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Abstract: 

Carsickness is associated with a mismatch between actual and anticipated sensory signals. Occupants 

of automated vehicles, especially when using a display, are at higher risk of becoming carsick than 

drivers of conventional vehicles. This study aimed to evaluate the impact of positioning of in-vehicle 

displays, and subsequent available peripheral vision, on carsickness of passengers. We hypothesized 

that increased peripheral vision during display use would reduce carsickness. Seated in the front 

passenger seat 18 participants were driven a 15-minute long slalom on two occasions while 

performing a continuous visual search-task. The display was positioned either at 1) eye-height in front 

of the windscreen, allowing peripheral view on the outside world, and 2) the height of the glove 

compartment, allowing only limited view on the outside world. Motion sickness was reported at 1-

minute intervals. Using a display at windscreen height resulted in less carsickness compared to a 

display at glove compartment height.  
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1. Introduction 

1.1  

Motion sickness can be defined as a state of discomfort caused by real or apparent motion (Reason and 

Brand, 1975). Signs and symptoms of motion sickness are initially, among other things, (cold) 

https://doi.org/10.1016/j.apergo.2017.11.002


sweating, pallor, burping, salivation, apathy, that may subsequently be followed by nausea, retching 

and finally vomiting. The occurrence and degree of these symptoms may vary considerably between 

people, however everyone with a functional vestibular system appears susceptible to motion sickness 

to some extent (Money, 1970). The underlying mechanism of motion sickness has been theorized to be 

a mismatch between actual and anticipated sensory signals, typically modulated through visual-

vestibular conflicts (Bles et al., 1998; Bos et al., 2008). Alternatively, motion sickness has been 

proposed to result from postural instability, stemming from sensory information incongruent with how 

balance is maintained in a natural or known environment (Riccio and Stoffregen, 1991). Therefore, 

under either theory, incongruences in what is seen and (normally) experienced through other senses, 

such as when below deck at sea, or when reading a book in a car, can aggravate motion sickness. 

Conversely, congruent sensory information, e.g. looking at the earth-fixed horizon when on a moving 

ship, alleviates motion sickness, even when this is presented artificially (Bos et al., 2008; Feenstra et 

al., 2011; Tal et al., 2012). 

1.2 

Carsickness is a form of motion sickness of which two-thirds of all people have suffered from at some 

point in their life (Reason and Brand, 1975). Passengers in particular, rather than drivers, become 

motion sick, even when exposed to identical motion (Rolnick and Lubow, 1991; Dong et al., 2011; 

Chen et al., 2012). One reason for this is that when controlling a vehicle, motion can correctly be 

anticipated, reducing the discrepancy between sensed and expected motion. Another, related, reason 

for the increased risk of motion sickness of passengers is the fact that passengers are not required to 

have a view out-the-window to operate the vehicle. Restricted vision of the outside world was found to 

aggravate carsickness (Griffin and Newman, 2004). As opposed to the world outside the vehicle, the 

vehicle interior moves in conjunction with its occupant, increasing sensory incongruences as more of 

the visual field is occupied by the vehicle interior. The beneficial effect on motion sickness of out-the-

window view holds was found to hold true for both central and peripheral vision independently.  

1.3 

Autonomous vehicles, or rather highly automated vehicles (Reilhac et al., 2016), are expected to 

replace conventional vehicles in the coming decades (see e.g. Litman, 2014). Potential benefits of 

these future self-driving vehicles are safer roads, reduced traffic congestion, increased fuel efficiency, 

and time saved by the possibility to engage in non-driving activities (Begg, 2014). However, extensive 

adoption of self-driving vehicles could lead to increased motion sickness in the general population. 

Currently, over three quarters of commuters in the US are the sole occupant of their vehicle when 

getting to work (McKenzie, 2015). This population of drivers will become passengers once automated 

vehicles are widely adopted. As mentioned, passengers have an increased risk of motion sickness 

compared to drivers. In addition to this, a key benefit of automated vehicles, i.e. engagement in non-

driving activities, may further inhibit passengers’ out-the-window view. This, in turn, exacerbates the 

visual-vestibular mismatch believed to underlie carsickness. However, concept car designs often show 

sizable, possibly even head mounted, displays to be used for work or entertainment. If engagement in 

such in-vehicle displays becomes the default state of the occupants of future vehicles, preventing 

carsickness is expected to become a considerable challenge for vehicle manufacturers. Consequently, 

display positioning could become a potentially important factor modulating motion sickness in future 

automated vehicles through influencing available peripheral out-the-window view.  

1.4 



In the present study we therefore aimed to investigate the effect of display positioning on motion 

sickness in car passengers using an in-vehicle display. We elaborated on an exploratory on-road study 

(Diels et al., 2016) which included a head-up versus head-down display position. Findings suggested 

that a head-up display may be able to reduce motion sickness. However, the study suffered from 

several confounding factors, most crucially the variability in vehicle motions due to the experiment 

taking place in traffic. For the current study we realized an experiment with reproducible vehicle 

motion and an hypothesis based on a within-subjects design with two conditions manipulating display 

position. In one condition the display was at windscreen height (HIGH), and in the other condition at 

glove compartment height (LOW), the latter offering only limited peripheral vision. The hypothesis 

tested was that the condition which allowed for more optimal peripheral vision, thus minimal visual-

vestibular incongruences, would result in the least motion sickness. To be able to better interpret the 

main analysis concerning the effect on motion sickness between the two conditions, motion sickness 

across participants was also analysed both in proportional terms, and in terms of difference in increase 

in illness over time.  

 

2. Methods  

2.1 Motion stimulus and test environment 

2.1.1 

The study was undertaken using a typical medium-sized estate car (Volkswagen Passat). The vehicle 

was equipped with an automatic gearbox and cruise control. An accelerometer (Xsens Technologies 

B.V.) was mounted on the floor of the vehicle behind the front seats. An on-board computer recorded 

the motion sensor data in conjunction with controlling the task.  

2.1.2 

For controllability and safety reasons the experiment was realised on a privately owned tarmac road 

approximately 600 m long, without any other traffic present. Slaloms were driven around markers on 

the centre of the road 20 m apart, resulting in 13 40 m cycles on the 600 m long track. Each slalom 

manoeuvre was followed by a U-turn at the end of the track immediately followed by another slalom 

(see figure 1). Each slalom was driven at a constant speed of 25 km/h using the vehicle’s cruise 

control.  

2.1.3 

Following a pilot study exploring the effectiveness of different slalom profiles, we found that a 

distance of 1 m between the vehicle and the markers at the peak of each lateral motion resulted in a 

stimulus that was provocative yet not leading to vomiting in a short period of time. As a result, each 

slalom had an amplitude of 1.5 m and a frequency of 0.16Hz. This frequency in particular has been 

shown to be most provocative for motion sickness (O'Hanlon and McCauley, 1973). These slaloms 

were repeated 8 times, lasting 15 minutes in total, including the U-turns. There were two drivers, both 

of whom had practised driving the slalom at the test track beforehand. Participants were assigned to 

only a single driver to control for any variation between drivers.  

 



 

Fig 1. [two columns] Schematic of the test track. The vehicle was driven around 26 markings in slalom driving, 

corresponding to 13 cycles of 40m. At the ends of the test track there was ample room to do a controlled U-turn. 

The amplitude of each slalom was 1.5m measured from the markings to the centre of the car. The maximum 

angle of yaw as seen from the centre-line was about 20°. 

2.2. Experimental conditions 

2.2.1 

Two display conditions were realised in otherwise identical circumstances. In the HIGH condition, the 

display was positioned at eye-height in front of the windscreen, providing considerable peripheral out-

the-window view. In the LOW condition, the display was positioned at the height of the glove 

compartment, offering considerably less view on the outside world as compared to the HIGH 

condition. The display was pitched to ensure that the viewing angle was equal in both conditions. The 

seat could be raised vertically to compensate for participant height, keeping the display at eye-height. 

2.3 In-vehicle display and task 

2.3.1 

The task was presented on a tablet with an 18 cm (7 inch) screen diameter mounted to the dashboard 

by the passenger seat in the two possible configurations (see figure 2). The distance to the screen was 

60cm, resulting in a FOV of about 15°. The task required constant visual attention, preventing 

participants from taking their eyes off the display and thus influencing their available peripheral 

vision. The task itself was an adaptation of the SuRT task (SuRT, ISO14198, 2012) and consisted of a 

continuous series of trials over the entirety of each of the 15-minute conditions. In every trial a static 

grid of 36 arrows was presented with arrows pointing down, left, or right. In half of the trials a single 

arrow pointing up was present. The participant was instructed to push a ‘yes’ button on a hand-held 

box when an up-arrow was identified, and a ‘no’ button when the upward pointing arrow was absent. 

After responding, the next grid was immediately displayed regardless of response given, to keep the 

participant engaged. If within 3 seconds no button was pressed, a fixation cross was presented for 1s to 

indicate a miss, immediately followed again by the next trial. No other feedback on task performance 

was given. Participants were instructed to keep their visual attention on the task throughout the 

experiment and to keep their head in approximately the same position (i.e. “don’t make large 

adjustments in posture during the experiment”).  

 

 

 

 



 

 

 

 

 

 

Fig. 2 [two columns] The two variations of display positioning used in this experiment, HIGH (left) and LOW 

(right). 

2.4 Motion sickness measures 

2.4.1  

During each 15-min condition, participants provided self-ratings of their motion sickness severity at 1-

min intervals as indicated by an auditory beep, using an 11-point misery scale (MISC, table 1, Bos et 

al., 2005). The scale exploits the knowledge that all motion sickness symptoms other than nausea, 

retching and vomiting may vary between participants, but, if present, these symptoms normally 

precede the latter. A MISC of 6 or higher (i.e., any nausea), was taken as a criterion to terminate a 

running condition so as to allow participants to recover in between conditions and minimising cross-

over effects. If a condition had to be stopped due to nausea, the last reported MISC rating was 

conservatively assumed for the remaining measuring moments, thus preventing missing values and 

facilitating the statistical analysis. 

Table 1.  
11-point MIsery SCale (MISC) (Bos et al., 2005) 
 

Symptoms Misc 

No problems   0 

Some discomfort, but no specific symptoms  
 

 1 

Dizziness, cold/warm, headache, stomach/throat awareness,  Vague 2 
sweating, blurred vision, yawning, burping, tiredness,  Little 3 
salivation, . . . but no nausea Rather 4 
 
 

Severe 5 

Nausea slight 6 
 fairly 7 
 severe 8 
 
 

(near) retching 9 

Vomiting  10 

 



 

2.5 Procedure and Participants 

2.5.1  

Approval by the TNO Human Factors institutional Review Board on Experiments with Human 

Subjects was obtained in accordance with the ethical standards laid down in the 1964 Declaration of 

Helsinki. Candidate participants which indicated they had never suffered from motion sickness in any 

mode of transport for the last five years were not considered for this experiment. All participants 

included were free of vestibular disorders as known by themselves, and had not been drinking 

alcoholic beverages during 24 hours in advance of the experiment. Also they were informed about the 

purpose and procedures of the experiment and signed an informed consent prior to the first 

experimental condition. A total of 18 participants, 8 males and 10 females, participated in this study. 

Ages ranged from 19 to 33 years with an average of 26 ± 4.6. Participants alternated in couples with 

respect to the two conditions realised, allowing them a pause in between the two conditions of 

approximately one hour. Prior to the experiment the MISC-scale was explained to the participant in 

conjunction with the task instructions, and then again at the start of each condition to ensure retention. 

The experimenter controlled the vehicle while the participant took place on the passenger seat with the 

display in front of them. Anticipating the first condition, participants practiced the task until it was 

clearly understood. Before each condition, participants reported their initial MISC. An MISC of 2 or 

up (i.e. any symptoms) at the start of a condition was considered undesirable and would therefore lead 

to exclusion. The conditions were counterbalanced between participants to prevent order effects. 

2.6 Statistical methods 

2.6.1  

To quantify the variability in slaloms driven, a power spectral density analysis was performed on the 

lateral acceleration data, yielding both peak frequency and RMS acceleration amplitude. Paired t-tests 

were used for accelerometer data and task scores. Parametric repeated measures ANOVA was used 

with MISC ratings as the dependent variable. Three factors were included: condition, time and 

participant. Participant was included as a random factor. To visualize inter-individual differences we 

used linear regression slopes for each participant per each condition, and compared these with a paired 

t-test. Statistical data analysis was performed using R (Version 3.3.1). Averages are reported along 

with their standard deviations. Due to incidental conditions, among which an initial MISC ≥ 2, data 

from three participants were excluded. Data analysis was subsequently performed on data from 15 

participants.  

3. Results 

3.1 Motion profiles 

3.3.1 

A power spectral density analysis of the lateral acceleration sensor data revealed an average peak 

slalom frequency of 0.161 Hz ± 0.01. Therefore, the frequency variability between conditions and 

participants was about 6%. There was no significant difference between the two conditions in terms of 

peak frequency (t(24) = 0.547, p = 0.590). Average RMS of lateral acceleration was 1.12 m/s2 ± 0.14, 

meaning the amplitude variability across all participants and conditions was about 13%. The RMS of 

lateral acceleration did not significantly differ either between conditions (t(24) = 0.431, p = 0.670).  



3.2 Motion sickness scores 

3.2.1  

The average illness rating after 15 minutes was 2.0 ± 2.10  in the HIGH-display condition, and 2.8 

±1.81 in the LOW-display condition. This corresponds to a 43% reduction of illness scores. Figure 3 

shows the illness ratings of participants for the two conditions over the entire 15-minute period. A 

repeated measures ANOVA showed a significant increase in score over time for both conditions 

(F(1,14) = 32.69, p < 0.001, partial η² = 0.578). A significant effect of condition on illness scores was 

also found (F(1,14) = 5.012, p = 0.042, partial η² = 0.264). Regression lines (as also shown in figure 3) 

were derived from the LOW (F(1,238) = 67.580, adjusted R² = 0.218, p < 0.001) and the HIGH 

(F(1,238) = 55.499, adjusted R² = 0.186, p < 0.001) subsets of the data. These regression lines also 

significantly differed, F(1,476) = 8.164, p = 0.004. This was analysed by using a dummy variable for 

the HIGH/LOW conditions, and examining the interaction effects of the linear model. 

  

Fig 3. [two columns] Average illness ratings over time for the LOW and the HIGH condition. Grey areas depict 

SEM. 

3.2.2 

An alternative way to explore the data, rather than examining average scores, is to look at the 

percentage of participants over time that reached certain thresholds of illness rating (MISC). In motion 

sickness studies, often a portion of participants show no effect to the provocative stimulus (see e.g. 

Dong et al., Perrin et al, 2013; . This can be seen in figure 4. Each line represents the proportion of 

participants that reached a certain illness rating at that time of measurement. Note that a MISC of 1 is 

“some discomfort, but no symptoms”, and was therefore sometimes scored at the beginning of a drive. 

As can be seen from the top most lines in the graph, the proportion of participants that scored a MISC 

of at least 1 increased at roughly the same rate in both conditions. However, looking at the 

development of further symptoms, as can be seen in the lines for the MISC reaching 3 or higher and 5 

or higher, the two conditions differ.  



 

Fig. 4. [two columns] Percentage of participants over time that attain at least a certain illness score (MISC). Both 

conditions illicit a similar response in terms of initial rise in MISC (the lines using squares). However once this 

threshold of a MISC of 1 is reached, the LOW condition illicits a larger effect, as indicated by a higher proportion 

of elevated MISC scores. 

3.2.3 

To further explore the differences between conditions within participants we used an addition analysis. 

For each participant two regression lines, one for each condition, were calculated. For each regression 

line, the intercept was fixed at the initial illness score at t=0. The average adjusted R-squared of the 

regression lines was 0.776 ± 0.249. The values of the slopes of these regression lines, i.e. the fitted 

amount of increase in MISC score per each unit of time, are shown in figure 5. A paired t-test showed 

these regression slope values differ significantly between the HIGH and LOW condition, t(14) = 

2.771, p = 0.015.  

 



 

Fig 5. [one column] A regression line for each condition (HIGH/LOW) and each participant was calculated. 

Boxplots show the slopes of these regression lines. 

3.3 Task performance 

3.3.1  

We analysed task performance to assess whether participants consistently attenuated to the task across 

the two conditions. On average, participants scored 90.5% (± 5.1%) of the trials on the search task 

correct, with 9.5% incorrect or late answers. There was no significant difference between the two 

conditions in terms of task performance (paired t-test t(12) = -0.41494, p = 0.686). Average reaction 

times were slightly lower for the HIGH condition with 1.25 (± 0.26) seconds on average compared to 

1.32 (± 0.24) seconds for the LOW condition. However, this difference was also not significant (paired 

t-test t(12) = 1.2136, p = 0.248).  

 

4. Discussion  

4.1  

In this study we examined the level of carsickness in front seat passengers performing a visual search 

task using a display positioned at 1) eye-height in front of the windscreen (HIGH), providing 

considerable peripheral out-the-window view, and 2) at the height of the glove compartment (LOW) 

offering considerably less peripheral vision. In line with the hypothesis that increased peripheral vision 

reduces carsickness, the HIGH display position was indeed found to lead to significantly less motion 

sickness compared to the LOW display position.  

4.2 

Our findings are in line with other studies showing the beneficial effect of enhanced peripheral vision 

on carsickness. For instance, Probst and colleagues (1982) also found that out-the-window view led to 

significantly reduced motion sickness compared to viewing an artificial static visual field (a map) 

located on the passengers’ laps. A study by Turner and Griffin (1999) showed a correlation of motion 

sickness and seating position in coach passengers which was attributed to differences in forward vision 



as a function of position. Similarly, Griffin and Newman (2004) showed in multiple experimental 

conditions that out-the-window view significantly reduces motion sickness, especially when this view 

contains information about the trajectory of the vehicle. Perrin and colleagues (2013) found that 

professional rally co-drivers reported increased motion sickness when taking notes during course 

reconnaissance, reducing out-the-window vision. These studies, expanded upon by our findings of 

reduced motion sickness with increased peripheral vision, underline the importance of the relationship 

between vision and carsickness. The findings of Diels and colleagues (2016) found a similar effect as 

our study, with a head-up display leading to a reduced incidence of motion sickness. Our congruent 

data substantiates the findings of that exploratory study. In addition, their findings are in support of 

generalizability of our findings, namely that the effect of display position may hold under car motion 

in natural traffic rather than only during slalom driving. While the design of this study did not allow to 

investigate underlying (neural) mechanisms of carsickness, results of the present study reaffirm the 

importance of vision on carsickness.  

4.3 

Having a completely unobstructed view on the earth-fixed world around the vehicle is the 

quintessential way to reduce motion sickness following visual-vestibular  incongruences. However, 

with limited vision, motion cues can still be inferred from both foveal and peripheral vision. While the 

peripheral dominance hypothesis (Dichgans and Brandt, 1978) has been nuanced, peripheral vision is 

still regarded as being paramount in self-motion perception (Webb and Griffin, 2003; Bardy et al., 

1999; Warren and Kurtz, 1992). Self-motion perception is principally related with vection, which is 

the perceived sense of self-movement (Palmisano et al., 2015). It is vection, rather than simply optic 

flow, that is assumed to play a major role in motion sickness in which a visual component is involved 

(Stern et al., 1990; Keshavarz, et al., 2015). Thus, when central visual information is restricted (e.g. 

when working on a screen), peripheral vision is a central factor modulating motion sickness mediated 

through its role in self-motion perception, as also evident in the present study. However, researchers 

on carsickness should be aware not to fixate on a single aspect, such as peripheral vision,  given that 

nuances in the visual scene during motion -or even optic stimuli by themselves- cause or can modulate 

motion sickness in a complex and multifaceted fashion (So and Ujike, 2010; Bos et al. 2010; Kennedy 

et al., 2010).  

4.4 

A factor that might be thought to have impacted the participants’ sickness in this study is the voluntary 

or inattentive head orientation of participants. Namely, we did not restrain the head of participants, but 

rather left them free to orient their head in any position. Besides the instruction to try to keep their 

focus on the display, and not to drastically alter their posture, no other instructions were given. 

However, the slalom motion we utilized exposed participants predominantly to lateral linear motion, 

and to our knowledge there is no evidence in the literature which suggests that the otoliths, the 

vestibular organs sensitive to lateral linear acceleration, function differently under different head 

orientations. The semi-circular canals, sensitive to angular motion, receive equal stimulation 

regardless of head tilt. In addition, a study by Wada and Yoshida (2016) found vision is the 

predominant factor affecting carsickness even with a head tilt of 20° against baseline. Therefore, we 

do not expect head tilt to have had a large impact on eventual motion sickness compared to the effect 

of vision.  

4.5 



In this study, sickness sores after 15 minutes of exposure did not lead to excessively high sickness 

scores, on average 2.0 and 2.8 for the HIGH and LOW condition, respectively. This was however 

anticipated. Motion sickness is a process over time, typically increasing monotonically during the first 

60 minutes of consistent motion exposure (McCauley et al., 1976). As also evident in our findings, 

prolonged exposure to motion has an additive effect on the severity of sickness. We selected the 

motion stimulus with the goal to invoking a response in the majority of participants while preventing 

unnecessary discomfort. Our data was best modelled by a linear fit, implying prolonged exposure to 

the stimulus would have led to increasing motion sickness scores and continued differentiation 

between the two conditions. However, it must be noted that a comprehensive model of motion 

sickness over time could not be strictly linear, given the upper limit of the scale being a maximum 

score of 10 (defined as vomiting). However given the present data and the knowledge of the 

monotonic rise of motion sickness given continuous stimulus, there is good reason to assume average 

sickness scores would have continued to rise after the 15 minute duration. 

4.6 

A different factor that may have somewhat dampened our motion sickness levels was participants’ 

continuous engagement in a (mentally) distracting task (i.e. visual search task) which has previously 

been shown to reduce motion sickness (Bos, 2015). Given the task’s demanding nature, requiring 

continuous attention as substantiated by consistent scores across participants, it most likely diminished 

overall sickness scores in this experiment. However, since the principal aim in this study was to 

investigating the effect of peripheral vision, a method demanding continuous visual attention was 

required to ensure the participants’ gaze remained on a display. This necessitated inclusion of the task 

in our design. Given the confounding nature of the illness reporting procedure, no conclusions 

concerning the effect of motion sickness on task performance can be drawn. Finally, a factor 

influencing motion sickness, was that the slalom used for controllability is by definition a predictable 

motion, which reduces sickness (Rolnick and Lubow, 1991; Dong et al., 2011). This implies that 

natural vehicle motion of similar intensity rather than a repetitive motion would be expected to result 

in higher sickness levels.  

4.7 

Since the inception of automobile travel, the subject of carsickness has received only limited attention 

among scientists. More surprising is that despite the recent substantial attention for self-driving 

vehicles, carsickness in automated vehicles has received equally limited attention, although various 

authors established that carsickness might be a serious issue in self-driving vehicles (Diels, 2014; 

Diels and Bos, 2015; Sivak and Schoettle, 2015; Diels and Bos, 2016). However, the public’s 

acceptance of automated vehicles, despite the plethora of advantages they offer, might be seriously 

impeded if carsickness proves to be a serious issue. Concept cars often show designs where emphasis 

is put on use of in-vehicle displays and the ability to rearrange seats to create a more ‘living-room like’ 

experience. However, further reducing external and forward vision of passengers (Griffin and 

Newman, 2004), such as through backward facing seats or even head mounted displays, will further 

exacerbate the risks at carsickness. While self-driving vehicles do not need windows to operate, it is 

imperative to focus on the passengers’ comfort experience which suggests that windows are here to 

stay.  

4.8 

In addition to comfort, carsickness may also have implications for driver safety. Following the Society 

for Automotive Engineers taxonomy (SAE, 2014), current production vehicles with e.g. lane-keeping 



assistance and adaptive cruise control offer level 2 automation. Full door-to-door automated driving 

would constitute level 5 automation. In the intermediate phases the vehicle’s occupant will be able to 

engage in other activities but has to be able to take back control of the vehicle in a limited timeframe. 

This transfer of control has already been the focus of several studies concerning envisaged safety 

risks. Delayed or reduced situation awareness, potential drowsiness, and distraction from engagement 

in non-driving activities can have a detrimental effect on the ability to operate a vehicle after a period 

of inactivity (Vlakveld, 2016). Research into transfer of control should include motion sickness as a 

factor of interest in addition to these factors, since even mild motion sickness is known to reduce task 

performance (Rolnick and Bles, 1989; Bos, 2004). When passengers with restricted vision in 

automated vehicles are exposed to provoking vehicle motion (e.g. windy roads, repeated lane changes 

or inner city traffic), their take over and subsequent driving abilities may be compromised due to 

motion sickness. 

4.9 

As stated before, a better view-out-the window reduces carsickness since it provides an earth-fixed 

reference frame congruent with the vehicle’s motion. While non-visual means of counteracting motion 

sickness (Keshavarz & Hecht, 2014) might be feasible in cars, the effect of vision in carsickness is 

better understood. Interestingly, the beneficial effect of vision has been shown to be remain when this 

visual information is presented artificially (Bos et al., 2008; Feenstra et al., 2011; Tal et al., 2012; 

Kato and Kitazaki 2008; Miksch et al., 2015). For instance, Feenstra and colleagues (2011) showed 

that the addition of earth-fixed reference points in a flight simulator going through predetermined 

motions could reduce motion sickness by 50%. Participants in this study were not told about the nature 

of the earth-fixed reference points, demonstrating that such artificial stimuli can be intuitively 

beneficially. When adding an anticipatory future motion trajectory the reduction in motion sickness 

was up to 80%. Utilizing similar artificial presentations of an earth-fixed reference frame and future 

motion trajectories could provide effective means to reduce carsickness in automated vehicles. 

However, more research is needed to assess the feasibility of this technology on the road, rather than 

in a simulator.  

 

4.10 

This paper aimed to reaffirm the general importance of vision on carsickness, and specifically to 

quantify the effect of display positioning on carsickness. The results found here aid in further 

understanding the functional role of peripheral vision out-the-window in carsickness. Additionally, 

this study contributes practical knowledge that can be used in automotive design to increase passenger 

comfort by offering an elementary guideline for display positioning. Looking forward into the future, 

passengers of self-driving vehicles will expectedly be exposed to a vastly different visual scene than 

occupants of vehicles today, with engagement in displays being a central aspect of this shift. This 

expected change in the general passengers’ visual landscape adds to the importance of further research 

on the subject of carsickness.  
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