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Abstract 

The evolution of diesel fuel injection technology, to facilitate strong correlations of in-cylinder spray propagation 

with injection conditions and injector geometry, is crucial in facing emission challenges. More observations of 

spray propagation are, therefore, required to provide valuable information on how to ensure that all the injected 

fuel has maximum contact with the available air, to promote complete combustion and reduce emissions. In this 

study, high pressure diesel fuel sprays are injected into a constant-volume chamber at injection and ambient 

pressure values typical of current diesel engines. For these types of sprays the maximum fuel liquid phase 

penetration is different and reached sooner than the maximum fuel vapour phase penetration. Thus, the vapour 

fuel could reach the combustion chamber wall and could be convected and deflected by swirling air. In hot 

combustion chambers this impingement can be acceptable but this might be less so in larger combustion 

chambers with cold walls. The fuel-ambient mixture in vapourized fuel spray jets is essential to the efficient 

performance of these engines. For this work, the fuel vapour penetration values are presented for fuel injectors of 

different k-factors. The results indicate that the geometry of fuel injectors based on the k-factors appear to affect 

the vapour phase penetration more than the liquid phase penetration. This is a consequence of the effects of the 

injector types on the exit velocity of the fuel droplets.   
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Introduction 

Spray formation occurs with the introduction of liquid into a gaseous environment through an orifice such that the 

liquid breaks-up into droplets by interacting with the surrounding gases and causing its own unsteadiness [3]. For 

diesel engines, spray characteristics (liquid/vapour penetration and distribution) significantly affect the 

combustion and emission processes. By optimizing these characteristics, the tailpipe emissions, mainly oxides of 

Nitrogen (NOx) and partciculate matter (PM), can be minimized [2]. Spray penetration, which is usually analysed 

macroscopically, considers the development of the liquid and vapour components. It is desirable to achieve 

optimal travel of these spray components to avoid the adverse effects of impingement caused by under/over-

penetration of liquid spray [19, 20]. Advances in fuel injection system, with the introduction of the common rail 

technology, have provided increased controllability of the injection event.  

The analyses of injection system development have been presented from several viewpoints. Nozzle geometry 

has been studied for the influence on the internal flow and spray characteristics with respect to: atomization [4,5], 

mixing processes [6,7], emission [9,10] and cavitation [8, 13]. Different injection strategies have been 

investigated to show the effect on pollutant emissions [2,3]. Specific studies have also been conducted with 

conical and cylindrical nozzles [11, 12], and to develop more understanding on the effects of nozzle holes [14-16] 

on spray characteristics. Many works in the literature also focused on parameters that affected spray penetration, 

whilst developing useful correlations [21, 22]. From these studies, it appears that the influence of nozzle 

geometry on spray characteristics has been established [7, 28]. Despite the comprehensive nature of these 

investigations, conducted using experimental/numerical methods under evaporative/non-evaporative conditions 

and often with the aid of optical techniques, the understanding is by no means complete and challenges not 

dismissed. The physics of the effects of nozzle geometry on in-cylinder spray development and combustion is still 

of interest to the research community and the auto-industry. For example, the survey in this work [7, 28], 

supported by other investigations [23, 24], clearly showed the significant effects of nozzle flow characteristics on 

spray development. This contrasts with other works [25, 26] which suggested negligible influence of nozzle flow 

characteristics over spray formation. Clearly, the true extent of the effect of nozzle geometry over a wide range of 

operating conditions and response variables need to be fully understood. Part of this uncertainty derives from 

unclear details about vaporisation, which is crucial for the injection process [27]. Since the vapor fuel continues to 

penetrate downstream while the liquid-phase fuel penetration stays at the liquid length, there is a correlation 

between the vapour penetration rate, total air entrainment rate and fuel–air mixing. Thus, depending on the 

injector geometry and the in-cylinder conditions, a higher vapour penetration may cause better air utilization, 

ILASS–Europe 2017, 28th Conference on Liquid Atomization and Spray Systems, 6-8 September 2017, Valencia, Spain
http://dx.doi.org/10.4995/ILASS2017.2017.4951

http://dx.doi.org/10.4995/ILASS2017.2017.4951


which affects the combustion process. 

It is common to specify injector geometry based on the k-factor, this places emphasis on the hole diameter and 

its profound effect on fuel injection. Most injection characteristics change with the hole diameter. The k-factor can 

have a negative, zero or positive value. Spray hole (or orifice) with a negative conical shape factor exhibit an 

orifice with increasing diameter towards the nozzle exit. With a positive value of the conical shape factor, the 

orifice diameter decreases towards the exit (Figure 1). These two configurations implement a conical (or tapering) 

profile. A zero value for k (i.e. no conicity) indicates a cylindrical orifice since the diameters are equal.  In this 

study, optical technique is applied to visualize in-cylinder spray penetration in the absence of a piston bowl, by 

implementing: high speed liquid spray visualization (Mie scattering technique) and vapour spray visualization 

using high-speed laser shadowgraph. Two injectors with different k-factors are utilized via a standard common 

rail system, and a low sulphur automotive diesel as the test fuel. It is expected that the result will be useful for 

vapour phase penetration modeling and for use in the validation of spray models.  

  
                 

  
  (1)   

 Where K is the k-factor, a measure of conicity; Dinlet and Doutlet are inlet and outlet orifice diameters in 

micrometres (µm), respectively. 

Figure 1: Nozzle configuration (Inlet/outlet diameter) 

Material and methods 

The liquid and vapour spray measurement systems were based on an optical engine, the Ricardo Proteus rig, 

installed at the University of Brighton, UK, where the tests were conducted under thermodynamic conditions 

similar to those found in a direct injection (DI) diesel engine. Optical diagnostics using high speed image 

acquisition equipment were developed and optimised around the Proteus, to visualise in-cylinder spray 

penetration. The Proteus is a 2-stroke, liner ported, single cylinder reciprocating rapid compression machine 

(RCM), with a specially designed head (top-hat shape and optical chamber with windows) for optical access. For 

the current study, steady in-cylinder (non-combusting) conditions were maintained all through the tests. 

The injection system for this study was based on the high pressure (HP) common-rail system (CRS) fuel injection 

equipment on the Proteus rig using different injectors with key specifications summarised in Table 1. The 

Injectors have same hole diameters but different k-factors. Both injector types are classified by the k-factor 

parameter defined in equation (1). Only one, out of the four common rail injector outlets, was used at any given 

time, so the other unused three were fitted with plugs.  

Table 1: Injector specifications 

Flow 
(cc/min) Holes 

Hole size 
(mm) 

Cone angle 

(deg. )  

k- 
factor 

Injector C (Bosch 
3601) 960 8 0.137 155 1.3 

Injector D (Bosch 
3603) 960 8 0.137 155 3.5 

The optical arrangements were varied slightly between the liquid and vapour spray experiments, but similar steps 

were applied in setting-up. Engine logs were recorded with AVL Indiset high speed data acquisition system for 

fast logs (crank angle resolved), and EmTronics data logger for slow logs. For each regime of test, a minimum of 

fifty (50) videos were acquired with the laser/camera combination. The videos were post-processed with a Matlab 

software and analysed. In addition, the engine was stopped at intervals, during the tests, to clean the optical 

windows.  

The liquid spray was visualised using the Mie scattering technique as shown in Figure 2. Here, the laser beam 



was aligned to pass through the vertical plane of the fuel spray and cause elastic scattering of the laser light by 

the liquid fuel droplets as soon as fuel was injected into the chamber. The high-speed camera was positioned 

perpendicular to the laser illumination to collect the scattered light. This visualised the liquid fuel distribution and 

showed the liquid spray penetration within the spray. The laser light was collimated before entering the optical 

engine, at reduced intensity via neutral density filters, by carefully placing the filter between the laser and a 

collimating lens. A slightly varied optical arrangement in Figure 3 implemented the shadowgraph technique for 

vapour spray visualisation 

Figure 2: Schematic for Liquid spray visualisation 

     Figure 3: Set-up for vapour visualisation    

Liquid and vapour spray penetrations were investigated with Injectors C and D respectively. The test conditions 



were selected from the matrix in Table 2, for investigations across injection pressure ranges (high, medium and 
low). While the test fuel used was Carcal RF06-08-B5 (density; 833.2 kg/m

3
). Normal injection was timed at top

dead centre (TDC). The actual intake air temperature was determined by the intake manifold temperature 
(TMAN), and hence varied significantly (less than 100 

o
C). Spray parameters were quantified with respect to time

after start of injection (ASOI) for every spray plume. 

 Table 2: Test Matrix 

Result and discussion 

Figure 4: Comparison between injectors C and D spray (liquid and vapour) penetration measurements 

Test 
point 
(TP) 

Intake air 
temperature 
TMAN (°C) 

Peak in-cylinder 
pressure ICP (bar) 

Fuel 
pressure 
P (bar) 

Injection 
quantity 

(mm³) @ 38 
°C 

1 100 84 2000 65 

2 100 84 1600 36.31 

3 100 84 1400 36.71 

4 100 84 1000 35.31 

5 100 84 600 34.86 

6 100 50 2000 45 

7 100 50 1600 45 

8 100 50 1400 45 

9 100 50 1000 25 

10 100 66 2000 65 

11 100 66 1400 45 

12 100 66 1000 45 

13 100 79 1800 60 

14 100 73 1600 50 

15 100 40 600 20 



Figure 5: Comparison between injectors C and D spray (liquid and vapour) penetration measurements 

 TP04  TP14   TP15 

Figure 6: Image sequence for selected liquid spray penetration from all the injectors 

Figures 4 and 5 show the results for the spray (liquid and vapour) penetration tests conducted with injectors C 

and D at Test Points selected from the matrix, for different injection pressures (low to high). Excerpt from the 

Injector C 

Injector D 



image sequence of liquid spray penetration from the injectors are presented in Figure 6.  

In Table 1, the k-factor for injectors C and D were specified as: 1.3 and 3.5 respectively. Results from the plots 

and observations of the image sequence, which agree with literature, showed that nozzles with higher k-factor 

caused higher spray (liquid and vapour) penetration. It was also observed that the nozzle exit velocity and density 

increased with increase in conicity [29, 30] The results also showed that these behaviours were more evident 

under high (injection) pressures, as shown in Figures 4 and 5 for all the test points, except TP15 (with low 

pressures). 

From the results, the effects of in-cylinder pressure on liquid spray penetration agree with previous investigations 

[21]. Increasing the ambient pressure increases the ambient temperature which causes the spray to evaporate 

faster and travel less. This trend is manifest even with increased injection pressure, especially for liquid spray 

penetration across the injectors. From the point of view of fluid dynamics, the evaporation of droplets involves 

simultaneous heat and mass transfer processes. The heat of evaporation is transferred from surrounding hot 

gases to the drop surface by conduction and convection, while vapour is transferred to the surrounding by 

convection and diffusion. The evaporation rate is dependent on the thermo-physical properties of the fuel and the 

surrounding air. For very high in-cylinder pressure and temperature, evaporation is quick since the latent heat 

drastically decreases for high temperatures. As the hot entrained air initiates evaporation of the spray, the fuel 

cools and contracts. These processes significantly reduce droplet dispersion and hence liquid spray penetration 

[1, 31]. The effect of increased injection pressure, which increased spray velocity/momentum [21], is more 

noticeable in the transient part of the liquid spray penetration than the quasi steady stage. The slight positive 

slope observed at the steady period in some of the liquid penetration curves in Figures 4 and 5 can be attributed 

to two factors [8,17]. Firstly, the temperature of the fuel at the beginning of the injection is higher because the 

injector sac is always in direct contact with the high temperature gas of the combustion chamber; during the 

injection, the fuel flowing from upstream of the sac cools down the injector tip. This causes the temperature of the 

fuel at the orifice outlet to decrease during the injection, which impacts on liquid length [8]. Secondly, for long 

injections, low temperature fuel–air mix is re-entrained in the spray causing a decrease in the effective ambient 

temperature and an increment in liquid length. Taking the large size of the chamber into account as well as the 

tendency of the slope to decrease at the end of the injection, the first fact was generally considered to be 

responsible for the observed phenomenon.  

The effect of increased injection pressure is clearer in the vapour penetration, which is further than the liquid 

spray travel [21]. Vapour penetration profiles have been shown to depend on both injection pressure and in-

cylinder density [18]. It was further suggested that the mechanism for the vapour transport was the gas motion 

induced by the liquid phase momentum exchange, from the droplets to the gas phase. To support these facts, 

increased penetration of the vapour was observed at higher injection pressures and lower gas densities, which 

was when the liquid phase had a higher momentum. The momentum effect is felt more, across the injectors as 

the k-factor increases. The vapour spray penetrated more, at higher injection pressures (and higher ambient 

pressure), because the consequent level of turbulence was such that increased the hydrodynamic interaction of 

the spray. This process was facilitated by smaller nozzle exit as the k-factor increased. Primary breakup was 

accelerated leading to smaller droplets and reduced liquid spray penetration. The resulting increase in dispersion 

increases the vaporization rate and fuel air mixing. 

Knowing that the k-factor could significantly affect vapour spray penetration is important for high speed direct 

injection (HSDI) diesel engine. Increase in vapour penetration improves mixing, results in greater premix burning 

and faster combustion, which may cause NOx emission to increase, but reduce PM emissions. 

Conclusion 

The liquid and vapour phases of diesel fuel spray were characterised in this work, using optical techniques based 

on visualization. Mie-Scaterred and shadowgraph images were continuously recorded to expose liquid and 

vapour penetrations respectively, under real engine conditions. The injectors used were essentially different in 

terms of the k-factors. From the results, the significant influence of injector design (k-factor) on HSDI diesel 

engine spray development was confirmed. It was observed that the geometry of fuel injectors based on the k-

factors affected the vapour phase penetration more than the liquid phase penetration. This was a consequence of 

the effects of the injector types on the exit velocity of the fuel droplets.   

Further work could be done by replicating the characterisation experiments with piston bowl for impingement 

studies. The understanding from the present work will provide the necessary guidance and basis for comparison. 

The comparison of the data with commonly used correlations would provide further confidence on its use for 

spray model validations 
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Nomenclature 

ASOI After start of injection 

CRS Common-rail system 

CVL Copper vapour laser 

D Nozzle diameter [µm] 

DI Direct injection 

HP High pressure 

HSDI High speed direct injection 

k k-factor 

NOx Oxides of Nitrogen 

PC Personal computer (Dedicated desktop) 

PM     Particulate matter  

RCM Rapid compression machine 

TDC Top dead centre  

TMAN Intake manifold temperature 

TP Test point 
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