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Abstract The management of container yard 

operations is considered to be a very 

challenging task by the yard operators due to 

many uncertainties inherent to such 

operations. The storage of the containers is 

one of those operations that require proper 

management for efficiently utilising the 

container yard, reducing the retrieval time and 

the number of re-handlings. 

The challenge of the problem faced in this 

paper appears when newly arrived containers 

of a different size, type and weight need to be 

stored in a yard that holds a number of pre-

existing containers. This challenge becomes 

even more complex when the departure time 

of a container is unknown, as is the case when 

the container is collected by a Third Party 

Logistic (3PL) company without any prior 

notice of the collection date/time and then 

delivered to customers. 

The aim of this study is to develop a new 

constrained fuzzy knowledge based system for 

the management of container yard operations 

that takes into consideration a number of real 

life factors and constraints. One of these 

factors is the duration of stay for the topmost 

containers of each stack when the containers 

are stored. Because the duration of stay for 

containers in a yard varies dynamically over 

time, an ‘ON/OFF’ strategy is proposed to 

activate/deactivate the duration of stay factor 

constraint if the length of stay for these 

containers varies significantly over time. 
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As a methodology used in this research, a 

number of tools and techniques are utilised for 

developing the proposed system including: 

Discrete Event Simulation for the modelling 

of container storage and retrieval operations, a 

Fuzzy Knowledge Based Model (FKBM) for 

the stack allocation of containers, and a 

Heuristic Algorithm called ‘Neighbourhood’ 

Algorithm for the container retrieval 

operation. 

Results show that by adopting the proposed 

‘ON/OFF’ strategy, 5% of the number of re-

handlings, 2.5% of the total retrieval time, 

6.6% of the total re-handling time and 42 % of 

the average waiting time per truck are 

reduced. 

 

Keywords  Constrained Fuzzy Knowledge 

Based System . ‘ON/OFF’ Strategy . 

‘Neighbourhood’ Algorithm . Container Yard 

Operations 

        

1 Introduction 
  

With the growth in the international container 

shipping worldwide owing to the offshoring of 

manufacturing, there has been an increased 

interest in improving the operations in the 

container terminals [1].  

Container terminals involve a number of 

operations including rail side, container-yard 

side, and the gate-side operations. The most 

important operation is the container-yard side 

involving the storage and retrieval of the 

containers.  

The management of container yard operations 

is a complex task, and this complexity is due 

to inherent uncertainties in the storage and/or 

retrieval operations of the containers. The 

storage operation of containers is a very 

important task for achieving efficient 

utilisation of container yards. Proper storage 

operation leads to a reduction of the container 

yard operations cycle time [2].         

A number of problems are faced in such 

storage operations where the departure time of 

containers is unknown, which include storage 

space allocation and location assignment [3].  
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The storage space allocation problem studies 

the assignment of containers to a block or a 

bay, while the location assignment (stacking) 

problem involves the allocation of containers 

to stacks [4]. The location assignment problem 

can be considered quite complex because of 

the uncertainty regarding which container 

departs first. [5] and [6] have both performed 

studies concerning the location assignment 

problem for containers with an unknown 

departure time where they considered a 

number of real-life criteria such as grouped 

containers which can be stored in the same 

block and stack (i.e. discharged from the same 

vessel, belonging to the same weight class, 

picked up by the same customer, and retrieved 

in the same period), and the arrival time of 

containers (i.e. the length of time the container 

has been in the yard).  

However, additional factors together with 

more real-life constraints need to be taken into 

consideration during the storage operation, 

and hence this study was established to 

achieve this.             

This paper aims at developing a new 

constrained fuzzy knowledge based system for 

container storage and retrieval operations 

where the departure time of containers is 

unknown. It introduces a new methodology 

that can be used to solve complex real-life 

storage and retrieval problems.  

The developed system considers additional 

real-life factors and constraints that lead to 

more realistic container yard operations. This 

system considers three factors including the 

number of containers in each stack, the 

similarity between containers in each stack 

(i.e. containers belonging to the same 

customer), and the duration of stay of the 

topmost container in each stack. The 

constraints considered in this system are 

weight (full and empty), size, and type. Based 

on these factors and constraints, stacks are 

allocated for container storage.   

The rest of this paper is organised as follows: 

Related work is reviewed in Section. 2. 

Section 3 presents the container storage 

problem. The research methodology is 

presented in Section 4. Section 5 provides the 

experimental part, results analysis and 

discussion, followed by the conclusion and 

future work in the final section.  

 

2 Previous Work on Container Storage 

Operations Given Unknown Departure 

of Containers 
 

The container storage problem in a container 

yard is an important part of yard management, 

thus, container yard operations have been of 

interest to researchers. So, in this section, the 

existing approaches for container storage 

problems when the departure time of the 

container is unknown are reviewed.    

A fuzzy logic model taking into consideration 

a set of criteria such as the distance of the 

block to the gate, the block utilisation, the 

stack height, and the difference in the 

estimated time for dispatching the container 

was developed [7]. The developed container 

stacking model aimed at reducing the 

relocation ratio of containers with random 

departure times Another researcher [8], 

discussed ordered stacking and random 

stacking strategies for the slot assignment of 

containers in both single and twin storage 

areas with unknown departure time for the 

containers. [5] presented a fuzzy optimisation 

model was presented for storage space 

allocation to try to balance the total number of 

containers in a yard given the uncertain 

departure time. A number of criteria were 

utilised such as grouped containers which can 

be stored in the same block and stack. [9] 

suggested an efficient Genetic Algorithm 

(GA) to solve the storage space allocation 

problem to reduce the container storage and 

retrieval times. The storage operation 

considered the type and size of container and 

the fact that the pick-up time was known. 

However, there were containers with unknown 

departure times at the moment of planning, or 

containers with known departure times beyond 

the planning horizon. [10] established a model 

for allocating export containers to container 

yard blocks for balancing the workloads and 

reducing the transportation distance. During 

the allocation operation, retrieval time, type 

and number of containers were used as 

constraints.  

[11] addressed the optimisation of a block 

stacking system for reducing the number of 

blocks relocated. The algorithm considered the 

arriving unit load type during the relocation 

operation. [12] analysed both segregation and 

non-segregation strategies. In a segregation 

strategy, cargoes from different ships were 
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separated to reduce the number of extra 

movements of containers and the operation 

cost. [13] improved further the segregation 

strategy by considering the arrival pattern of 

containers. [14] proposed a methodology for 

the container stacking problem which 

estimated the number of re-handlings required. 

[15] introduced methods for container storage 

which could handle whether or not newly-

arrived containers were mixed with pre-

existing containers when the departure time of 

the containers was uncertain. The methods 

were introduced to estimate the number of 

containers which had to be relocated. [6] 

considered the probability for the departure of 

containers from the and functions were 

developed to achieve the optimal storage with 

the aim of minimising unproductive 

movements of the containers. The arrival and 

departure rates of containers and the storage 

yard characteristics were considered in the 

optimisation process. 

Although some of the previous works above 

have shown serious attempts in modelling and 

solving container storage problems, the 

modelling of these works considered only 

limited number of factors and real-life 

constraints.  

In this paper, additional factors and constraints 

are considered that reflect the real-life 

situation. These input factors include, the 

number of containers in each stack, the 

similarity between containers (i.e. containers 

belonging to the same customer), and the 

duration of stay of containers. The constraints 

include container size, type and weight (empty 

and full).  

 

3 Problem Description 
 

The management of the container yard 

including the storage and retrieval operations 

for containers is a complex task. This 

complexity appears when containers in the 

yard need be stored in stacks taking into 

consideration different constraints including 

the type, size and weight of the container 

together with the number of containers, the 

similarity between containers, the duration of 

stay and where the departure date/time is 

unknown.  

A container terminal utilises reach stackers to 

handle containers. The reach stacker is used 

to store, re-handle, retrieve and upload 

containers onto trucks within the container 

yard. See Fig. 1 for the layout of a container 

yard with pre-existing containers.  

 

 
 

Fig. 1 Schematic representation for the layout 

of a container yard 

 

In Fig. 1, the storage operation starts when a 

container train arrives at the terminal with a 

number of new containers. The reach stacker 

starts unloading containers from the train and 

stores them in the yard.  

The problem appears when deciding where to 

store the newly arrival containers that have 

different weight, size and type (Import 

Containers) with already existing containers, 

especially when the departure time of 

containers (pre-existing and newly arrived 

containers) is unknown. The departure time of 

containers is unknown because the containers 

are collected by trucks that belong to Third 

party Logistic (3PL) companies. Customers 

deal directly with these 3PL companies to 

deliver their containers. The 3PL companies 

have a limited number of trucks for container 

collection and transportation to customers. 

Customers that have containers in the yard 

inform the 3PL companies to collect their 

containers without any prior notice given to 

the yard operators.  The 3PL companies send 

trucks to the terminals for collection without 

any advance notice which makes the storage 

operation challenging.  

In the next section, the tools and techniques 

used in modelling the container yard 

management system are discussed. 

 

4 Development of ‘FKB_CYM’ – the 

Constrained Fuzzy Knowledge Based 

System for Container Yard 

Management  

 
In order to solve the container-stack allocation 

problem based on an unknown departure time, 

the Fuzzy Knowledge Based technique is 

used. This technique is required because the 

arrival time of trucks to take the containers to 

their destination is unknown. A Heuristic 

Algorithm named ‘Neighbourhood’ is then 

used to model the re-handling operation of 
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containers. The Discrete Event Simulation 

approach is utilised to mimic the arrival, 

storage and retrieval operations for the 

containers. The framework of the proposed 

‘FKB_CYM’ system is explained below.  

 

4.1 Framework of the ‘FKB_CYM’ 

System 

 

This section presents the framework for the 

proposed Fuzzy Knowledge Based system. 

The system framework is comprised of the 

input, process and output components as 

shown in the Fig. 2. The input component 

consists of the specification and container yard 

information. 

The process component involves a collection 

of techniques that work together to process the 

inputs. Finally, the output component includes 

a number of Key Performance Indicators 

which are categorised based on the operational  

time, yard criteria, truck utilisation, and 

resource utilisation. 

In the input component, the specification 

information consists of a number of input 

parameters such as container yard definition, 

number of pre-existing containers, number of 

customers, number of companies, number of 

trucks, truck travel time, number of container 

trains, and the inter-arrival time of container 

trains. In addition, it includes the storage and 

retrieval time per row and bay, as well as the 

re-handling time per row, bay, and tier. The 

Container yard information involves a number 

of the related factors alongside real-life 

constraints which include: the container size, 

type, and weight (both empty and full) of the 

topmost containers in each stack.  The factors 

which need to be considered are the number of 

containers in each stack, the duration of stay 

(i.e the length of time the topmost container 

has stayed in each stack) and the similarity of 

containers in each stack (i.e. containers which 

belong to the same customer). All this 

information is fed into the system to generate 

the required outputs.  

However, the duration of stay of different 

containers is changing dynamically over time 

which requires an ‘ON/OFF’ strategy to  

 

determine whether or not the factor is taken 

into account in subsequent processing. This 

strategy will be discussed in section 4.4.2.  

The process component is comprised of three 

modules including the Heuristic Algorithm, 

the Fuzzy Knowledge Based module and the 

Discrete Event Simulation techniques.  

The process starts when the container yard 

information is fed into the Fuzzy Knowledge 

Based module and the specification 

information is fed into both the storage 

allocation operation module and collection 

operation module to be processed. The 

specification information, which includes the 

container yard definition (i.e. number of bays, 

number of rows, number of tiers), number of 

pre-existing containers and the number of new 

containers in each train is fed into the storage 

allocation operation to initiate the storage of 

containers in the yard. Also included in the 

specification information is the number of 

trucks that collect the containers to deliver to 

customers, which is fed into the collection 

operation. Using the input information, the 

Fuzzy Knowledge Based module determines 

(i.e. allocates) the stack in which to store the 

container.  It achieves this by first calculating 

an acceptability level (αi) for each stack, then, 

the container is allocated to the stack which 

has the highest acceptability level. The 

container is stored in the allocated stack and 

the yard information will be updated.   

The heuristic algorithm is then applied to re-

handle any container which is on top of the 

required one. When the collection process for 

a container takes place, the required container 

is retrieved and uploaded onto a truck. Once 

the collection process is completed, then the 

container yard information will be updated 

accordingly.  

The discrete event approach is used in general 

to simulate the arrival and departure processes 

of both trains and vehicles alongside with 

other yard operations including storage and 

retrieval ones. The events of all entities 

including containers as temporary entities and 

trains, reach stackers, and vehicles as 

permanent ones. See Fig. 2 for the proposed 

framework 
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Fig. 2 The ‘FKB_CYM’ System Framework 

 

The output module as shown in Fig. 2 includes 

the number of retrievals, operational time, 

space utilisation, truck utilisation and resource 

utilisation. In this case, the operational time 

includes for the container, storage time, 

retrieval time, re-handling time and waiting 

time, together with the truck waiting time. The 

space utilisation includes the yard utilisation, 

bay utilisation, and stack utilisation. The 

resource utilisation includes the reach stacker 

utilisation and the number of re-handlings of 

containers. The truck utilisation consists of the 

number of used and unused trucks, and the 

number of containers delivered by each truck 

used.  

In the next section, each of the techniques 

used in the core of the ‘FKB_CYM’ system 

are explained in more detail. 

 

4.2 The ‘FKB_CYM’ Components   

 
This section discusses all the techniques used 

to develop the proposed ‘FKB_CYM’ system. 

This core system uses both Fuzzy Knowledge 

based and Discrete Event techniques to imitate 

the storage, retrieval, and re-handling 

operations for containers, together with the 

Heuristic Optimisation module to ensure a 

near optimal collection/retrieval operation. 

See Fig. 3 for the ‘FKB_CYM’ core 

components. 

The core components start responding when 

incoming containers arrive by train and need  

 

to be stored in stacks within the container 

yard. The storage process is restricted by a 

number of real-life constraints. 

The Fuzzy Knowledge Based module assesses 

the location to store the incoming container by 

using fuzzy reasoning which takes into 

account the constraints, and subsequently 

assigns an acceptability level value (αi) to 

each stack. The constraints of the system are 

the weight (i.e.both empty and full), size and 

type differences for the containers in each 

stack.  

Inputs from the container yard information are 

regarded as crisp inputs, which need to be 

fuzzified using fuzzy sets, which are 

represented by their respective membership 

functions, in order to apply the fuzzy 

knowledge based module. The fuzzy inference 

component which includes aggregation, will 

manipulate the given information in fuzzy 

format within the defined fuzzy rules. 

The fuzzy output will then be de-fuzzified 

using one of the methods [19] and [20], to 

calculate the acceptability level value (i.e. 

crisp value) of each stack to be used for the 

allocation of incoming containers. The stack 

with the highest acceptability level value will 

then be used for container storage, while 

simultaneously satisfying all inputs and 

conditions. Once the container is stored, the 

system updates the yard information for the 

next incoming container. 
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Fig. 3 Core of the ‘FKB_CYM’ System 

  
An ‘ON/OFF’ strategy is used to activate/de-

activate the duration of stay constraint (i.e. 

length of stay) for containers, to prevent it 

being used in the calculation if the value 

varies significantly over time. However, the 

imposed constraints play an important role in 

the storage process as they are providing the 

system with crisp sets. If the constraints for 

either the containers or stacks do not match, 

the acceptability levels for those stacks will be 

zero.     

A container collection process (i.e. retrieval 

operation) occurs when a truck arrives for 

collection and the required container stack has 

been identified for retrieval. The collection 

operation is optimised using the proposed 

‘Neighbourhood’ Heuristic Algorithm. This 

algorithm consists of a set of instructions to 

execute container retrieval, so that the 

container can be loaded onto the truck. The 

container retrieval process initiates the re-

handing operation if any container is on top of 

the required one. In the ‘Neighbourhood’ 

Algorithm, containers are retrieved and stored 

as close as possible to the stack that contains 

the required container. Then, after the required 

container is loaded onto the truck, all the re-

handled containers are returned to the original 

stack and the yard information updated 

accordingly.  

When needed for departure, the collection 

process is used to allocate the first available 

truck based on the minimum waiting time for 

the container. This reduces the number of 

trucks used by companies for transporting 

containers to customers.    

The collection process might happen during 

the storage (i.e. Allocation) operation. When 

these two operations take place at the same 

time, the storage operation will then be 

stopped and the collection operation will be 

carried out, because the collection process has 

priority over the allocation process. Once the 

collection process is completed, then the 

allocation process will be resumed. 

In the following section, the Fuzzy 

Knowledge Based model components will be 

explained in more detail. 

 

4.2.1 Fuzzy Knowledge Based Module 

(FKBM) for Storage Operation  

 
This Fuzzy Knowledge Based Module 

consists of a number of stages, including the 
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fuzzification process, fuzzy rule 

implementation and de-fuzzification stage. 

These stages will be discussed in detail.  

The acceptability level of storage (α) is the 

output from the model, which is an arbitrary 

value that reflects the value of the current 

stack in the decision process. This arbitrary 

value is defined as the acceptability level of an 

incoming container to the stack i (αi). For 

every stack i available in the container yard, a 

value α is generated based on the input factors 

and constraints which are discussed below. 

The acceptability level allows for the 

assessment of the most suitable stack location 

for the incoming container. The stack that has 

the highest acceptability level value will be 

allocated to store the new container. Three 

types of factors are considered in this module 

including: 

 

Factor 1: Number of Containers in the 

Stack 
 

The first input (N) considered for use in this 

module is the number of containers in stack i 

(Ni). The effect of ni on the output is that 

more containers currently in the stack will 

result in a lower acceptability for the new 

incoming container to the stack i (αi). If the 

truck arrival that will collect a container is 

unknown, the probability of service time being 

longer, owing to the number of re-handlings 

that would need to happen for a condensed 

container stack, would be high. Equally, when 

the number of containers in a stack is high, the 

number of re-handlings will be high in that 

stack. Therefore, input Ni is implemented to 

consider the number of containers for every 

stack i. 
 

Factor 2: Similarity of Containers 
 

The second input (S) to be implemented in this 

module is the similarity of the incoming 

container to the containers that are already 

stored in the stack i (Si). The effect of si on 

the output is that more similarity within the 

containers of the stack will result in higher 

acceptability of a new incoming container for 

the stack i (αi). The attribute included in 

determining the similarity of containers is the 

customer (i.e. containers that belong to the 

same customers). 

 Factor 3: Duration of Stay of 

Containers (DoS) 

 

The third input (T) is the total duration of stay 

of the containers within the stack i (Ti). The 

effect of Ti on the output is that the longer the 

duration of stay of containers in the stack, the 

lower the acceptability for a new incoming 

container for the stack i (αi). Based on work 

by [6], it is known that the longer duration of 

stay correlates directly with a higher 

probability of departure on the next time unit. 

It is assumed that as time passes, when a 

container is not collected, the probability of 

departing in the future is increased, since the 

length of stay of the containers will be 

updated. If there is no significant difference 

between the lengths of stay of containers 

identified then an ‘ON/OFF’ strategy is 

introduced to deactivate and reactivate this 

factor as appropriate.  

In addition to the above, three constraints (W, 

F & Y) are considered by the FKBM. These 

include the difference in weight (𝑊𝑖), size 

(𝐹𝑖) and type (𝑌𝑖) between the incoming 

container and the topmost container in the 

considered stack i. 𝑊𝑖 is determined by 

subtracting the weight of the incoming 

container from the weight of the container in 

the topmost location of stack i. Similarly, 

𝐹𝑖  & 𝑌𝑖 is determined by subtracting the size 

and type of the incoming container from the 

size and type of the container in the topmost 

location of stack i. In this study, three sizes of 

containers are included which are 20ft 

(Small), 30ft (Medium) and 40ft (Large) with 

different types for each size. 

In the FKB Module, three stages of operations 

are performed to identify an appropriate level 

of container storage, which are described in 

the following sections.  

 

The Fuzzification Stage  
 

Fuzzification is the stage where fuzziness is 

introduced to the inputs (control variables) and 

the output (solution variable). Fuzzy sets and 

related membership functions are assigned to 

each variable along with linguistic definitions 

[16] and a triangular “shape” will be used for 

all the membership functions. 

Firstly, the output variable (𝛼𝑖) is assigned a 

triangular membership function with six 

linguistic variables. The triangular 
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membership function of the output variable 

(𝛼𝑖) is defined with six linguistic variables, 

and there are six fuzzy sets with their 

respective membership functions as shown in 

Fig. 4a. These fuzzy sets include ‘Very Low’, 

‘Low’, ‘Medium Low’, ‘Medium’, ‘Medium 

High’, and ‘High’.  

 

For the first input variable (𝑁𝑖), there are three 

linguistic variables with assigned triangular 

membership functions. The triangular 

membership function is defined, three fuzzy 

sets (linguistic variables) decided for the  𝑛𝑖 

are ‘Low’, ‘Medium’, and ‘High’. In Fig. 4b, 

the membership function of input  (𝑁𝑖) is 

presented. 

 

The second input variable is the 𝑆𝑖. Similar to 

𝑇𝑖 and  𝑁𝑖, 𝑆𝑖 have triangular shaped 

membership functions. The linguistic 

variables (levels) determined for 𝑠𝑖 are ‘Low’, 

‘Medium’, and ‘High’. Fig. 4c represents the 

membership function of 𝑠𝑖. 

 

The third input variable considered in this 

paper is (𝑇𝑖). Fuzzy sets have triangular 

membership functions, there are three 

linguistic variables (levels) that are selected 

for 𝑇𝑖; ‘Low’, ‘Medium’ and ‘High’ as shown 

in Fig. 4d. 

 

 

 

 

 

 

 
 

Fig. 4 a) The fuzzy membership function of 

the output. b) The fuzzy membership function 

of the input factor (N). c) The fuzzy 

membership function of the input factor (S). 

d) Fuzzy membership function of the input 

factor (T). 

 

 

The three constraints 𝑤𝑖 and 𝐹𝑖 & 𝑌𝑖 have only 

one set called ‘Accept’ or crisp membership 

functions. 

The graphical representation of their mem       

bership functions are presented in: Fig. 5a 

for 𝑊𝑖, Fig. 5b for 𝐹𝑖 and Fig. 5c for 𝑌𝑖. 

𝑊𝑖  , 𝐹𝑖 𝑎𝑛𝑑 𝑌𝑖 have the same membership 

function. 

 

  

 

 

 

Fig. 5 The defined crisp membership 

functions of the constraints: a) The 

membership function of the weight. b) The 

membership function of the size. c) The 

membership function of the type. 
 

The Fuzzy Inference- Fuzzy Rules 

Determination Stage  
 

To define the relationship between the inputs 

and the output, fuzzy rules have been 

determined. These rules define the outcome 

of the interaction of each input variable on the 

output [17]. For this purpose, the selected 

input variables (𝑁𝑖, 𝑇𝑖, and 𝑆𝑖,) and their 

interactions are analysed and the rules are 

determined. A total of 27 different rules are 

identified with respective levels for each 

input factor. The rules follow the ‘If-Then’ 

structure. The rules are decided based on 

expert opinions, which in this case, are based 

on the literature, observation and logic 

regarding the effect each input variable has on 

the output. In addition, the rules are proposed 

to reflect the location availability for the 

incoming container to minimise the number 

of re-handlings of containers during the 

retrieval operation. Table 1 provides all the 

fuzzy rules defined in this study. 
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Table 1 The defined fuzzy rules 

 
 

In this stage, an aggregation process is 

applied. The aggregation includes 

manipulating the given information in fuzzy 

format within the defined rules. Upon 

completing the rules, the aggregation is 

implemented with the minimum operator [18]. 

Eq. (1) is introduced for the proposed 

approach for container stack allocation. For 

each rule j, a truncated value (𝑇𝑗) is calculated.  

 

𝑇𝑗 = 𝑚𝑖𝑛 {
𝜇(𝑁)̃ 𝑛𝑖, 𝜇(𝑆)̃𝑠𝑖 , 𝜇(𝑇)̃𝑡𝑖, 𝜇(𝑊)̃𝑤𝑖 ,

 𝜇(𝐹 ̃)𝑓𝑖 ,  𝜇(𝑌)̃y𝑖
}         (1)  

 

Previously, the special condition of 𝑊𝑖, 𝐹𝑖  & 𝑌𝑖 

is discussed. As our operator is minimum, in 

any rule, if degree of membership of a given 

value for 𝑊𝑖, 𝐹𝑖  𝑎𝑛𝑑 𝑌𝑖 are computed to be 0, 

the final output for all 𝑇𝑗 will also be 0. 

 

The De-fuzzification Stage  
 

The de-fuzzification step involves the 

operations to transform the fuzzy output set 

into a crisp output. There are various methods 

for de-fuzzification including centre of 

gravity, mean of maximum and centre 

average, etc. [19] and [20]. For this study, the 

centroid (i.e. a specific implementation of the 

centre strategy of gravity method) is used for 

the de-fuzzification process. 

The strategy finds the centre value (𝑦𝑗) for 

each rule by using the truncated value 

reflected on the output fuzzy sets. Then, the 

overall centre of gravity is computed. 

Consider the truncated value 𝑇𝑗 and the output 

�̃� where the rule defines the outcome to be the 

level-p. The centre value is given by the 

following Eqs. (2 to 5) applied with Fig. 6. 

Upon finding the corresponding centre values 

for each of the rules j (𝑦𝑗) as defined, the crisp 

output value defined as (𝑦∗) is computed with 

the centre of gravity method as shown in Eq. 

(6). 

 

  
 

Fig. 6 Truncated value on the output fuzzy set 

 

𝑦𝑗 =
𝑥𝑗𝑎 + 𝑥𝑗𝑏

2
,                                    𝑤ℎ𝑒𝑟𝑒;     (2)  

𝑇𝑗 =
𝑥𝑗𝑎 − 𝑞1

𝑞2 − 𝑞1

=
𝑞3 − 𝑥𝑗𝑏

𝑞3 − 𝑞2

,                      𝑤ℎ𝑒𝑟𝑒;                          (3) 

𝑥𝑗𝑎 =  𝑞1 + 𝑇𝑗(𝑞2 − 𝑞1)       𝑎𝑛𝑑  𝑥𝑗𝑏

= 𝑞3 − 𝑇𝑗(𝑞3 − 𝑞2)                (4) 

∴         𝑦𝑗 =
𝑥𝑗𝑎 + 𝑥𝑗𝑏

2

=
𝑞1 + 𝑞3 + 𝑇𝑗(2𝑞2 − 𝑞1 − 𝑞3)

2
                          (5) 

𝑦∗ =
∑ 𝑦𝑗

𝑙
𝑗=1 𝑇𝑗

∑ 𝑇𝑗
𝑙
𝑗=1

                                                     (6) 

 

 

4.2.1.1 The Proposed ‘ON/OFF’ 

Strategy  

 
As mentioned before, the Fuzzy Knowledge 

Based Module (FKBM) has three input factors 

including the number of containers in each 

stack (N), similarity of containers in each 

stack (S), and duration of stay for the topmost 

containers in each stack (T). FKBM has three 

constraints as well, which are, for the 

containers in each stack, the weight (i.e. both 

Full and Empty), size, and type of container. 

Based on these factors and constraints the 

acceptability level value of each stack is 

computed. The stack with the highest 

acceptability level value is allocated to store 
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the container. To provide the acceptability 

level values for the stacks, one of the input 

factors (i.e. Duration of Stay) is provided to 

the system and this changes dynamically over 

time. As the duration of stay for containers 

increases and varies over time, an ‘ON/OFF’ 

strategy is proposed to activate/deactivate the 

duration of stay factor in the system if there is 

a significant difference in the lengths of stay 

for the topmost containers in all the stacks. 

See Fig. 7 for the ‘ON/OFF’ strategy for the 

duration of stay factor.   

 

 

 
 

Fig. 7 The ‘ON/OFF’ strategy of duration of 

stay factor 

 

When the duration of stay factor is activated 

(i.e. ON) to the system, all factors (N, S, and 

T) are used to calculate the acceptability level 

values for container storage operation. But 

when the duration of stay factor is deactivated 

(i.e. OFF) to the system, only the two factors 

(N and S) are used to calculate the 

acceptability level values for container storage 

operation (i.e. for stack allocation). 

The decision of how the combination of 

different linguistic variables for each input 

factor affect the output (i.e. acceptability level 

values) is determined by the defined fuzzy 

rules. For this purpose, 27 fuzzy rules are 

identified as stated in Table (1), which define 

the outcome of the interaction of each input 

factor on the output. When the duration of stay 

factor is activated (i.e. ON) with the other two 

factors to the system, all defined rules (27 

rules) are fed to the fuzzy inference engine to 

calculate the output (i.e. acceptability level 

values for each stack) for container storage 

operation.  

However, when the duration of stay factor is 

deactivated (i.e. OFF) to the system, the other 

two factors (N and S) are utilised to calculate 

the acceptability level values for the stacks. In 

this case, the number of defined fuzzy rules is 

reduced to 9 and the acceptability level values 

are updated as shown in Table 2 below. 

Table 2 The reduced fuzzy rules 

 
 

In Table 2, when the duration of stay factor is 

deactivated (OFF), only the rules highlighted 

in red will be used by the system. In this case 

only the number of containers and the 

container similarity factors will be used to 

calculate the acceptability level values for the 

stacks in the container storage operation. The 

highlighted column in green displays the 

linguistic variables for the duration of stay 

factors. The highlighted rows in red displayed 

in the second and third columns are the 

linguistic variables for the number of 

containers and container similarity factors. 

The rows highlighted in red in the last column 

are the linguistic variables for the output (i.e. 

acceptability levels). The linguistic variables 

of the output are updated based on the 

linguistic variables for the two input factors as 

shown in the above table.  

 

 

The Incremental of Container Length of 

Stay 

 
Once stored in the yard, the length of stay for 

a container is incremented continually until it 

departs. The updating process for the 

container duration of stay must be executed 

each time a container is stored in, or departs 

from the yard. This assists the decision of 

when to store newly-arrived containers with 

pre-existing ones. After a period of time, each 

of the containers in the yard will have 

different lengths of stay. See Fig. 8, which 
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illustrates the differing lengths of stay for 

containers over time. 

 

 
 

Fig. 8 The Time Incremental for the Container 

Length of Stay 

 

In Fig. 8, there can be seen a number of pre-

existing containers which have been stored in 

the yard for a period of time (i.e. Containers in 

Red). When a container arrives to be stored 

with pre-existing ones, the new containers will 

be stored based on the acceptability level 

values obtained from the FKBM as explained 

in Sect. 4.2.1. While the new arrivals are being 

stored (i.e. Containers in Green), some of the 

pre-existing containers may depart. In the 

passing of time, those new containers will 

become pre-existing (i.e. Containers in half 

Green and half Red), the duration of stay for 

the containers will be updated and each could 

have its own quite different duration of stay.  

 

The Increment of Length of Stay 

Approximation Algorithm 
   

Due to the variety of topmost containers in 

each stack in terms of length of stay, the 

duration of stay factor is updated and provided 

to the system dynamically over time. The 

notations of the length of approximation 

algorithm are defined below then followed by 

its steps in details.  

DoS: Duration of Stay of topmost container in 

each stack 

𝑡𝑜: Minimum DoS in hours 

𝑡𝑀𝑎𝑥: Maximum DoS in hours 

𝑑: DoS in day 

𝑑𝑜:  Minimum DoS in day 

𝑑𝑀𝑎𝑥: Maximum DoS in day 

𝑡𝑛: DoS between 𝑡𝑜 and 𝑡𝑀𝑎𝑥 

𝑑𝑛: DoS between 𝑑𝑜 and 𝑑𝑀𝑎𝑥 

 The steps of the Algorithm are explained 

below in detail: 

Step 1: Obtain durations of stay for the 

topmost container for all stacks 

Step 2: Calculate the possibility percentage 

for container storage (storage success)  

        Step 2.1: Approximate the duration of     

stay (DoS) of container 
                   Step 2.1.1: If  𝑡𝑜< DoS ≤ 𝑡1, then   

approximate the DoS to 𝑑𝑜 

                     Step 2.1.2: If  𝑡1< DoS ≤  𝑡𝑛, then 

approximate the DOS to 𝑑𝑛  

Step 2.1.3: If  𝑡𝑛< DoS ≤  𝑡𝑛+1, then 

approximate the DoS to 𝑑𝑛+1 

Step 2.1.4: If  𝑡𝑛+1< DoS ≤  𝑡𝑀𝑎𝑥, then 

approximate the DoS to 𝑑𝑀𝑎𝑥 

Step 3: Check the approximated durations of 

stay  
Step 3.1: Consider the stacks that have the 

same approximated duration of stay values 

as possible (success) stacks for storage 

Step 3.2: Calculate the number of different 

durations of stay  

Step3.3: Calculate the possibility 

percentage for container storage (number 

of different durations of stay / total number 

of stacks in the yard)    

Step 3.4: If the possibility percentage for 

container storage (success) is ≥  

a specific percentage, then go to Step 4 

Step 3.5: If the possibility percentage for 

container storage (success) is < a specific 

percentage, then go to Step 5  

Step 4: Activate the duration of stay factor 

(ON). 

Step 5: Deactivate the duration of stay factor 

(OFF). 

 

Obtaining the duration of stay for the topmost 

container in each stack was the first step of the 

algorithm, then, the next step was the 

calculation of the possibility percentage for 

container storage (i.e. the chance of the 

container being successfully stored in a stack). 

To calculate the possibility percentage for 

container storage, the approximation of the 

duration of stay for containers was necessary. 

Fig. 9 shows the duration of stay 

approximation process. 

 

 
 

Fig. 9 The length of stay progression 

approximation 

 

In Fig 9., when the duration of stay is 𝑡1 hours 

or less, then the DoS is approximated to 𝑑𝑜 

days, however, when the duration of stay is 

more than 𝑡1 hours and less than or equal to 𝑡𝑛 
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hours, then the duration of stay is 

approximated to 𝑑𝑛 days. If the duration of 

stay is more than 𝑡𝑛 hours and less than or 

equal to 𝑡𝑛+1 hours, then the duration of stay 

is approximated to 𝑑𝑛+1 days. But, when the 

duration of stay is more than 𝑡𝑛+1  hours or 

equal to 𝑡𝑀𝑎𝑥 hours, then the duration of stay 

is approximated to 𝑑𝑀𝑎𝑥 days. The next step 

was to check the approximated duration of 

stay for the topmost container of all stacks, 

and to consider the stacks that have the same 

approximated duration of stay values, as 

possible (success) stacks for storage. This 

checking was important in order to calculate 

the number of different durations of stay for 

containers in the yard. The possibility 

percentage for container storage was 

calculated as the number of different durations 

of stay, divided by the total number of stacks 

in the yard. If the possibility percentage for 

the container (success) is greater than or equal 

to a specific percentage (i.e. provided by the 

user), then the DoS factor is activated (i.e. 

ON) to the system. However, if the percentage 

of storage possibility is less than a specific 

percentage (provided by the user), then the 

DoS factor is deactivated (i.e. OFF) to the 

system. 

 

4.2.2 The Neighbourhood Algorithm for 

Container Re-handling  

 
When departing from the yard, in order to be 

retrieved the container has to be topmost in the 

stack. However, if there are other containers 

on top of it, they have to be re-handled from 

the current stack (original stack) to another 

stack to free the way for retrieval. Once the 

target container is retrieved, the re-handled 

containers are moved back to the original 

stack [21], [22] and [23].  

In this study, for the container re-handling 

operation, the strategy presented by [24] is 

used when containers need to be moved from 

the original stack to the next nearest stack. 

This Algorithm is considered in this paper in 

order to reduce the total retrieval time for the 

containers (i.e. the travel distance for the reach 

stacker). The ‘Neighbourhood’ Algorithm 

searches for a stack where there is an available 

slot. At the same time, in case the stack is not 

empty, it checks if the topmost container has 

the same size and type (i.e. constraints of the 

container) as the container being re-handled.  

The Algorithm searches for a stack by looking 

first in stacks immediately next to the original 

stack (i.e. stacks that are neighbours). This 

will result in finding the closest stack possible 

to the original stack that complies with the 

constraints of the container.  

The first step of this algorithm is to search for 

an available slot in the closest stack to the 

original stack. If the found stack is empty, the 

container is re-handled to that stack. If the 

found stack is not empty, the ‘NACR’ 

algorithm checks that the size type and weight 

of the container being re-handled is the same 

as the topmost container in that stack., If it is, 

then the container is re-handled to the stack, if 

not, the container is not re-handled and the 

algorithm searches for another stack. If all 

stacks are full, the container being re-handled 

will wait until a slot becomes available. 

 

The steps of the algorithm are summarised as 

below:  
 

Step 1: Search for an available slot in the 

closest stack to the original stack. 
 

Step 2: If the found stack is empty, then go to  
 

Step 3, else then go to step 4. 
 

Step 3: Re-handle the container to the stack 

and then go to step 7. 
 

Step 4: If the found stack is not empty, then go 

to step 6 else then go to step 5. 
 

Step 5: If all stacks are full, then go to step 1.  
 

Step 6: Check the size, type, and weight of the 

container being re-handled with the topmost 

container in that stack. 
Step 6.1: If the container being re-handled 

has the same size of the topmost container 

then go to step 6.2, else go to step 1. 

Step 6.2: If the container being re-handled 

has the same type of the topmost container, 

then go to step 3, else go to step 1. 

Step 6.3: If the container being re-handled 

has the same weight or less of the topmost 

container, then go to step 3, else go to step 1. 
 

Step 7: Terminate in case the retrieval 

operation is completed, else repeat steps 1-6 

 

5. Experimental Study, Results and 

Discussion 

 
In order to test the behaviour of the developed 

system, two scenarios are designed which 

would either consider or not the Duration of 

Stay (DoS) factor in processing within the 
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system. The proposed ‘On/OFF’ strategy is 

applied if the Duration of Stay (DoS) factor is 

considered. The two scenarios were tested 

with pre-existing containers in the yard and 

used the Fuzzy Knowledge Based Module for 

the storage strategy and the Neighbourhood 

Heuristic Algorithm as a re-handling strategy. 

This section reports the results of testing the 

developed system for container yard 

operations against the mentioned real-life 

scenarios. The performance of the system was 

evaluated both with and without the DoS 

factor being used in the calculation. The 

developed system was coded using the Visual 

Basic for Applications (VBA) language within 

MS Office Excel.  

 

5.1 Developed Scenarios 

 
In this section, two scenarios were designed to 

test the behaviour of the developed system. 

The first scenario was defined by inclusion of 

the duration of stay factor where the yard 

consists a number of pre-existing containers. 

The second scenario is similar to the first 

scenario except that the Duration of Stay 

factor was not considered. 

  

5.1.1 Input Parameters 
 

The input parameters for testing the developed 

system are presented. In the container yard 

management system, different resources are 

utilised including a container yard, a reach 

stacker, container trains, and trucks. The 

container yard is divided into 8 bays, each bay 

consists of 6 rows and each row (stack) holds 

up to 5 containers. The container yard had a 

number of pre-existing containers. The pre-

existing containers had been stored in the yard 

for 2 to 10 days.  

The number of container trains was 3 to 5 

trains a day for 1 week. Each train had 50 to 

70 containers with varying weight size and 

type. The inter-arrival time between trains was 

4 hours.  . 

For each container, the values for parameters 

used were: Weight: empty or full, Size: small, 

medium or large, Type: 2 of small size, 3 of 

medium size and 4 of large size.  

The storage time for each container in the first 

bay from the train side was set to 3 minutes, 

and the storage time per extra bay was set to 2 

minutes. In order to activate/deactivate the 

duration of stay factor in the system, the 

duration of stay was set to 40%. When the 

difference in length of stay of the containers 

was 40% or above, then the duration of stay 

factor is activated  (ON) otherwise it is OFF. 

When the required container was at the top of 

the target stack, the retrieval time was set to 2 

minutes, but when there was a container on 

top of the required one, the re-handling time 

of that container was set to 1 minute per row 

and 2 minutes per bay. The containers were 

picked up and delivered to customers by 7 

Third Party Logistic (3PL) companies. Each 

company had 2 to 20 trucks with 15 customers 

and each customer had 3 to 10 containers in 

each train. The travel time for each truck to 

deliver containers to customer and return was 

set from 60 to 200 minutes. The results are 

presented in the next section with figures and 

comments.   

 

5.2 Results 
  

The results of the two scenarios with the input 

parameters described above are presented in 

this section. The performance of the 

‘ON/OFF’ strategy is presented in the figures 

below showing the container re-handling and 

retrieval time and the average waiting time per 

truck.  

Fig. 10 shows the total number of re-handlings 

of containers in both scenarios. As can be 

seen, the total number of re-handlings is 

reduced by 5% when the DoS factor was 

considered by the system. When the DoS 

factor was considered to make the decision for 

allocating stacks for container storage, the 

system allocated the correct stacks for 

containers to be stored. 

 

 
 

Fig. 10 The total number of re-handlings 
 

Figs. 11a, 11b and 11c show the number of re-

handlings per stack, row and bay respectively 
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for both scenarios. Comparing the number of 

re-handlings achieved in stacks when the 

duration of stay factor was not considered, the 

following results can be observed. The highest 

number of re-handlings can be seen at both 

stacks 13 and 38 (i.e. 70 re-handlings) while 

the lowest number of re-handlings can be seen 

at stack 14 (i.e. 34 re-handlings). This meant 

that the number of stored containers during the 

operation at stacks 13 and 38 was higher than 

the other stacks, while in stack 14 the number 

of stored containers was low.  

However, when the duration of stay factor was 

considered, the highest number of re-

handlings was at stack 47 (i.e. 76 re-

handlings) while the lowest number of re-

handlings was at stack 30 (i.e. 32 re-

handlings). This meant that the number of 

stored containers during the operation was 

higher than the other stacks, but in stack 30 

the number of stored containers was low.  

Regarding the rows, when the duration of stay 

factor was not considered, the highest number 

of re-handlings can be seen at row 6 (i.e. 457 

re-handlings), while at row 5 the number of 

re-handlings was the lowest (i.e. 404 re-

handlings).  

However, when the DOS factor was 

considered, the highest number of re-

handlings can be seen at row 1 (i.e. 430 re-

handlings), but at row 4 the number of re-

handlings was the lowest (i.e. 372 re-

handlings).  

The number of re-handlings at bay 7 was the 

highest (i.e. 345 re-handlings) when the DOS 

factor was not considered, and it was the 

lowest at bay 8 (i.e. 308 re-handlings).  

  

Fig. 11 Number of re-handlings of containers. a shows the number of re-handlings per stack, b 

shows number of re-handlings per row, c shows the number of re-handlings per bay  

 

Although, when the DOS factor was 

considered, at bay 3 the number of re-

handlings was the highest.  
 

And at bay 7, the number of re-handlings was 

the lowest. When the DoS factor was not  

 

 

considered for allocating stacks for container 

storage, the system allocated stacks for 

containers based on the other two factors (i.e. 

Number of containers & Similarity of 

containers in each stack) without taking into 
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consideration the duration of stay (i.e. time 

spent) for the containers in the yard. 

 

Figs. 12a, 12b, 12c and 12d show the average 

utilisation of: bays, rows, tiers and stacks 

respectively. As it can be seen in Fig. 13a, the  

highest utilisation is at bay 3 when the 

duration of stay factor was not considered, but  

it was the highest at both bays (i.e. 2 and 6) 

when the duration of stay factor was 

considered. 
 

However, the lowest utilisation is at bay 7 

when the duration of stay factor is activated, 

and it is the lowest at bays 1 and 8 when the 

duration of stay factor is deactivated. 
  

Fig. 12b shows that the utilisation in rows 3 

and 4 is the highest when the DoS factor is 

activated, but in row 4 was the lowest.  

However, the utilisation in all rows is almost 

the same in both scenarios with a trivial 

defference between them. Regarding the tier 

utilisation, tier 1 has the highest and equal 

utilisation in both scenarios, but it is the 

lowest in tier 5 in both scenarios. This means 

that the number of stored containers during the 

storage operation in tier 1 is higher than tier 5 

in both scenarios. With regard to stack 

utilisation, stack 26 is the highest when DoS 

factor is activated, and stack 13 is the highest 

when the DOS factor is deactivated. Although, 

the difference in stack utilisation is trivial in 

both scenarios, the number of stored 

containers during the stoarge operation is 

almost the same in both scenarios in all stacks.  

In general, the utilisation of the stacks has 

been reduced by adopting the DoS factor for 

the purpose of easier retrieval. 
 

 
  

Fig. 12 The average utilisation in the yard. a) The average utilisation of bays, b) The average 

utilisation of rows, c) The average utilisation of tiers, d) The average utilisation of stacks. 
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All the stored containers during the storage 

operation are retrieved after a period of time 

based on a random departure that followed a 

triangular distribution. Figs. 13a and 13b show 

the average and total retrieval time per 

container respectively for all containers for 

both scenarios respectively.  
  

As it can be seen in Fig. 13a, the average 

retrieval time per container was minimised 

when the DoS factor was activated. This was 

caused when the DoS factor was activated to 

make the decision for allocating stacks for 

container storage, the system allocated the 

correct stacks for containers to be stored and 

distributed, in which the utilisation of stacks  

 

When the DoS factor was activated, the total 

retrieval time for all containers was also 

reduced, which can be seen in Fig. 13b.  

 

After each container was retrieved, the 

container was then uploaded onto a truck and  

delivered to customers. Fig. 14 shows the 

average waiting time per truck. The waiting 

time of a truck was calculated by the formula: 

re-handling time of containers + uploading 

time onto the truck  

   

  

Fig. 13 The average and total retrieval time of containers. a) The average retrieval time per 

container, b) The total retrieval time of containers   
 

 
 

Fig. 14 The average waiting time per truck       

 

As shown in Fig. 14, the average waiting time 

per truck was 11.04 hours when the DoS 

factor was deactivated, but when the DoS 

factor was activated, the waiting time was 

reduced to 6.37 hours per truck because the 

retrieval operation for the containers was 

easier and faster.     

In order to retrieve a container underneath 

other containers, the containers on top of the 

one that need to be retrieved and re-handled to  

 

other stacks. Fig. 15 shows the re-handling 

time for containers during the retrieval 

operation for both scenarios. 

 

 
 

Fig. 15 Re-handling time of containers 

 

When the DoS factor is activated, the re-

handling time of containers was reduced by 

6.6 % as shown in Fig. 15. This meant that as 

well as the number of re-handled containers 

being less when the DoS factor was activated, 

the number of re-handled containers was also 

less then the re-handling time. 
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6. Conclusion and Future Work 
 

In this paper, the problem of storing newly 

arrived containers in the yard with pre-existing 

containers was solved using an innovative 

fuzzy knowledge based system. An ‘ON/OFF’ 

strategy was developed to respond efficiently 

to variations in the length of stay factor. A 

constrained fuzzy knowledge based system 

was developed for container yard operations 

management to reduce the number of re-

handlings and operational time of containers 

with an unknown departure time. This system 

took into consideration the unknown departure 

time by taking into account the duration of 

stay for the containers (i.e. the time spent in 

the yard).   

The system was developed for stacking newly 

arrived containers with pre-existing ones, 

allowing the operations to be analysed. The 

results indicated that when a stack that had 

more containers, the number of re-handlings at 

that stack was high. When the Duration of 

Stay (DoS) factor was activated, the results 

were more robust than when it was 

deactivated. The operational time and the 

number of re-handlings were reduced when 

the DoS factor was activated during the 

storage operation for containers (i.e. the stack 

allocation for container storage). This meant 

that when the DoS factor was activated, 

containers could be allocated to the correct 

stacks which led to reduced operational time 

and number of re-handlings during the 

retrieval operation. 

   

As a second stage of this work, a Genetic 

Algorithm (GA) will be combined with the 

current Fuzzy Knowledge Based System for 

optimisation purposes. This will be used to 

select optimal rules from the fired fuzzy rules 

for each container in the stack, which will be 

fed to the fuzzy inference engine to assess the 

stacks and obtain optimised acceptability 

levels for the container storage operation. 
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