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Abstract 

There is currently a limited amount of literature investigating the age-related changes 

in eccentric muscle function in vitro. The present study uniquely uses the work loop technique, 

to better replicate in vivo muscle function, in the assessment of the age and muscle-specific 

changes in acute and sustained concentric and eccentric power and recovery. Whole soleus or 

EDL muscles were isolated from 10-week and 78-week old mice, and acute and sustained 

concentric and eccentric work loop power assessed. Despite an age-related increase in body 

and muscle mass, peak absolute power for both muscles was unaffected by age. Peak concentric 

power normalised to muscle mass declined significantly for each muscle, whilst peak 

normalised eccentric power declined only for soleus. Fatigue resistance and recovery for the 

soleus did not differ between age or contraction type. Older EDL was less resistant to 

concentric fatigue, but was better able to withstand sustained eccentric activity than young 

EDL. We have shown that age-related changes in muscle quality are more limited for eccentric 

function than concentric function. A greater bodily inertia is likely to further reduce in vivo 

locomotor performance in older animals. 
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Introduction 

The age-related decline in force (1), power (2) and fatigue resistance (3) has been 

associated with reduced mobility, quality of life and greater mortality in older adults (4). In 

vitro (5) and in situ (6) studies that allow for the examination of contractile and morphological 

characteristics of muscle have been valuable in allowing the examination of the muscle and 

fibre type specific ageing response (1,5,7). Given that ageing has been shown to affect neural 

recruitment (8), assessment of isolated muscle performance can be made, independent of the 

central nervous system and motivational effects, allowing true maximal force and power output 

(PO) to be measured. Furthermore, an isolated skeletal muscle approach allows for an accurate 

measurement of performance relative to muscle size (muscle quality). Assessments of muscle 

quality using in vivo may be confounded by complications in accurately measuring lean tissue 

mass and intramuscular adipose tissue mass (9). Finally, the effects of muscle endurance cannot 

be accurately determined in vivo given the likely elevation in body mass in older adults. 

Therefore, larger, older adults would have to generate greater force to overcome greater inertia 

of the moving limb (10). 

Previous isolated muscle work has demonstrated that increasing age is associated with 

a significant decline in peak absolute force and isometric stress (force relative to muscle cross-

sectional area) (11–13), and concentric PO (14). Moreover, Tallis et al. (14) indicated that at 

the skeletal muscle level, fatigue resistance is age and muscle-specific, rationalising previous 

ambiguous findings examining the effects of ageing on fatigue (7,13,15). By contrast, there is 

limited evidence that examine age-related changes in eccentric power in isolated muscle 

models, especially given the important role of eccentric activity in older adults during 

locomotion and everyday tasks such as balance, moving from a standing to seated position and 

stair descent (16,17) without undue damage or fatigue (18). 



 
 

A small number of in vitro and in situ studies have assessed the effects of age on 

contraction-induced damage caused by eccentric muscle activity, whereby muscles are 

activated during substantial increases in muscle length. Such studies have demonstrated that 

skeletal muscles in older rodents are more susceptible to contraction-induced damage (13,19–

21), but produce the same (19) or greater force (21) than younger animals. The strains used in 

previous animal models are substantially greater than those that would occur in vivo (22,23), 

ranging from 10% to 50% of mean fibre length (13,18,19), and as such further work is needed 

to establish the effect of eccentric muscle activity using smaller strains that more closely 

approximates the in vivo function of skeletal muscle. 

The present study uses the work loop (WL) technique to better replicate in vivo 

contractile dynamics to examine the age-related changes in muscle PO (24–26). Ageing affects 

isometric force production (5,11–13,15,21,27) and eccentric force production during 

isovelocity lengthening of skeletal muscles (13,19–21,28), however these contraction types 

rarely occur in vivo (25,29). Estimation of muscle power derived from isokinetic assessments 

of muscular strength assume that the muscle activates and relaxes instantaneously, and fails to 

consider dynamic muscle length changes (25). As such, isometric and isovelocity methods have 

been shown to poorly estimate muscle power compared with the WL technique (25,29). By 

using sinusoidal waveforms and stimulation parameters that more closely replicate in vivo 

conditions, the WL technique considers the muscle force production during dynamic activity, 

by considering simultaneous changes in force, muscle length and activation level (24,25,30). 

Previous studies that have used the WL typically use strains of 0.10 (±5% of optimal length) 

to ascertain maximal WL power of isolated mouse soleus and EDL (14,30–32). The current 

work uniquely assesses the age-related changes in peak and sustained concentric and eccentric 

power using a strain that is more representative of the agonist-antagonist co-activation of 

skeletal muscles in vivo (22,23,33). 



 
 

The aim of this study was to examine the age-related changes in concentric and 

eccentric muscle function of mouse soleus (predominantly slow-twitch) and EDL 

(predominantly fast-twitch) using parameters that better represent in vivo dynamic muscle 

activity, and to determine whether such parameters lead to an age-specific change in the fatigue 

resistance and subsequent recovery of muscle power following a protocol of repeated maximal 

concentric and eccentric activation. Furthermore, the present work looked to establish 

differences between the absolute performance and performance normalised to muscle size 

derived from isometric contractions and acute measures of concentric and eccentric power, 

with the absolute performance providing insight into the real wold function of the muscle and 

the normalised measures providing valuable information with respect to changes in muscle 

quality.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Methods 

Animal Information 

Following approval from the Coventry University ethics committee, female CD-1 

mice were purchased at 8 weeks of age (Charles River, Harlow, UK) and allowed to mature in-

house at Coventry University. Animals were housed in groups of 8-10 and kept in 12:12 hour 

light:dark cycles at 50% relative humidity. Mice were provided with ad libitum access to food 

(CRM(P); SDS/Dietex International Ltd, Whitham, UK) and water. 

Mice were aged to either 10 weeks (n=40) and 78 weeks (n=40) to represent young 

and old animals respectively. A 10-week age group was utilised as previous research has 

identified that peak contractile function occurs at this age in the CD-1 strain (14). Previous 

work has demonstrated that a significant reduction in contractile function occurs by 50 weeks 

of age for the CD-1 mouse (14), and that mice of this age have an estimated survival rate of 

85%, with mortality rate ~50% by 78 weeks of age (34). An older 78-week old group was 

chosen as it was anticipated that more substantial ageing would have occurred and that this age 

group would be more reportative of the more advanced stages of ageing that have yet to be 

examined in this strain. The CD-1 strain was specifically chosen due to the outbred nature of 

this strain aligning more closely to the heterogeneous variability of human populations than 

the more commonly used C57Bl6/J strain (7,11,12,19,21,28,29). 

Each age group was further split into: Young Concentric (YC), Young Eccentric (YE), 

Old Concentric (OE) and Old Eccentric (OE) and underwent either the repeated concentric (YC 

& OC) or eccentric (YE & OC) protocol (n=10 per muscle per protocol). 

 

 

 

 



 
 

Muscle Preparation 

Animals were sacrificed via cervical dislocation in accordance with the British Home 

Office Animals (Scientific Procedures) Act 1986, Schedule 1. Animals were weighed to 

determine body mass, with whole soleus or EDL rapidly isolated from the right hindlimb in 

frequently changed, oxygenated (95% O2; 5% CO2), chilled (~5°C) Krebs-Henseleit solution 

of composition (mM) NaCl 118; KCl 4.75; MgSO4 1.18; NaHCO3 24.8; KH2PO4 1.18; glucose 

10; CaCl 2.54; pH 7.55 at room temperature (32). Aluminium foil t-clips were wrapped around 

the distal tendons of each preparation to prevent tendon slippage during the experimental 

protocol. At the proximal end, a small piece of bone was left intact to allow for attachment to 

the mechanics rig. 

Experimental Set-Up 

Each muscle was placed in a flow through chamber filled with circulated oxygenated 

Krebs-Henseleit solution with a reservoir of solution heated, via an external heater/cooler water 

bath (Grant LTD6G, Grant Instruments, Shepreth, UK), to 37.0±0.2°C. The temperature within 

the bath was continuously monitored using a digital thermometer (Checktemp C, Harvard 

Apparatus, Cambridge, UK). Each muscle was attached, using crocodile clips, to a force 

transducer (UF1, Pioden Controls Ltd, Henwood Ashford, UK) at one end, and a motor arm 

(V201, Ling Dynamic Systems, Royston, UK) at the other. The motor arm position was 

detected by a Linear Variable Displacement Transducer (DFG5.0, Solartron Metrology, 

Bognor Regis, UK). The muscle was activated through electrical stimulation of the surrounding 

solution via parallel platinum electrodes, with electrical currents provided by a table top power 

supply (PL320, Thurlby Thandar Instruments, Huntingdon, UK). Stimulation and length 

change parameters were controlled manually using custom written software (CEC TestPoint, 

Measurement Computing, Norton, MA) via a D/A board (KPCI3108, Keithley Instruments, 

Cleveland, USA) on a standard desktop PC. Once in position, each preparation was allowed to 



 
 

stabilise for 10-minutes prior to performing isometric contractions. Once stabilised, all 

preparations were tested for isometric and concentric WL properties prior to their pre-assigned 

fatigue protocol, with the methodological approach concurrent with previously published 

protocols (10,14,25,32). 

 

Isometric Contractions 

All preparations were optimised for length and stimulation parameters (14-18V for 

EDL, 12-16V for soleus; fixed stimulation amplitude of 160mA and pulse width of 1.2ms) 

through a series of isometric twitch contractions, with each parameter individually altered until 

peak twitch force was attained, as determined by measuring force via a digital storage 

oscilloscope (2211, Tektronix, Marlow, UK). The muscle length that corresponded to maximal 

twitch force was measured, using an eyepiece graticule, and defined as L0. Estimated fibre 

length for the EDL and soleus was calculated as 75% and 85% of L0 respectively (23). Maximal 

isometric force was measured by provision of tetanic stimulations to the preparation. The EDL 

received a 250ms burst of electrical stimulation and the soleus a 350ms burst of electrical 

stimulation. The frequency at which the stimulations were provided was altered until peak 

isometric force was achieved. This was typically 200-220Hz for EDL and 120-140Hz for 

soleus for both ages. The durations of muscle activation and relaxation were measured as time 

to half-peak tetanus (THPT) and last stimulus to half tetanus relaxation (LSHR) respectively. 

A rest period of 5-minutes was imposed between each tetanic stimulation to allow for sufficient 

recovery. 

 

 

 

 



 
 

Assessment of Concentric Work Loop PO 

Each muscle was held at the previously determined L0 and the stimulation amplitude 

and stimulation frequency that resulted in maximal isometric force were implemented. In the 

first instance, maximal concentric PO for all experimental groups was determined. 

Each preparation was subjected to four sinusoidal length change cycles per set of 

activity. A cycle frequency, which describes the rate at which the WL’s were performed, of 

5Hz for soleus and 10Hz for EDL was used as these cycle frequencies typically elicited 

maximal concentric PO in young (10,14,30–32) and old mice (14). A phase shift of -10ms and 

-2ms were utilised for the soleus and EDL respectively to elicit peak power (14,32). These 

phase shifts dictated that the stimulation started 10ms (for soleus) and 2ms (for EDL) before 

the muscle reached its maximal length. Phasic bursts of electrical stimulation were provided 

during muscle shortening for durations initially of 50ms and 65ms to the soleus and EDL 

respectively. This ensured that the muscles were stimulated primarily during shortening and 

largely inactive during lengthening. Each set of WLs’ was performed every 5-minutes to allow 

for sufficient recovery. For each WL cycle, a plot of muscle force against muscle length was 

generated by the Testpoint software, where the area of the WL equated to positive work during 

active shortening and negative work during passive lengthening (24). The strain (typically 0.08 

– 0.10 for all muscles and ages) and burst duration for each muscle was altered to ensure 

maximal concentric PO was achieved (31). 

 

Assessment of Eccentric Work Loop PO 

Eccentric power was not initially assessed for the YE and OE groups as optimisation 

of the muscle to achieve maximal eccentric PO may damage the muscle. Instead, the second 

WL of the eccentric fatigue protocol was taken to calculate eccentric PO. 

 



 
 

Repeated Concentric and Eccentric Work Loop Protocols 

The ability to sustain power during repeated concentric and eccentric muscle activity 

for each experimental group was determined by imposing fifty consecutive WL’s on each 

muscle. For the YC and OC groups, the strain and stimulation parameters which elicited 

maximal concentric PO were maintained.  

For the YE and OE groups, a cycle frequency of 5Hz and 10Hz was maintained for 

soleus and EDL respectively. A strain of -0.10 was used for all muscles to ensure the muscle 

passively shortened, followed by stimulation through lengthening. A stimulation phase shift of 

-10ms and -5ms for the soleus and EDL muscles respectively was maintained to ensure the 

stimulation was provided before the shortest muscle length. A burst duration of 72ms and 55ms 

was used for the soleus and EDL respectively to ensure the muscle was sufficiently stimulated 

throughout the lengthening phase.  

Time to fatigue of the experimental groups was measured as the time taken for power 

to drop to 50% of the maximum concentric or eccentric PO. 

 

Recovery Protocol 

The ability for each muscle to recover concentric power following the concentric and 

eccentric protocols was monitored for 30-minutes. The YC and OC groups were stimulated 

every 10-minutes as performed in our previous work (14,32), whilst the YE and OE groups 

were stimulated every 5-minutes to more closely examine recovery. The recovery of concentric 

PO after 30-minutes was expressed as a percentage relative to the pre-protocol maximal 

concentric PO for each group. 

 

 

 



 
 

Reassessment of Maximal Force and Stress 

Following 5-minutes recovery after the final WL of the recovery protocol, maximal 

absolute force and isometric stress was reassessed in the YE and OE groups as a further means 

of assessing potential contraction-induced damage, with the severity of the damage determined 

by the magnitude of the deficit in force and stress compared to pre-fatigue measurements 

(20,26). This was not performed with muscles of the YC and OC groups as repeated concentric 

WL’s do not significantly impair the recovery of power in the soleus and EDL following the 

same fatigue protocol used in previous studies (14,32). 

Each experiment lasted for approximately 105 minutes from the moment of cervical 

dislocation through to the final stimulation. 

 

Muscle Mass Dimensions and Calculations 

After the final stimulation, muscles were removed from the rig, and bone, aluminium 

clips, and tendons removed leaving the skeletal muscle intact. The muscles were blotted lightly 

with tissue paper to remove excess fluid and weighed to determine wet muscle mass (TL-64, 

Denver Instrument Company, Arvada, USA). The mean muscle cross-sectional area (CSA) 

was calculated from L0, muscle mass and an assumed muscle density of 1060kg.m-3 (35). 

Maximal isometric stress (kN.m2) was calculated as peak tetanic force divided by mean muscle 

CSA. Absolute PO (Watts) was calculated as the net work of a WL (i.e. the work done by the 

muscle during shortening minus the work done on the muscle during lengthening) multiplied 

by cycle frequency. Normalised PO (W.kg-1 muscle mass) was calculated as absolute PO 

divided by muscle mass. 

 

 

 



 
 

Statistical Analyses 

All data are presented as mean ± standard error of mean (S.E.M). All data was 

normally distributed and showed homogeneity of variance, so parametric analyses were 

employed. The data for animal and muscle morphology, isometric contractile properties, 

maximal concentric and eccentric WL force and power were pooled for age for each muscle 

and analysed using independent samples T-Tests (Excel 2016, Microsoft).  

A two-factor analysis of variance (ANOVA) was performed in SPSS (SPSS, IL, USA) 

to determine if repeated WL’s caused a significant reduction in muscle PO and whether this 

was age-specific. Independent samples T-test were used to determine significant differences in 

time to fatigue between each age group for both soleus and EDL. 

Recovery was assessed by a two-factor ANOVA with power and age as the main 

factors. An independent samples t-test was used to determine whether there was a significant 

difference between age groups in PO normalised to muscle mass after 30-minutes of recovery. 

A repeated measures ANOVA was used to determine whether post-fatigue maximal 

absolute force and isometric stress of the muscles that underwent the eccentric protocol were 

significantly affected by age. Level of significance was set at P<0.05 for all analyses.  

 

 

 

 

 

 

 

 

 



 
 

Results 

Morphological and Isometric Contractile Properties 

Ageing resulted in a significant increase in animal body mass (56%), soleus and EDL 

muscle mass (30% and 12% respectively) and CSA (32% and 9% respectively) with no change 

in muscle length (Table 1). Maximal isometric stress (absolute force divided by muscle cross-

sectional area) for the 10-week old soleus and EDL are in line with previously reported values 

for the CD-1 strain (Table 2): 189kN.m2 to 267kN.m2 for soleus (32,36), 250kN.m2 to 

300kN.m2 for EDL (14,36,37). There was a significant age-related reduction in maximal 

isometric twitch and tetanus stress for the both muscles, whilst absolute twitch and tetanus 

force declined significantly for the EDL only (Table 2). THPT was significantly longer for 

older soleus but not older EDL whilst LSHR was significantly prolonged for older EDL but 

not for soleus (Table 2). 

 

Maximal Concentric and Eccentric Work Loop PO and Peak Force 

Power normalised to muscle mass for 10-week old animals are similar to previously 

reported values for the soleus, ranging from 31.7W.kg-1 to 33.0W.kg-1 for the soleus (32,36),: 

59.8W.kg-1 to 99.0W.kg-1 for EDL (14,36,37) (Table 2). Absolute concentric and eccentric PO 

generated by soleus and EDL was not significantly affected by age (P>0.24 for all) though 

when normalised to muscle mass, the maximal concentric power of both the soleus and EDL 

was significantly lower in the OC groups by 21% and 16% for soleus and EDL respectively 

(Table 2). Maximal eccentric PO normalised to muscle mass was not significantly altered by 

age for the EDL (P>0.77) but declined significantly for older soleus by 27% (Table 2). 

Peak concentric force of the OC EDL was 23% lower than the peak concentric force 

achieved by the YC EDL muscles (P<0.002), though there were no differences in peak 

concentric force for young and old soleus (Table 2, P>0.41). Likewise, there were no 



 
 

significant differences in the peak eccentric force achieved both muscles of each age (Table 2, 

P>0.84 for both). 

 

Fatigue Resistance to Repeated Concentric and Eccentric Contractions 

Fifty consecutive concentric contractions resulted in significant reductions in relative 

power over time for both muscles (Figure 1 A&B; P<0.001). Age did not affect fatigue of 

soleus (Figure 1A; P=0.87). Typical WL shapes in showed that the YC soleus had slightly more 

pronounced negative work in the early part of relengthening than OC soleus as demonstrated 

by increased passive force through relengthening back to L0 with each WL, though this has 

little effect on fatigue resistance (Figures 2 C&D). No differences in concentric fatigue were 

observed for the first 1.2 seconds for the EDL, but fatigued significantly faster thereafter 

compared to the YC EDL group, with a 10% decrease in time to 50% of pre-protocol maximum 

power (Figure 1B; P<0.05). Negative work of the OC EDL was greater than YC EDL during 

the relengthening phase of the WL as shown by an increase in passive force through 

relengthening from the shortest muscle length with each WL, and therefore had poorer fatigue 

resistance (Figure 2 A&B). 

Fifty repeated eccentric WL’s did not elicit a significant reduction in relative PO over 

time for YE or OE soleus (Figure 1C; P=0.88). WL shapes indicated OE soleus have smaller 

WL areas at WL 2 due to absorbing less net work than YE soleus. By WL 18, YE soleus 

produces slightly less force during muscle lengthening, but this has no impact on muscle 

fatigability (Figure 3 C&D). By contrast, the EDL was unable to sustain eccentric power over 

time for both the YE and OE groups (Figure 1D; P<0.05). The muscles of the YE EDL lost 

power significantly faster than the OE EDL group (Figure 1D; P<0.001), with a 29% difference 

in the time to 50% of relative maximum PO. Positive work during the re-shortening phase of 



 
 

the WL is likely to be greater for the OE EDL than the YE EDL due to a downward shift in the 

right-hand portion of the YE EDL WL shape (Figure 3 A&B). 

 

Recovery of Concentric Power 

There was no significant difference in recovery of concentric power between young 

and old soleus following the concentric protocol (P=0.38), nor in recovery over time (Figure 

4A; P=0.47). There was a tendency for age to affect recovery of power for YE and OE soleus 

(P=0.08) but there was a significant recovery over time (Figure 4C; P<0.001). The soleus from 

each age had fully recovered by 30-minutes (YE 98±2%; OE 98±1%). 

The EDL of the OC group recovered concentric power to a greater magnitude than the 

YC group following the concentric protocol (Figure 4B; P=0.03, 59±4% vs. 43±5% 

respectively after 30-minutes), with significant recovery over time (P=0.03), though there was 

no age*time interaction (P=0.96). OE EDL had a significantly higher relative PO than YE EDL 

following the eccentric protocol (P<0.001), with a significant reduction in YE EDL relative PO 

over time (Figure 4D; P<0.001). There was a tendency for an interaction between age and time 

indicating a potential for older EDL to lose less power during the recovery period (P=0.08). 

 

Recovery of Absolute Force and isometric Stress 

Maximal absolute force and isometric stress of the soleus remained unchanged for 

both ages (Figure 5 A&B; P>0.36 for both). Absolute force and isometric stress declined 

significantly for the EDL, but to a greater magnitude in YE EDL, with force declining by 59% 

and 40% for YE and OE EDL respectively and stress by 57% and 38% for YE and OE EDL 

respectively (Figure 5A&B; P<0.001 for all).  

 

 



 
 

Discussion 

The present work is the first to compare the age and muscle-specific changes in acute 

and sustained concentric and eccentric PO by utilising the WL technique as a better 

representation of real world muscle function. An age-related reduction in acute and sustained 

concentric PO for the soleus and EDL did not mirror those observed for eccentric muscle 

activity, which was largely unaffected for the older skeletal muscles. Moreover, age did not 

affect the ability for the soleus to sustain concentric and eccentric power. The most significant 

finding pertains to the ability of older EDL to better withstand the damaging effects of a 

sustained bout of eccentric muscle activity than younger EDL, using a strain that better 

replicates in vivo muscle activity. Consequently, the reduction in eccentric contraction-induced 

force and power loss following sustained eccentric activity of the older EDL may indicate a 

reduced susceptibility to eccentric muscle damage with increasing age. 

 

Age-Related Changes in Skeletal Muscle Contractility 

Despite a significantly larger animal body mass and muscle mass (Table 1), absolute 

force and power remained unchanged in older soleus and EDL, whilst isometric stress (absolute 

force divided by cross-sectional area) and concentric power normalised to muscle mass was 

significantly reduced in the older age group (Table 2). In line with previous work examining 

the effects of ageing on muscle quality, there is a marked reduction in isometric stress and 

normalised WL power in the older skeletal muscles of this study (32,36,37), and this is more 

pronounced in the present study using 78-week old mice compared to Tallis et al. (14) using 

younger, 50-week old mice of the same strain. The greater animal body mass may act as a 

training stimulus due to the elevated body mass creating a loading effect on the lower limbs, 

hence the maintenance of absolute force and absolute concentric power (10). 



 
 

Similar to previous work examining the effect of ageing on isolated skeletal muscle 

(13,14,28), these results infer that substantial muscle ageing can occur without the muscle 

wasting that defines sarcopenia. The reduction in stress and normalised concentric power 

indicate an age-related reduction in muscle quality. Larger muscle of poorer quality adds 

further to an already elevated bodily inertia (10) and may further contribute to poorer in vivo 

locomotor capacity. A loss in muscle quality is not consistent for all contraction types as 

eccentric power normalised to muscle mass was well maintained in old EDL, though 

normalised eccentric power for the soleus declined with age. This muscle-specific reduction in 

acute eccentric power may partially explain the ambiguity surrounding eccentric contractile 

properties in older human populations, where some have reported an age-related decline in 

eccentric force of lower limbs (38,39) whilst others report no change (40,41). 

The age-related decline in muscle function may relate to an increase in dysfunctional 

Ca2+ handling proteins particularly given the age-related increase in soleus activation time and 

EDL relaxation time (Table 2). Previous literature has observed an age-related dysfunction in 

sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) activity in slow-twitch (42) and fast-

twitch (14) muscle fibres, likely causing leakage of sarcoplasmic reticulum (SR) Ca2+ from 

ryanodine receptors into the cytoplasm (43). Excitation-contraction uncoupling and reduced 

SERCA activity could explain why normalised concentric and eccentric power declines to a 

greater magnitude in older soleus than EDL (Table 2) given that slow-twitch fibres experience 

greater excitation-contraction uncoupling than fast-twitch fibres (44). 

Increasing age has been shown to have an effect on the interaction of the contractile 

proteins needed for cross bridge formation (27). Single fiber experiments, independent of 

calcium kinetics and non-contractile elements, demonstrate significant reductions in isometric 

force production with age, resulting in fewer actin-myosin binding sites maintaining a strong-

binding structure (27). By contrast, eccentric force production of single permeabilised EDL 



 
 

fibres of 27 month old mice has been shown to be significantly higher than those of younger 

animals, but were not different in whole muscles (21). Peak eccentric force was unaffected by 

age, but was significantly lower for older EDL during eccentric WL’s (Table 2) indicating age-

related alterations in cross-bridge kinetics are likely to be dependent on the mode of muscle 

activity. Additionally, intramyocellular lipid accumulation occurs with progressive ageing (45) 

which have been further associated with a reduction in muscle quality (10). 

 

Fatigue Response During Repeated Concentric Activity 

There was no difference in concentric fatigue resistance between soleus muscles from 

young and old mice (Figure 1A) though this was not the case for older EDL (Figure 1C). WL 

shapes indicate older EDL produced more negative work during muscle relengthening as the 

fatigue protocol progressed compared with YC EDL (Figure 2A&B). Relaxation time increases 

with each WL (14,31,32) indicating that Ca2+ has not been fully reabsorbed by the SR prior to 

the next contraction, therefore the muscle is still partially active through relengthening resulting 

in the progressive absorption of negative work leading to increased fatigability that is more 

pronounced in older EDL. Whilst there is a lack of evidence observing sustained concentric 

power using mammalian tissues, it appears 78-week old EDL muscles are able to sustain 

concentric power for a longer period than the 50-week old animals during the same fatigue 

protocol (14). Whilst absolute power is well maintained, it is expected that the older individuals 

will fatigue faster in vivo when working at the same relative intensities due to an elevated body 

mass (7). 

 

Fatigue Response During Repeated Eccentric Activity 

The fatigue response to the eccentric protocol was age and muscle-specific. For soleus 

muscle, the reduction in power during sustained eccentric activity was not significantly affected 



 
 

by age, and as such there was very little difference in the WL shapes (Figure 3 C&D). As the 

maximal eccentric power of the older group was substantially lower, this would result in a 

reduced amount of relative power over the duration of the fatiguing protocol (Figure 1C).  

Conversely, sustained power following the eccentric protocol was significantly 

reduced in young EDL compared to old EDL (Figure 1D), despite maximal eccentric power 

production being unaffected by age (Table 2). Typical WL shapes indicated that the force 

produced during lengthening decreased much more in young EDL, than old EDL, over the 

series of WL’s (Figure 3A).  

Repeated eccentric activity may work to sustain locomotor performance in vivo given 

the elevated body mass. Older muscles generated the same concentric and eccentric absolute 

PO and peak WL force, yet body mass of older mice increased by 56%. Therefore, the older 

mice would have to generate greater power to overcome the bodily inertia during locomotion 

or braking motions at the same speed as younger mice (14). 

 

Recovery of Concentric Power 

Recovery of concentric power (Figure 4 A&C), and recovery of absolute force and 

isometric stress (Figure 5 A&B) of the soleus following repeated concentric and eccentric 

activity was unaffected by age. Given that there was no age-related change in fatigue resistance 

of the soleus following each protocol, the consequent ability to recover concentric power 

indicates no undue damage or fatigue. 

By contrast, the recovery of the EDL of the older age group was significantly greater 

following the concentric protocol when compared to the young group (Figure 4B), likely due 

to the ability of slower muscle to recover faster following repetitive stimulation (32), which 

would also explain the near full recovery of the soleus for both ages and contraction types. 

Tallis et al. (14) observed no differences between the 10-week and 50-week old EDL in the 



 
 

recovery of concentric power, with the OC EDL group of this study recovering to a greater 

extent than the 50-week old animals. 

The current study used a smaller strain as a closer representation of length changes 

which occur more regularly in vivo (22,23), although this smaller strain may have still caused 

damage in the EDL for both ages as demonstrated by a consistent reduction in post eccentric 

protocol power (Figure 2D) and reduced absolute force and isometric stress (Figures 5 A&B). 

Given that high eccentric force is associated with greater muscle damage (18), this may account 

for the difference in recovery observed between the EDL and soleus. Interestingly, recovery of 

the young EDL was impaired to a greater extent, following the eccentric protocol, than the 

older EDL (Figure 4D), which could be due to greater structural damage in the younger group. 

An age-related increase in structural damage of the skeletal muscles has been previously 

attributed to greater impairment of contractile function following eccentric muscle activity in 

older EDL. Zerba et al. (20) found that the tetanic force deficit following 75 lengthening actions 

at a total mean fiber length change of 25% was significantly greater in older mouse EDL 

muscles compared to young and adult mice. Additionally, the relative loss of isometric force 

following single stretches of single permeabilised of 27-34-month-old rat EDL fibres was 

greater than that of 5-6-month-old rats at a strain of 10% and 20% of mean fiber length, but 

was not different at 5% (19), highlighting that larger strains are required to significantly 

damage older muscles during acute and sustained eccentric activity. 

 

 

 

 

 

 



 
 

Implications 

Given the increase in muscle mass and body mass, skeletal muscles in vivo would 

need to generate greater power to overcome the greater bodily inertia. Coupled with a reduction 

in concentric muscle quality and fatigue, older adults are likely to fatigue faster during activities 

involving concentric activation of skeletal muscles compared to eccentric actions, which are 

relatively well preserved in isolated muscle. Focus should be placed on interventions for 

managing weight status and improving eccentric function relative to body size to improve 

locomotor function. However, it should still be recognised that eccentric activity is associated 

with greater damage, such that recovery of muscle following this mode of exercise may be 

hindered in older adults due to the age-related reduction in myogenesis (46). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Limitations 

The current study provides a simplified approach to assessing the type of dynamic 

muscle activity that occurs in vivo. A sinusoidal waveform was used as an approximation of 

the otherwise complex cyclical length change patterns that occur during in vivo locomotion 

(16). Fibre recruitment and length change waveform are likely to be manipulated throughout 

the activity in vivo (47). During locomotion, the pattern of activation is likely to frequently 

change to maximise positive work and minimise negative work during concentric activity, and 

vice versa during eccentric activity, to maximise the muscle’s ability to sustain PO for longer 

durations. 

Whilst reporting isometric stress and normalised WL power provides a measure of 

muscle quality, the reduction in stress with aging is likely to be primarily caused by a reduction 

in the performance of contractile tissues rather than the increase in non-contractile mass (10). 

In older muscles, it is expected that a smaller proportion of the muscle mass is contractile 

proteins due to a greater non-contractile mass, such as increased intramuscular fat deposition, 

meaning the density of the muscle is likely to decrease. As we assumed a constant muscle 

density with age, the muscle CSA may be underestimated in the older skeletal muscles due to 

an overestimated muscle density (14). This may mean that the isometric stress is likely to be 

an overestimate in older muscles, meaning the magnitude of the decline in normalised force 

may be greater than reported. It would be useful in future studies to analyse skeletal muscle 

protein and contractile protein across a similar age range to provide valuable insight into the 

underpinning mechanisms for observed changes in contractile function relative to the increase 

in muscle mass in older animals. 

 

 

 



 
 

Conclusion 

This study demonstrates that ageing is not uniform for all contraction types and 

muscles, which may have complex consequences for in vivo locomotor function in older adults. 

The loss of force and power relative to muscle size in the present study, as opposed to the 

apparent reductions in absolute force and power as observed in humans, appears to be the 

greatest factor in alterations of contractile function in this study, offering further support to the 

dynapenic mechanism of muscle ageing. The observed general reduction in muscle quality, 

coupled with an age-related increase in body mass observed in the present study, could be a 

key factor in the reduced locomotor function of older adults. However, older EDL muscles are 

capable of withstanding repeated eccentric muscle activity to a greater extent than younger 

muscles and appear to sustain less damage than younger EDL muscles. This could be important 

for exercise prescription, where eccentric exercises can be incorporated into training regimens 

to improve eccentric muscular function. Thus, locomotor capabilities and physical activity 

levels could be increased and overall quality of life improved. 
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Table 1 - Comparisons of pooled animal and muscle morphological measurements for each group.  

 

Values presented as mean ± S.E.M. 

* denotes significant (P<0.05) difference between age groups. 

Animal morphology; n=40 per age. Muscle morphology; n=20 per muscle per age. 

CSA = cross-sectional area. 

 

 

 

 

 

Animal Morphology Young (10 weeks)  Old (78 weeks) 

Body mass (g) 29.7 ± 0.5  46.4 ± 2.0* 

Muscle Morphology Soleus  EDL 

 Young Old  Young Old 

Muscle length (mm) 9.4 ± 0.1 9.3 ± 0.1  9.0 ± 0.1 9.2 ± 0.1 

Muscle mass (mg) 7.6 ± 0.3   9.9 ± 0.3*           10.9 ± 0.3 12.0 ± 0.3* 

Muscle CSA (m2) 7.65x10-7 ± 2.76x10-8  1.01x10-6 ± 3.16x10-8*  1.14x10-6 ± 2.59x10-8   1.24x10-6 ± 2.98x10-8* 



 
 

 Table 2 - Pooled isometric and work loop contractile properties of young (10 weeks) and old (78 weeks) soleus and EDL muscles. 

Values presented as mean ± S.E.M. 

 Soleus  EDL 

Contractile Measure Young Old % change vs. young  Young Old % change vs. young 

Maximal twitch force (mN) 28 ± 1 28 ± 1 1%  64 ± 2 56 ± 3 -12%* 

Maximal tetanus force (mN) 212 ± 9 224 ± 6 6%  376 ± 12 331 ± 15 -12%* 

Maximal twitch stress (kN.m2) 37 ± 2 29 ± 1 -23%*  57 ± 2 45 ± 2 -20%* 

Maximal tetanus stress (kN.m2) 280 ± 10 225 ± 7 -20%*  332 ± 9 269 ± 13 -19%* 

Time to half peak tetanus (ms) 34 ± 1 39 ± 1 13%*  15 ± 1 16 ± 1 9% 

Last stimulus to half relaxation (ms) 44 ± 2 48 ± 2 9%  13 ± 1 16 ± 1 29%* 

Maximal concentric PO (Watts) 237 ± 12 246 ± 12 4%  1066 ± 43 1007 ± 57 -6% 

Maximal concentric PO (W.kg-1 muscle mass) 31 ± 1 25 ± 1 -21%*  99 ± 5 83 ± 4 -16%* 

Peak concentric force (mN) 86 ±6 80 ± 4 -7%  198 ±10 152 ±7 -23%* 

Maximal eccentric PO (Watts)† -1038 ± 53 -1052 ± 48 -1%  -2682 ± 150 -2990 ± 214 -10% 

Maximal eccentric PO (W.kg-1 muscle mass)† -146 ± 10 -115 ± 6 27%*  -260 ± 21 -253 ± 17 3% 

Peak eccentric force (mN)† 294 ± 15 298 ± 9 1%  485 ± 17 484 ± 19 0.3% 



 
 

* denotes significant (P<0.05) differences between each age group. 

n=20 for all muscles and ages except for where † is placed, indicating n=10 per muscle per age. 

PO = Power output. Stress = force ÷ muscle cross-sectional area. 

 

 

 

 

 

 

 



 
 

Figures 

 

Figure 1 - Time-course of sustained power production of young (    ) and old (    ) skeletal 

muscles relative to the pre-protocol maximum concentric power during fifty repeated 

concentric contractions (A, soleus; B, EDL), and eccentric power relative to the maximum 

eccentric power during fifty repeated eccentric muscle actions (C, soleus; D, EDL). Values 

presented as mean ± S.E.M. * significant differences between age groups for time to fatigue. 

 

Figure 2 - Effect of age on typical work loop shapes following concentric fatigue for the YC 

and OC EDL (A & B) and YC and OC soleus (C & D). Figures plotted as force against strain 

(%L0). Work loops 2, 10, and 18 of the fatigue protocol are shown for each group. Work loops 

to be interpreted in the anti-clockwise (right-to-left) direction from L0, indicated by a 

downwards arrow for each figure. 

 

Figure 3 - Effect of age on typical work loop shapes following eccentric fatigue at 10Hz cycle 

frequency for YE EDL (A) and soleus (C) and OE EDL (B) and soleus (D). Figures plotted as 

force against strain (%L0). Work loops 2, 10, and 18 of the fatigue protocol are shown for each 

group. Work loops to be interpreted in the clockwise (left-to-right) direction from L0, indicated 

by a downwards arrow for each figure. 

 

Figure 4 - Time-course of recovery of concentric power output relative to the pre-protocol 

maximum power for young (   ) and old  (    ) skeletal muscles every 10-minutes following 

repeated concentric contractions (A, soleus; B, EDL) and every 5-minutes following repeated 

eccentric muscle activity (C, soleus; D, EDL). Values presented as mean ± S.E.M. * significant 

difference between age groups at each time point. 

                     

                     



 
 

 

Figure 5 – Age-related changes in maximal absolute force (A) and maximal isometric stress 

(B) prior to fatigue (SOL-Pre & EDL-Pre, n=20 for both muscles and ages). Absolute force 

(A) and isometric stress (B) were reassessed following the final work loop of the recovery 

protocol in the YE & OE groups (SOL-Post & EDL-Post; n=10 for both muscles and ages). 

Values presented as mean ± S.E.M. * significant (P<0.05) changes in maximal absolute force 

or isometric stress with age. • significant (P<0.05) reductions in pre vs. post assessments of 

maximal absolute force or isometric stress. Stress = force ÷ muscle cross-sectional area. 
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