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Abstract 

Social group dynamics are a defining topic of psychological science, yet the field still 

lacks methods of tracking groups with precision and control. Previous methods have been 

hampered by limitations either to external validity (e.g. ecologically deficient environments) or 

to internal validity (e.g. quasi-experimental designs), but a new technique—which we term in-

vivo behavioral tracking (IBT)—resolves this tradeoff. Through IBT, we track large numbers of 

people in controlled environments over time, while storing precise behavioral data that can be 

linked to information regarding participants’ attitudes, personality, and demographics. In this 

paper, we describe the fundamentals, assumptions, and challenges of IBT methodology. We also 

compare IBT to other tracking methods, and illustrate some insights it has provided into group 

formation and cooperation. We argue that IBT is a highly valid and surprisingly feasible method 

of studying groups that should be used alongside more traditional forms of data collection.    

 

Keywords: In-Vivo Behavioral Tracking, Group Behavior, Cooperation, Group Formation, 

Social Dynamics, Social Psychology 
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Strangers in a Stadium: Studying Group Dynamics with In-Vivo Behavioral Tracking 

 

To study group behavior, Henri Tajfel argued, was to pursue “the most urgent and 

ominous task confronting us at present” (Tajfel, 1981, p128). Tajfel’s claim remains as true 

today as it was 25 years ago. Our species’ most memorable moments—from wars, to festivals, to 

revolutions—have been defined by human behavior in groups, yet we still remain largely 

unaware of how the mind operates in large groups, or how groups can seemingly take on minds 

of their own. Social psychology’s contributions to understanding group behavior have involved 

rigorous empirical analysis. With creative laboratory paradigms and field studies, social 

psychologists have shed light on hundreds of phenomena, giving us insight into how social 

pressures influence attitudes (Bem, 1967; Festinger, 1962; Latané, 1981), behaviors (Cialdini, 

Reno, & Kallgren, 1990; Milgram, 1978), and even basic cognitive processes like memory and 

attention (Baldwin et al., 2014; Coman, Manier, & Hirst, 2009; Shteynberg, 2010).  

These contributions notwithstanding, many of our field’s paradigms suffer from a 

methodological tradeoff between external and internal validity, which prevents us from studying 

large groups with the same degree of control that characterizes effective research on individual 

behavior. In this paper, we introduce in-vivo behavioral tracking (IBT) as a new method that can 

resolve this tradeoff. In our variant of IBT, individuals interact in a fully enclosed stadium as 

their behavior is tracked surreptitiously from a camera mounted high and directly above them. 

The resulting data offer insight into group formation, the emergence of group norms, and other 

forms of dynamic social behavior, with high experimental control and ecological validity. While 

IBT may sound prohibitively expensive or logistically complex, we show how the method’s 

flexibility makes it eminently accessible and feasible to implement.    
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Social Psychology’s Methodological Tradeoff 

Social psychologists study intergroup and cognitive processes with a wide and growing 

array of methods, which vary in their internal and external validity. At one extreme are 

unobtrusive observations of group behavior in natural environments. These have evolved from 

ethnographic methods in anthropology, but are typically more hypothesis-driven in their 

psychological instantiations. In one classic example, Freeman and Webster (1994) observed that 

beach-goers’ physical locations over 31 days could not only predict their interaction frequency, 

but also their inferences of psychological similarity. A more recent example is “free range data 

harvesting,” in which the similarity among randomly sampled dyads is used to infer the “fault 

lines” around which social groups emerge, and the contextual moderators of dyadic similarity 

(Crandall, Schiffhauer, & Harvey, 1997). In one such investigation, Bahns, Pickett, and Crandall 

(2011) found that dyads tended to have more in common at large universities compared to small 

universities. The authors speculatively attributed the effects to greater relational mobility at large 

campuses, but they could not experimentally test this account, just as Freeman and Webster 

could not directly test the facets of proximity that accounted for its relationship with affiliation. 

Both studies suffer from the same limitation, seemingly unavoidable in observational field 

studies: the proposed psychological processes underlying observed naturalistic behavior can 

neither be manipulated nor precisely measured.   

 At the other end of the spectrum are laboratory studies designed to maximize 

environmental control and internal validity. Early intergroup laboratory paradigms included the 

bogus stranger paradigm and the minimal group paradigm. In the former method, participants 

rate their attraction to a fictitious stranger based on cursory knowledge of the stranger’s 

preferences (e.g. Byrne, Clore, Worchel, 1968). In the latter, participants are assigned group 
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membership based on trivial, often arbitrary characteristics, and then make relevant intergroup 

judgments, such as choose how to distribute resources shared resources (e.g. Turner, 1982). Both 

paradigms have yielded insights into intergroup bias and homophily, and have been 

complemented by newer and more precise social cognitive measurements of implicit bias, such 

as the Implicit Association Test (Greenwald, McGee, & Schwartz, 1998; Greenwald, Nosek, & 

Banaji, 2003), and the Affective Misattribution Procedure (Fazio, 2001; Payne et al., 2005).  

 Computational methods have recently emerged as an even more precise way of 

experimentally studying group behavior by simulating environments of many individuals. For 

example, agent-based models sample artificial agents, which represent intentionally simplified 

humans behaving in theoretically consistent ways (Jackson et al., 2017; Macy & Flache, 2009). 

Since agent-based models are computer simulations, researchers can use them to create and 

control environments, samples, and modes of interaction. Agent-based models also allow 

researchers to study dynamic phenomena, which emerge over many generations through a 

transactive relationship between individuals and their environments (Smith & Conrey, 2007).  

Nevertheless, these controlled methods are, almost by definition, simplifications of the 

environments they hope to model, requiring additional assumptions to make inferences from 

their results. Participants’ self-reports of intergroup attitudes are often inaccurate (e.g., Dovidio, 

Kawakami, & Gaertner, 2002; Holmes, 2009); and people’s decisions in economic games do not 

translate to other forms of prosociality with high fidelity (Bardsley, 2008; Levitt & List, 2007; 

Winking & Mizer, 2013). Agent-based approaches, despite being a promising new method in 

social psychology, are only as valid as the models and assumptions that drive their algorithms, 

and sometimes must be replicated with human participants to verify that they behave as predicted.  
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Other methods alternatively have more internal or external validity, but come with 

weaknesses of their own. Archival analyses can track attitudes in large groups, but cannot 

experimentally manipulate the environments in which those attitudes are measured. Field 

experiments can improve on the laboratory’s external validity, but tend only to manipulate 

conditions amongst dyads and small groups of individuals, and often lack a priori information 

about their samples. In fact, all methods appear to have at least one of two general limitations. 

Researchers either lack the scale, resolution, or control to quantify the process behind their 

observations, or they lack the ecological validity to apply precise quantitative findings to real-

world phenomena.  

Resolving the Tradeoff through IBT 

IBT draws in part from the growing literature in animal behavior that uses real-time 

tracking to gather data on animals and insects as they hunt (Elliott et al., 1977), mate (de 

Chaumont et al., 2012), and socially interact (Noldus, Spink, & Tegelenbosch, 2002). Much of 

this research employs automated image-based tracking, wherein data on movement and position 

are converted from tracking pre-assigned visual objects (e.g. patches of color) over the course of 

a video record (see Dell et al., 2014). This mode of tracking can provide precise data, but has 

(until now) been largely used in correlational designs. There is some limited human research that 

uses environmental manipulations with image-based tracking methodology (e.g. Gallup et al., 

2012; Junior, Musse, & Jung, 2010; Zhan et al., 2008), but these too are only quasi-experimental, 

and also lack information about participants’ demographic and psychological characteristics. The 

age and gender of individuals on a city street can be roughly approximated, but their personality 

traits, self-esteem, and interpersonal preferences remain hidden and unknown.    
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IBT moves beyond previous human and non-human tracking paradigms by combining 

environmental control, precise measurement, ecological validity, and rich information on 

individual differences. Participants—who have previously provided relevant demographic and 

individual difference data—are unobtrusively filmed (in our case, by a small camera 25m above 

them) in a controlled environment large enough to permit relatively unconstrained behavior. 

Participants’ position in the video feed can then be converted into any number of spatial or 

movement data (e.g., physical location, speed, proximity), which can be merged with pretest data 

containing their attitudes and demographic information. Thus, the methodology produces precise 

real-time data, which can be analyzed as a function of any measurable individual difference. 

Furthermore, the measurement technique can be combined with nearly any laboratory 

manipulation by exposing participants to different conditions before they enter the experimental 

venue.  

The general steps involved in implementing an IBT study are as follows. 

Step 1: Find a Suitable Venue to Mount a High-Resolution Camera 

To track participants’ in vivo behavior, one needs a clear view of all participants 

throughout the study. Otherwise, IBT is compatible with areas of variable size and layout. In our 

studies, we have used a section of the Forsyth-Barr stadium in Dunedin, New Zealand. The 

venue is fully enclosed, allowing us to hang a mounted camera on a beam 25m above the 

stadium’s floor, sufficiently high to be practically invisible and to maintain a clear view of all 

participants throughout the experiment. To track behavior, our group has used an Elphel NC535 

network camera, which records at 30 frames/second at a full resolution of 2592×1944 pixels. A 

Theia SY110 lens provides a 120º view with almost 0% distortion, which ensures precise error-
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free tracking. Obviously, the particular venue and nature of experimental tasks will inform 

camera choice, with larger and more dynamic samples requiring higher fidelity. 

Step 2: Recruit a Sample and Administer Premeasures 

Before experimentation, researchers using IBT must recruit a sample and gather 

theoretically relevant self-report and demographic information. For researchers studying the 

dynamics of small group behavior, the IBT paradigm is applicable to samples of fewer than a 

dozen individuals. For those studying large crowds or swarm behavior, the IBT approach can 

conceivably be up-scaled to samples of hundreds or even thousands of participants. In our own 

studies, we have sampled multiple groups of approximately 50 participants, who have completed 

relevant psychological measures online several weeks prior to experimentation.  

Step 3: Run Behavioral Activities Within the Experimental Venue 

The IBT parameters allow for a huge range of behavioral activities to test any number of 

research questions. However, variables that can be operationalized in terms of changes in 

physical position over time (e.g., velocity, acceleration, trajectory) take better advantage of the 

unique power of tracking data. Our own experimental tasks have been as simple as asking 

participants to follow a research assistant around the venue (see Figure 1 for a representation of 

this task), or “get into groups” (from which groups’ speed of formation, composition, and 

duration can be derived and linked to participants’ individual differences), and as complex as a 

large-scale “foraging” task meant to approximate group survival activities in pre-agricultural 

societies. Other researchers will, of course, have other priorities.  

Needless to say, IBT has a better claim to ecological validity when participants are 

unaware they are being filmed, which may pose an ethical issue for some review boards. In our 

case we reached a compromise position: Participants in our studies consented to appear on video 
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but were not told (nor did anyone inquire about) the specifics of how, when, or where any 

filming would take place. Participants indicated no awareness of the mounted camera. After the 

study, participants were emailed a fuller debriefing, which included the option to remove their 

data from analysis. No participants took up this option.  

 

 

 

 

 

 

 

Figure 1. An overhead view of participants following a research assistant around the 

experimental venue, complemented with a view of the tracking data as they are later processed 

and analyzed via a custom MATLAB script. Participants are shown in slightly different positions 

across these two images, since the images represent slightly different time-points. Colors 

represent the path of different individuals. Scale is in meters.  

 

Step 4: Generate Participants’ Positional Data 

After collecting data, researchers must extract and quantify participants’ physical location 

over the course of the study. For us, a key challenge in this step is determining who is who, since 

it is nearly impossible to confirm participants’ identities from our video feed alone. We address 

this problem by having participants enter the experimental area one by one at the beginning of 

the study, in order of identification codes they have been randomly assigned before the study. 
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Participants’ identification numbers are linked to their questionnaire responses, allowing us to 

reliably match the two sets of data.  

Once participants’ numbers are identified in the video feed, computer software is 

required to follow them automatically as they move about the experimental space. Tracking 

techniques are numerous and evolving. Our specific tracking software—developed by the 

software engineering group Animation Research Limited (ARL)—extracted sets of image 

patches for each participant and stored x-y coordinates associated with these patches. It updated 

patch coordinates in each subsequent image of the video sequence using computer vision 

methods, such as template matching (Lewis, 1995) and histogram-based matching (Porikli, 2005). 

To use the software, the user first selects a tracking target of interest (i.e. a participant in the 

study) with a mouse-click on the target’s head, which defines a unique template (a box around 

the starting point) to be matched (See Figure 2 for a view of these templates linked with their 

participants). The program assumes that all participants are part of the dynamic foreground. It 

then creates a template of extracted foreground pixels that will be traced for each frame of the 

video, calculating the location of the best match between each new frame’s template and the 

template that was previously stored. In our research, we used a camera that recorded at 30 frames 

per second, generating 30 sets of coordinates per second per participant. 
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Figure 2. An image of the video feed as participants’ locations are being tracked. Boxes over 

participants’ heads represent color templates that are matched and updated over the course of the 

experiment, resulting in sequential x-y coordinates.  

 

Any visual tracking method—including ours—faces two challenges in trying to 

distinguish a participant from his surrounding environment. The first is occlusion; participants 

may be “lost” or misidentified as they pass behind one another. The number of participants, the 

nature of their interaction, and the angle at which they are filmed all influence the likelihood of 

occlusion. Although the former two factors may be constrained by the participants and venue to 

which researchers have access, the latter can be addressed by filming from as steep an angle as 

possible, and ideally directly overhead, as we did in the work reported here.  

The second challenge is that participants may be lost against the background, a problem 

that can be minimized by filming in good light and on a clean and bright surface. In our method 

we took the additional step of supplying participants with orange hats to maximize contrast with 

the stadium’s gray cement floor. Such interventions risk compromising ecological validity (e.g., 

in the case of hats, by making participants uncomfortable or suspicious) so they should be used 

with caution, and with an appropriate cover story. Furthermore, even after taking such measures, 

researchers should not assume any automated tracking will be error-free. In our case, a research 

assistant monitored the software’s progress, and made manual adjustments on the rare occasions 

that a tracking patch became displaced.   

Step 5: Analyze Tracking Data and Integrate with Other Data  
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In order to analyze behavioral data in relation to pre-measures, one must use participants’ 

x-y coordinates throughout the study to compute speed and inter-individual proximity indices. In 

our case, we created a custom MATLAB script that, for any user-defined interval, generates 

measures of average speed and distance traveled, instantaneous speed at the conclusion of that 

interval, and measures of interpersonal proximity. It also generates more specific information 

regarding participants’ clustering using a k-means algorithm followed by silhouetting, which 

quantitatively identifies discrete social groups based on the ratio of participants’ proximity to 

group members vs. non-group members (see Figure 3). The program returns fit coefficients for 

groups of different sizes, which can be used to determine the most accurate number of groups 

that formed during the pre-specified interval, along with the members of each group and their 

positions within it. Finally, all movement and group membership data are merged with individual 

difference or experimental data collected prior to the study.  

 

 

 

 

 

 

 

 

Figure 3. An overhead view of participants completing a group formation task in which they 

were asked to “get into groups of any size or composition” over several iterations. Using a 

MATLAB k-means/silhouetting algorithm, we were able to quantitatively identify social groups 
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via participants’ spatial distribution and extract data about these groups. The right panel displays 

these quantitatively derived groups.  

 

Assumptions of IBT 

The primary advantage of IBT is its ability to measure behavior unobtrusively with high 

precision and control. Nevertheless, the method requires a few basic assumptions. 

Proximity as Affiliation 

IBT’s first assumption is that proximity is a proxy for affiliation, and that any 

convergence of individuals is non-random and psychologically significant. This assumption 

draws from the classic literature on personal space, which delineates a proximal boundary into 

which only close others are permitted (Hayduk, 1983), such that approaching that boundary 

increases psychological intimacy. We argue that, when observed on a large scale, patterns of 

physical proximity yield insights into emergent social ties.  

Speed as Effort 

In many important group activities, from foraging, to hunting, to warfare, speed relates to 

group commitment, and we have made use of this association in our IBT designs. In one study, 

we asked participants to collect hundreds of tokens scattered across the experimental area, with 

instructions that the experiment would not end until all tokens had been collected. Since it is in 

everyone’s interest to collect the tokens promptly, but in no individual person’s interest to be the 

one to collect them, this situation represents a large-scale behavioral social dilemma, and the 

speed with which participants search for tokens reflects their willingness to cooperate for the 

good of the group at the expense of their own effort. Speed can also offer insight into more 

nuanced social motivations. For instance, in a marching task, an individual’s synchronization 
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with his/her group’s walking speed might reflect their desire to conform to descriptive norms, 

while deviating from the group’s speed might indicate low motivation to socially coordinate.  

IBT Approximates the Field on Psychologically Relevant Dimensions 

By definition, no controlled space is exactly like real life. Each venue is a unique space, 

and participants will behave in unique ways. Methodology-specific reactivity can be quantified 

(e.g., Mehl & Holleran, 2007), and IBT researchers may wish to do so, particularly if they re-use 

a particular venue over a series of studies. However, an equally relevant issue is whether a 

potentially unique experimental context mimics real life in theoretically relevant ways. In the 

case of large group behavior, the theoretically relevant ways include participants’ ability to 

naturally form groups and cooperate with each other without the interference of an experimenter 

or the confines of a closed laboratory space. Thus, although a stadium (or any other IBT venue) 

hardly resembles a battlefield, church, or urban sprawl, it remains an appropriate venue to 

experimentally study the group behaviors that typify these spaces.     

How does IBT compare with other tracking methods? 

IBT is not the first tracking method that has been applied to human behavior. There are 

several other tracking technologies available with the potential to study behavior in large groups. 

These technologies differ in terms of their precision, operational constraints, and costs.  

Global Positioning 

The cost and size of global positioning (GPS) receivers have decreased markedly and 

there has been a corresponding increase in their use to track non-human species ranging from 

whales (Wahlberg, 2002), to bats (Tsoar et al., 2011). Furthermore, as these receivers have 

become ubiquitous, participants in a human study could feasibly carry GPS tracking devices 
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(indeed, most people are already carrying them in their smartphones), with their x-y (and z) data 

continuously streamed to a central location or downloaded offline.  

There are, however, two major limitations that hamper the research application of GPS 

software. The first of these relates to spatial resolution: GPS provides a 95% accuracy of around 

3-4 meters, but this can be poorer under some circumstances, as when there is an ionospheric 

delay (which interferes with the satellite strength as it penetrates the earth’s atmosphere; Sardon, 

Rius, & Zarraoa, 1994). GPS error can be reduced to as little as 1m when coupled with other 

technologies, such as the Wide Area Augmentation System (Parkinson, 1996), which is available 

in limited geographical locations and devices. This resolution, however, may still be insufficient 

to detect the subtle changes in proximity that reflect social affiliation.  

Ultra-Wideband 

Alternative tracking technologies have been developed based on radio transmitters such 

as the Radio Frequency Identification (RFID) and Ultra-Wideband (UWB). These systems 

consist of one or more fixed and calibrated receivers and mobile tags worn by study participants. 

For UWB, the tags would transmit UWB radio pulses to linked sensors arranged around an 

experimental area. These sensors use Time-Difference-of-Arrival and Angle-of-Arrival data to 

determine transmitter location. Although some of these devices have very good sampling rates, 

they require a calibrated sensor infrastructure that may be challenging to set up for short-term 

studies. Furthermore, as many of these devices were developed for commercial applications such 

as inventory management, it is unclear how they perform with a large number of sensors moving 

rapidly through the area of interest, or in cases of high signal occlusion due to large samples. 

Social Sensors 
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Social sensors include much of the functionality of UWB tags, but do away with the 

complex infrastructure. Early social sensors were designed for a variety of purposes, such as 

capturing teacher-student interactions, and triggering automatic doors based on the wearer’s 

position (Borovoy et al., 1996; Farringdon et al., 1999; Olguín & Pentland, 2008; Want et al., 

1992). More recent innovations have included the sociometric badge, which are able to capture 

participants’ physiological states and interpersonal behavior (including orientation to other 

participants; Choudhury & Sabherwal, 2003; Olguín, Paradiso, & Pentland, 2006). They also 

recognize common daily activities (e.g. sitting, running) in real time with at least 80% accuracy 

(Olguín & Pentland, 2006), and can analyze wearers’ speech patterns for interest and excitement 

(Pentland, 2005).  

However, sociometric badges have been largely restricted to use in organizational 

contexts, such as analyzing staff behavior in hospitals (see Rosen et al., 2014), though some 

exploratory work has used sociometric badges to analyze face-to-face interactions during coffee 

breaks (Atzmeuller et al., 2014), and gender differences in cooperation (Onnela et al., 2014). 

Their limited use is partially due to the cost of the badges, but also due to their relative 

imprecision. Badge-derived spatial data have significant noise, with accuracy ranging from 1 to 3 

meters in previously published research (Onnela et al., 2010; Cattuto et al., 2010).  

In sum, there are several existing and emerging options for tracking participants without a 

mounted camera. Some (e.g. global positioning) are relatively inexpensive, but are too imprecise 

to approximate movement and speed with the appropriate resolution and scale. Others are more 

precise, but are not feasible in most contexts due to a limited infrastructure (e.g. ultra-wideband 

methods), or to their high cost (e.g. sociometric badges). Measures do exist that can precisely 

gather data on participants’ conversations and emotional states (e.g. EAR; Mehl et al., 2001), yet 
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no spatial tracking alternative can rival IBT’s combination of precision, contextual flexibility, 

and affordability.   

Two Questions Answered with IBT 

To illustrate the method’s strengths, we next explain our own applications of IBT to two 

fundamental questions in social psychology: How do people form social groups? And when do 

people cooperate with their groups? Our hypotheses were based on pre-existing social science 

literature but had not been definitively tested given the aforementioned constraints of traditional 

laboratory paradigms.  

How do people form social groups?  

Some of the earliest research on group formation came from Social Identity theorists, 

who argued that individuals identify with and favor others who share common features, and that 

groups are likely to form on the basis of such features (Brewer & Kramer, 1985; Tajfel, 1982). 

These researchers found, for example, that participants allocated relatively more resources to 

others with whom they shared group membership, even if that affiliation was arbitrary and 

largely meaningless (e.g. based on preference for abstract art or nametag color; Billig & Tajfel, 

1973; Tajfel, 2010; Tajfel, 1978).  

Yet many of these early paradigms suffered from considerable limitations. Most notably, 

people in these studies typically made decisions alone, working in cubicles with digital or paper 

forms. Even when participants believed that they were interacting with group members, these 

interactions were often simulated by the experimenter, and did not involve other people (e.g. 

Ellemers et al., 1999). This limitation means that many findings in the field of social identity are 

based on mere approximations of real group situations. A second limitation of previous designs 

was their focus on single interactions—a trend that continues with the heavy reliance of social 
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psychological research on one-shot dilemmas (Camerer & Fehr, 2006; Smith & Conrey, 2007). 

Single-shot paradigms ignore the dynamic nature of social groups, wherein processes like 

homophily and ostracism can snowball or diminish over time.  

 To try to address these limitations, we applied IBT to the question of group formation 

(Halberstadt et al., 2016). We positioned samples of approximately 50 individuals around our 

experimental area, and repeatedly instructed them to form groups of any size or composition. 

When we linked participants’ location data with their demographics, we found that group 

formation occurred primarily on the basis of participants’ physical attractiveness (as rated by 

independent coders after the study), and their gender. However, both effects decreased over trials, 

with groups getting more heterogeneous over time. This evidence has points of both convergence 

and divergence with previous research. As in previous studies using more restricted paradigms, 

participants preferred to interact with others who had salient physical features in common with 

them. However, in contrast to other research on social grouping (e.g. Gray et al., 2014; Schelling, 

1971), groups did not become more similar with time. Rather, they became more diverse, 

suggesting that superficial physical cues might be weighted less as group members become more 

familiar.    

 In another study, we added an experimental component to our group formation task, 

giving each participant one of two different colored nametags in a real-life version of the 

minimal-group paradigm, while also measuring self-esteem and collective self-esteem. Groups 

segregated themselves by nametag color to a greater extent than expected by chance, 

demonstrating for the first time that the minimal group manipulation actually produces groups 

(rather than just bias). Furthermore, participants’ individual and collective self-esteem predicted 

the minimal group effect in opposite ways. Those with high individual self-esteem showed the 
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weakest tendency to group by nametag color, while participants with high collective self-esteem 

showed the strongest, suggesting that minimal grouping is differentially valuable depending on 

the level at which people derive their esteem.    

 In addition to these homophily effects, IBT has also yielded insights into grouping 

heterophily—the process whereby individuals avoid grouping with others who share common 

traits. Previous research has suggested that individuals who are high in anxious attachment might 

prioritize warm partners in their social relationships (e.g. Feeney & Noller, 1990), while those 

high in avoidant attachment might prioritize partners who offer them autonomy (e.g. Mayseless 

& Scharf, 2007). Yet, while avoidantly attached individuals might be well-equipped to provide 

the relational autonomy that they desire in others, anxiously attached individuals tend to display 

high social anxiety (Cash, Theriault, & Annis, 2004) and distrust (Knobloch, Solomon, & Cruz, 

2001) in their relationships, making them ill-suited as partners for other anxiously attached 

individuals. Our IBT data showed grouping effects consistent with this possibility: people high in 

attachment avoidance tended to form groups with other avoidantly attached individuals, but 

those high in attachment anxiety tended to form groups with others who were low in attachment 

anxiety. These data suggest that the behavioral cues associated with attachment styles (see 

McClure & Lydon, 2014; Schachner, Shaver, & Mikulincer, 2005) might be detectable in brief 

non-verbal interactions, and appear to shape early group formation amongst strangers.  

When do we cooperate with our groups?  

The origin of large-scale human cooperation is one of the most intriguing issues in the 

social sciences, occupying a significant portion of the literatures in economics (Axelrod, 1980; 

Hamilton & Axelrod, 1981), sociology (Durkheim, 1947), behavioral ecology (Boyd & 

Richerson, 1988), anthropology (Whitehouse, 2012), and psychology (Bear & Rand, 2016; 
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Norenzayan et al., 2016). Many of these disciplines conceptualize cooperation as the driving 

force behind the proliferation of large human groups, but also see it as counterintuitive, since 

people live in large anonymous communities of non-relatives where defection is often a more 

favorable strategy for resource accrual and individual survival. Indeed, in our IBT studies, we 

have found that individuals who were more deeply embedded in their groups early in the 

experiment also put less effort into a subsequent cooperative task, suggesting that anonymity is 

associated with defection in group tasks.  

We have also used IBT to explore one proposed solution to the problem of cooperation: 

the development of kin-like ties through ritualized behavior (Durkheim, 1912/59; Whitehouse & 

Lanman, 2014). Experimental investigations had previously found that common elements of 

rituals such as behavioral synchrony (Wiltermuth & Heath, 2009) and shared pain (Bastian, 

Jetten, & Ferris, 2014) independently increased group commitment in social dilemmas. However, 

their generalizability was limited due to the small size of their groups: these studies had 

exclusively examined groups of fewer than five members, even though most rituals involve 

much larger collectives (Fischer et al., 2013). Using IBT, we sought to extend the previous work 

to larger groups, while testing how different elements of rituals might interact. We designed a 

pseudo-ritual that masqueraded as a follow-the-leader task; participants had to follow a research 

assistant around the experimental area for several minutes. We found, first, that participants as a 

group synchronized their walking speed over time (see Figure 4), and that participants who did 

so more fully stood in closer proximity to their peers at later points in the experiment, indicating 

a potential link between synchrony and prosociality in large groups. In an experimental design, 

we also systematically varied participants’ walking synchrony (via instructions to walk in-step 

with other participants) and arousal (via walking speed). Tracking data revealed that participants 
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who moved synchronously (versus asynchronously), and those who moved quickly (versus at a 

normal pace), later formed larger groups, stayed closer to the members of those groups, and were 

more cooperative in the “foraging” task described above. Critically, the effects of synchrony and 

arousal were larger in combination than alone.  

 

 

 

 

 

 

 

 

Figure 4. Synchronization of group walking speed over time. During a follow-the-leader 

walking task, deviance from the average group walking speed decreased, such that participants 

progressively synchronized their speed over time. Participants who tended to synchronize their 

speed with the group speed also later stood in greater proximity to their peers, suggesting that the 

tendency to synchronize and affiliate with others may be linked. 

Conclusion 

Social psychology is often defined as the study of how humans behave in groups, yet 

many of our field’s paradigms are not well suited for studying naturalistic group behavior. 

Existing methodological limitations can either be traced to issues with internal validity (e.g. 

quasi-experimental designs and imprecise measurement) or with external validity (e.g. 

ecologically-deficient environments or poor operationalization). In this paper, we showed how 
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IBT can help resolve this tradeoff, reviewed some of the practical and methodological factors to 

consider when using the paradigm, and illustrated some initial applications to basic questions of 

group dynamics. We conclude that IBT is an important counterpart to traditional and emerging 

laboratory and computational paradigms in understanding how groups form and evolve over time. 
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