imitative fidelity in early				
childhood. Evolution and				
Human Behavior, 35(3), 204-				
210. doi:				
10.1016/j.evolhumbehav.20				
14.01.004				
Yu, Y., & Kushnir, T. (2014). Social		Turn a	Four	Experimenter
context effects in 2- and 4-		latch, lift	opaque	demonstrated
year-olds' selective versus		a barrier,	boxes	aemonstrateu
faithful imitation.			DOX62	
		push a		

Developmental Psychology,		tray; all		
<i>50</i> (3), 922-933. doi:		actions		
10.1037/a0034242		are not		
		connecte		
		d or		
		actions		
		that		
		retrieve		
		an object		
2015				
Berl, R. E. W., & Hewlett, B. S. (2015).	Horner/W	Disconnec		Experimenter
Cultural variation in the use	hiten box	ted		demonstrated
of overimitation by the Aka		actions		
and Ngandu of the Congo				
Basin. PLoS ONE, 10(3),				
e0120180. doi:				
10.1371/journal.pone.01201				
80				
Carr, K., Kendal, R. L., & Flynn, E. G.	Multiple	Reward		Experimenter
(2015). Imitate or innovate?	Methods	retrieval		demonstrated
Children's innovation is	box			
influenced by the efficacy of	DOX			
observed behaviour.				
<i>Cognition, 142</i> (0), 322-332.				
doi:				
http://dx.doi.org/10.1016/j.c				
ognition.2015.05.005 DiYanni, C., Corriveau, K. H., Kurkul,	Cruching	Crush		A single model or a
	Crushing			A single model or a
K., Nasrini, J., & Nini, D.	cookies	cookies		consensus
(2015). The role of		with an		demonstrated
consensus and culture in		inefficient		
children's imitation of		tool		
inefficient actions. Journal of				
Experimental Child				
Psychology, 137(0), 99-110.				
doi:				
<u>http://dx.doi.org/10.1016/j.j</u>				
<u>ecp.2015.04.004</u>				
Freier, L., Cooper, R. P., & Mareschal,	Making a	Various		Experimenter
D. (2015). The planning and	sandwich	actions		demonstrated
execution of natural		involving		
sequential actions in the		moving a		
preschool years. Cognition,		bag and		
<i>144,</i> 58-66. doi:		jar of		
10.1016/j.cognition.2015.07.		sugar		
005				
Kapitány, R., & Nielsen, M. (2015).	Cleaning a	Wave a	Ritual	Video of a single
Adopting the ritual stance:	glass	cloth in		model demonstrated
The role of opacity and		front of a		either the ritual or
context in ritual and		glass,		'cleaning a glass'
everyday actions. <i>Cognition,</i>		raise a		
		10.00 0		1

	1		1	
<i>145,</i> 13-29. doi:		glass, bow		
10.1016/j.cognition.2015.08.		to the		
002		glass		
Keupp, S., Behne, T., Zachow, J.,	Various	Throw a		Experimenter
Kasbohm, A., & Rakoczy, H.	boxes/acti	bead, rip		demonstrated
(2015). Over-imitation is not	vities	paper,		
automatic: Context		'junkpress		
sensitivity in children's		' a ball		
overimitation and action				
interpretation of causally				
irrelevant actions. Journal of				
Experimental Child				
Psychology, 130, 163-175.				
doi:				
http://dx.doi.org/10.1016/j.j				
ecp.2014.10.005				
Legare, C. H., Wen, N. J., Herrmann,	Various	A	Various	Study 1: Experimenter
P., & Whitehouse, H. (2015).	objects	sequence	objects	demonstrated using
Imitative fidelity and the	with an	of tapping	without	non-verbal cues
development of cultural	end-state	objects,	an end-	Study 2: Experimenter
learning. Cognition, 142,		pressing	state	demonstrated using
351-361. doi:		fists	State	verbal cues
10.1016/j.cognition.2015.05.		together		
020		together		
Marno, H., & Csibra, G. (2015).		Unreliable	Wooden	Experimenter
Toddlers favor		button	apparatus	demonstrated
communicatively presented		button	with	demonstrated
information over statistical			lamps	
reliability in learning about			lamps	
artifacts. <i>PLoS ONE, 10</i> (3),				
e0122129. doi:				
10.1371/journal.pone.01221				
29				
McGuigan, N., & Robertson, S.	Horner/W	Disconnec		Peers demonstrated
(2015). The influence of	hiten box	ted		
peers on the tendency of 3-	IIItell box	actions		
and 4-year-old children to		actions		
over-imitate. <i>Journal of</i>				
Experimental Child				
Psychology, 136(0), 42-54.				
doi:				
http://dx.doi.org/10.1016/j.j				
ecp.2015.03.004				
Ronfard, S., Was, A. M., & Harris, P.	Transpare	Use tools		Experimenter
L. (2016). Children teach	nt top of	with		demonstrated
what they could not	puzzle	different		
discover. Journal of	box	shaped		
Experimental Child	507	ends		
<i>Psychology, 142</i> , 107-117.				
Subiaul, F., Krajkowski, E., Price, E., &		Actions	Wooden	2 models
Etz, A. (2015). Imitation by		are	boxes	demonstrated
		arc	00763	acmonstrateu

Combination: Preschool Age Children Evidence Summative Imitation in a Novel Problem-Solving Task. <i>Frontiers in Psychology,</i> 6(1410), 1-14. doi: 10.3389/fpsyg.2015.01410 Vredenburgh, Christopher, Kushnir, Tamar, & Casasola, Marianella. (2015). Pedagogical cues encourage		relevant to open the box, but actions repeated three times Turn crank or wave light	Toys	different actions (summative imitation) Selective-one experimenter demonstrated pedagogically and the
toddlers' transmission of recently demonstrated functions to unfamiliar adults. <i>Developmental</i> <i>Science, 18</i> (4), 645-654. doi: 10.1111/desc.12233				other functionally
Chudek, M., Baron, A. S., & Birch, S.	Rod and	Use a		Experimenter
(2016). Unselective overimitators: The evolutionary implications of children's indiscriminate copying of successful and prestigious models. <i>Child Development</i> , <i>87</i> (3), 782- 794. doi: 10.1111/cdev.12529	Pull box	redundan t tool by rotating it, removing rod/hinge , tapping top of the device with tool, opening top door, rotating disconnec ted propeller/ hinge		demonstrated
Clegg, J. M., & Legare, C. H. (2016a). A cross-cultural comparison of children's imitative flexibility. <i>Developmental</i> <i>Psychology, 52</i> (9), 1435- 1444. doi: 10.1037/dev0000131	Putting beads on a string, with instrumen tal framing: "I am going to make a necklace. Let's watch	Bring end of string together and then open, lay string out, touch beads to head before putting on the string	Putting beads on a string, with conventio nal framing: "Everyon e always does it like this. Let's watch	Experimenter demonstrated

	what I am doing. I		what I am doing.	
	am going to make a		Everyone always	
	necklace."		does it like this."	
Clegg, J. M., & Legare, C. H. (2016b). Instrumental and conventional interpretations of behavior are associated with distinct outcomes in early childhood. <i>Child Development</i> , <i>87</i> (2), 527- 542. doi: 10.1111/cdev.12472	Putting beads on a string, with instrumen tal framing: "I am going to make a necklace. Let's watch what I am doing. I am going to make a necklace."	Bring end of string together and then open, lay string out, touch beads to head before putting on the string	Putting beads on a string, with conventio nal framing: "Everyon e always does it like this. Let's watch what I am doing. Everyone always does it like this."	Experimenter demonstrated
Hewlett, B. S., & Roulette, C. J. (2016). Teaching in hunter– gatherer infancy. <i>Open</i> <i>Science, 3</i> (1). doi: 10.1098/rsos.150403	Puzzle box	Tap right/left of box, tap barrier, slide door		Experimenter demonstrated
Keupp, S., Bancken, C., Schillmöller, J., Rakoczy, H., & Behne, T. (2016). Rational over- imitation: Preschoolers consider material costs and copy causally irrelevant actions selectively. <i>Cognition, 147</i> , 85-92. doi: <u>http://dx.doi.org/10.1016/j.c</u> <u>ognition.2015.11.007</u>	Various boxes/acti vities	Throw a bead, rip sticker, rip paper, 'junkpress ' a ball		Experimenter demonstrated (live and video)
Moraru, C-A., Gomez, J-C., & McGuigan, N. (2016). Developmental changes in the influence of conventional and instrumental cues on over-imitation in 3- to 6- year-old children. Journal of Experimental Child Psychology, 145, 34-47. doi: <u>http://dx.doi.org/10.1016/j.j</u>	Horner/W hiten box	Disconnec ted actions		Experimenter demonstrated

ecp.2015.11.017				
Nielsen, M., Mushin, I., Tomaselli, K.,	Clear box	Slide, taps	Opaque	Experimenter
& Whiten, A. (2016).		Shue, taps	box	demonstrated
Imitation, Collaboration, and			507	acmonstrated
Their Interaction Among				
0				
Western and Indigenous				
Australian Preschool				
Children. <i>Child Development,</i>				
<i>87</i> (3), 795-806. doi:				
10.1111/cdev.12504				
Whiten, A., Allan, G., Devlin, S.,	Horner/W	Use tool		Confederate
Kseib, N., Raw, N., &	hiten box	to remove		experimenter
McGuigan, N. (2016). Social		bolts, tap		demonstrated
learning in the real-world:		into hole		
'Over-Imitation' occurs in		on top of		
both children and adults		box		
unaware of participation in		multiple		
an experiment and		times		
independently of social				
interaction. PLoS One, 11(7),				
e0159920. doi:				
10.1371/journal.pone.01599				
20				
Wilks, M., Kapitány, R., & Nielsen, M.		Tap, put	Opaque	Individual model or
(2016). Preschool children's		hands	box	group model
learning proclivities: When		together		demonstrated
the ritual stance trumps the		in a		depending on
instrumental stance. British		praying		condition
Journal of Developmental		motion,		
Psychology, 34(3), 402-414.		hum		
doi: 10.1111/bjdp.12139				
Wood, L. A., Harrison, R. A., Lucas, A.	Puzzle	Tap rake		Experimenter
J., McGuigan, N., Burdett, E.,	box	on box		demonstrated
& Whiten, A. (2016). "Model		four times		
age-based" and "copy when		and then		
uncertain" biases in		slide rake		
children's social learning of a		down box		
novel task. <i>Journal of</i>		four times		
Experimental Child				
<i>Psychology, 150, 272-284.</i>				
doi:				
10.1016/j.jecp.2016.06.005				
2017				
Clay, Z., & Tennie, C. Is overimitation		Uncommo	Opaque	Experimenter
a uniquely human		n action	box	demonstrated
phenomenon? Insights from		condition:	201	
human children as compared		Rub back		
to bonobos. <i>Child</i>		of box in a		
		circular		
Development. doi:				
10.1111/cdev.12857		motion 4x		
		then		

		[
		rotate		
		wrist 4x		
		Typical		
		action		
		condition:		
		trace a		
		diagonal		
		on the		
		box, then		
		trace the		
		diameter		
Corriveau, K. H., DiYanni, C. J., Clegg,	Crushing	Crush		A single model or a
J. M., Min, G., Chin, J., &	cookies	cookies		consensus
Nasrini, J. (2017). Cultural		with an		demonstrated
differences in the imitation		inefficient		
and transmission of		tool		
inefficient actions. <i>Journal of</i>				
Experimental Child				
<i>Psychology, 161</i> , 1-18. doi:				
10.1016/j.jecp.2017.03.002				
Frick, A., Clément, F., & Gruber, T.	Glass	Tap box		Experimenter
(2017). Evidence for a sex	bottle	twice on		demonstrated
effect during overimitation:	(Hook	the sides		acmonstrated
boys copy irrelevant	task)	and lift		
modelled actions more than	cusky	lid, push		
girls across cultures. <i>Royal</i>		box		
Society Open Science, 4(12).		forward		
doi: 10.1098/rsos.170367		with		
001.10.1050/1303.170507		elbow		
		and turn		
		lid		
		clockwise,		
		lift box		
		and pull		
Cruber T. Deskarsen A. Frida A.		lid up	Monda	Two oversites as to set
Gruber, T., Deschenaux, A., Frick, A.,		Lift	Wooden	Two experimenters
& Clement, F. (2017). Group		shutter on	box	demonstrated
membership influences more		box		
social identification than				
social learning or				
overimitation in children.				
Child Development. doi:				
10.1111/cdev.12931		14/-		
Kapitány, R., & Nielsen, M. (2017).	Cleaning a	Wave a	Ritual	Six conditions: A video
The ritual stance and the	glass	cloth in		of a single model
precaution system: the role		front of a		demonstrated an
of goal-demotion and		glass,		action type (either the
opacity in ritual and		raise a		ritual or 'cleaning a
everyday actions. <i>Religion,</i>		glass, bow		glass'), and goal type
Brain & Behavior, 7(1), 27-		to the		(blessing, curse, or
42. doi:		glass		goal absent)

10.1080/2153599X.2016.114			
1792			
Lucas, A. J., Burdett, E. R. R., Burgess, V., McGuigan, N., Wood, L. A., Harris, P. L., & Whiten, A. (2017). Children's selective copying of their mother versus an expert. <i>Child Development, 88</i> , 2026- 2042. doi: 10.1111/cdev.12711	Puzzle box	Pull handle	Confederate 'Stranger', Confederate 'Expert', or child's mother demonstrated
McGuigan, N., & Burgess, V. (2017). Is the tendency to conform influenced by the age of the majority? <i>Journal of</i> <i>Experimental Child</i> <i>Psychology, 157</i> , 49-65. doi: <u>http://dx.doi.org/10.1016/j.j</u> <u>ecp.2016.12.007</u>	Horner/W hiten box	Use tool to remove bolts, tap into hole on top of box multiple times	Age of models differed by age groups; one model demonstrated efficient method and four other models demonstrated inefficient method
Schleihauf, H., Graetz, S., Pauen, S., & Hoehl, S. (2017). Contrasting social and cognitive accounts on overimitation: The role of causal transparency and prior experiences. <i>Child Development</i> . doi: 10.1111/cdev.12780	Clear box with clear tube	Clap, push a lever attached top of box, tap outside box, tap hand	Experiment 1: Experimenter A first demonstrates an efficient action and lets child interact with tube, then Experimenter B demonstrates inefficient actions Experimenter A demonstrated an efficient action communicatively or non-communicatively, then Experimenter B demonstrated an inefficient action communicatively
Taniguchi, Y., & Sanefuji, W. (2017). The boundaries of overimitation in preschool children: Effects of target and tool use on imitation of irrelevant actions. <i>Journal of Experimental Child</i> <i>Psychology, 159</i> , 83-95. doi: 10.1016/j.jecp.2017.01.014	Clear box	Condition 1: Tap, draw on, rub, push the box with a tool Condition 2: Tap, draw on, rub and push on the palm	Experimenter demonstrated

		of hand with a tool	
Vivanti, G., Hocking, D. R., Fanning, P., & Dissanayake, C. (2017). The social nature of overimitation: Insights from Autism and Williams syndrome. <i>Cognition, 161,</i> 10-18. doi: 10.1016/j.cognition.2017.01. 008	Three clear boxes	Either tap the sides of the box, push container forward with elbow, or lift container	Experimenter demonstrated