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ABSTRACT
We consider the problem of determining multiple steady states for
positive real values in models of biological networks. Investigating
the potential for these in models of the mitogen-activated protein
kinases (MAPK) network has consumed considerable effort using
special insights into the structure of corresponding models. Here
we apply combinations of symbolic computation methods for mixed
equality/inequality systems, specifically virtual substitution, lazy
real triangularization and cylindrical algebraic decomposition. We
determine multistationarity of an 11-dimensional MAPK network
when numeric values are known for all but potentially one param-
eter. More precisely, our considered model has 11 equations in 11
variables and 19 parameters, 3 of which are of interest for symbolic
treatment, and furthermore positivity conditions on all variables
and parameters.

CCS CONCEPTS
• Applied computing → Biological networks; • Computing
methodologies→ Equation and inequality solving
algorithms;
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1 INTRODUCTION
The occurrence of multiple steady states (multistationarity) has
important consequences on the capacity of signaling pathways to
process biological signals, even in its elementary form of two stable
steady states (bistability). Bistable switches can act as memory
circuits storing the information needed for later stages of processing
[28]. The response of bistable signaling pathways shows hysteresis,
namely dynamic and static lags between input and output. Because
of hysteresis one can have, at the same time, a sharp binary response
and protection against chatter noise.

Bistability of signaling usually occurs as a result of activation
of upstream signaling proteins by downstream components [3]. A
different mechanism for producing bistability in signaling path-
ways was proposed by Markevich et al. [20], where bistability
can be caused by multiple phosphorylation/dephosphorylation
cycles that share enzymes. A simple, two-step phosphoryla-
tion/dephosphorylation cycle is capable of ultrasensitivity, a form
of all or nothing response with no hysteresis (Goldbeter–Koshland
mechanism). In multiple phosphorylation/dephosphorylation cy-
cles, enzyme sharing provides competitive interactions and positive
feedback that ultimately leads to bistability.

Algorithmically the task is to find the positive real solutions of a
parameterized system of polynomial or rational systems, since the
dynamics of the network is given by polynomial systems (arising
frommass action kinetics) or rational functions (arising in signaling
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networks when some intermediates of the reaction mechanisms
are reduced). Due to the high computational complexity of this task
[14] considerable work has been done to use specific properties
of networks and to investigate the potential of multistationarity
of a biological network out of the network structure. This only
determines whether or not there exist rate constants allowing mul-
tiple steady states, instead of coming up with a semi-algebraic
description of the range of parameters yielding this property. These
approaches can be traced back to the origins of Feinberg’s Chemical
Reaction Network Theory (CRNT) whose main result is that net-
works of deficiency 0 have a unique positive steady state for all rate
constants [9, 13]. We refer to [7, 17, 22] for the use of CRNT and
other graph theoretic methods to determine potential existence of
multiple positive steady states, with [18] giving a survey.

Given a bistable mechanism it is also important to compute the
bistability domains in parameter space: the parameter values for
which there is more than one stable steady state. The size of bista-
bility domains gives the spread of the hysteresis and quantifies the
robustness of the switches. The work of Wang and Xia [26] is rele-
vant here: they used symbolic tools, including cylindrical algebraic
decomposition as we do, to determine the number of steady states
and their stability for several systems. They reported results up to
a 5-dimensional system using specified parameter values, but their
method is extensible to parametric questions. Higher-dimensional
systems were studied using sign conditions on the coefficients of
the characteristic polynomial of the Jacobian. In some cases these
guarantee uniqueness of the steady state [8].

In this paper we use an 11-dimensional model of a mitogen-
activated protein kinases (MAPK) cascade [20] as a case study to
investigate properties of the system using algorithmic methods to-
wards the goal of semi-algebraic descriptions of parameter regions
for which multiple positive steady states exist.

2 THE MAPK NETWORK
The model of the MAPK cascade we are investigating can be found
in the Biomodels database [19].1 We have renamed the species
names to x1, . . . , x11 and the rate constants to k1, . . . , k16 to facilitate
reading:

Ûx1 = k2x6 + k15x11 − k1x1x4 − k16x1x5

Ûx2 = k3x6 + k5x7 + k10x9 + k13x10 − x2x5(k11 + k12) − k4x2x4

Ûx3 = k6x7 + k8x8 − k7x3x5

Ûx4 = x6(k2 + k3) + x7(k5 + k6) − k1x1x4 − k4x2x4

Ûx5 = k8x8 + k10x9 + k13x10 + k15x11−

x2x5(k11 + k12) − k7x3x5 − k16x1x5

Ûx6 = k1x1x4 − x6(k2 + k3)

Ûx7 = k4x2x4 − x7(k5 + k6)

Ûx8 = k7x3x5 − x8(k8 + k9)

Ûx9 = k9x8 − k10x9 + k11x2x5

Ûx10 = k12x2x5 − x10(k13 + k14)

Ûx11 = k14x10 − k15x11 + k16x1x5. (1)

1www.ebi.ac.uk/biomodels-main/BIOMD0000000026

The Biomodels database also gives us meaningful values for the
rate constants:

k1 = 0.02, k2 = 1, k3 = 0.01, k4 = 0.032,
k5 = 1, k6 = 15, k7 = 0.045, k8 = 1,
k9 = 0.092, k10 = 1, k11 = 0.01, k12 = 0.01,
k13 = 1, k14 = 0.5, k15 = 0.086, k16 = 0.0011. (2)

Some of these values are measured and some are well-educated
guesses. For the purpose of our study we assume they are suitable.

We add three linear conservation constraints introducing three
further constant parameters k17, k18, k19:

x5 + x8 + x9 + x10 + x11 = k17

x4 + x6 + x7 = k18

x1 + x2 + x3 + x6 + x7 + x8 + x9 + x10 + x11 = k19. (3)

Computations to produce these in MathWorks SimBiology use
the left-null space of the stoichiometric matrix under positivity
conditions, see for example [23].

Meaningful values for k17,k18,k19 are harder to obtain than the
constants in (2). The following are some realistic values estimated
by ourselves on the basis of our understanding of the biological
model:

k17 = 100, k18 = 50, k19 ∈ {200, 500}. (4)

The long-term goal of our research is to treat all three of these
together parametrically, although in the present work we focus on
situations with one free-parameter.

The steady state problem for the MAPK cascade can now be
formulated as a real algebraic problem. That is, we replace the left
hand sides of all equations in (1) with 0. This together with the
equations in (3) yields an algebraic system with polynomials in

F ⊂ Z[k1, . . . ,k19][x1, . . . ,x11].

All entities in our model are strictly positive, which yields in addi-
tion a system

P = {k1, . . . ,k19,x1, . . . ,x11} ⊂ Z[k1, . . . ,k19][x1, . . . ,x11]

establishing a side condition on the solutions of F that all variables
xi and parameters ki of P be positive. In terms of first-order logic
our specification of F and P yields a quantifier-free Tarski formula

φ =
∧
f ∈F

f = 0 ∧
∧
v ∈P

v > 0. (5)

The estimations for the rate constants in (2) formally establish
a substitution rule σ = [0.02/k1, . . . , 0.0011/k16], which can be
applied to F , P , or φ in postfix notation.

2.1 Symbolic Determination of Occurrences of
Multiple Steady States

In this section we are going to analyze the system for multiple
positive steady states. As we will not include a priori information
about the stability of the fixed points, we do not only have to
consider (at least) two stable fixed points but also unstable fixed
points, i.e., we investigate the existence of at least three different
roots x ∈ ]0,∞[11 of F for given choices k ∈ ]0,∞[19 of parameters.

We present two investigations: one using the Redlog package in
Reduce and the other using the Regular Chains Library in Maple.

www.ebi.ac.uk/biomodels-main/BIOMD0000000026


Both will make use of Cylindrical Algebraic Decomposition (CAD)
[1] to solve the problem. The worst-case time complexity of CAD is
doubly exponential.2 Our approaches admit, in principle, arbitrary
numbers of indeterminates. However, for the sake of realistic com-
putation times we must restrict ourselves to one free parameter.
Even then, the number of variables present is too large for contem-
porary CAD implementations. We make progress by combining
CAD with additional symbolic methods. Our first approach uses
virtual substitution techniques and the second real triangulariza-
tion. In both cases we have combined the corresponding methods
by hand, but automation is clearly possible.

2.1.1 Real Quantifier Elimination in Redlog. Real Quantifier
Elimination (QE) can directly handle the parametric existence of
steady states, taking as input ∃x1 . . . ∃x11φ, possibly with substi-
tutions for some parameters. However, we are not only interested
in the existence but also in the number of solutions. We are going
to combine Virtual Substitution (VS) [27] with CAD. The former
smoothly eliminates the majority of the quantifiers while the latter
allows us to count numbers of solutions via decomposition of the
remaining low-dimensional spaces. That combination of methods
requires the solution of several QE runs with each problem and
some combinatorial arguments. Throughout this subsection we are
using Redlog [10].

Parameter-Free Computations. We consider

φ500 = φσ [100/k17, 50/k18, 500/k19]

where all parameters have been substituted with rational numbers.
The closed formula φ̄500 = ∃x1 . . . ∃x11φ500 states the existence of
a suitable real solution. In a first step, we solve for i ∈ {1, . . . , 11}
the following eleven QE problems using VS:

φ
(i)
500 = VS(∃x1 . . . ∃xi−1∃xi+1 . . . ∃x11φ500).

Each φ(i)500 is a univariate quantifier-free formula describing all pos-
sible real choices for xi for which there exist real choices for all
other variables such that φ500 holds. CAD can easily decompose the
corresponding one-dimensional spaces. It happens that for each xi
there are exactly three zero-dimensional cells ai , bi , ci ∈ R where
φ
(i)
500 holds. We extract all ai , bi , and ci as real algebraic numbers,

i.e., univariate defining polynomials with integer coefficients plus
isolating intervals. By combinatorial arguments it is not hard to see
that the following holds for the set S500 of real solutions of φ500:

3 ≤ |S500 | and S500 ⊆

11∏
i=1

{ai ,bi , ci }.

Notice that at this point we have proven multistationarity for
k19 = 500. We can furthermore compute S500 by plugging the
311 candidates from the Cartesian product into φ500. A straight-
forward approach requires arithmetic with real algebraic numbers
followed by the determination of the signs of the results, which is
quite inefficient in practice. We use instead a heuristic approach
combining refinements of the isolating intervals of the real alge-
braic numbers with interval arithmetic. This excludes 311 − 3 of
2Traditionally, doubly exponential in the number of variables. However recent progress
on CAD in the presence of equational constraints [11], such as (1) with 0 for left-hand
side, allows us to conclude it is actually doubly-exponential the number of variables
minus the number of equational constraints at different levels of the projection [12].

the candidate solutions. The three remaining candidates require
no further checking since we already know that |S500 | ≥ 3. The
overall CPU time is 71.3 seconds for 11 runs of VS plus 11 runs of
CAD, followed by 16 hours for checking candidates.3 Our checking
procedure is a file-based prototype starting a Reduce process for
every single of the 311 candidates; there is considerable room for
optimization.

For k19 = 200 instead of 500 all eleven univariate CAD com-
putations yield unique solutions which can be straightforwardly
combined to one unique solution for the corresponding φ200. The
overall CPU time here is 66.4 seconds for 11 runs of VS plus 11
runs of CAD. Machine float approximations of all our solutions are
given in Table 1.

Parametric Analysis for k19. We consider

φk19 = φσ [100/k17, 50/k18]

leaving k19 as a parameter. Again, we solve for i ∈ {1, . . . , 11}
eleven QE problems using VS:

φ
(i)
k19
= VS(∃x1 . . . ∃xi−1∃xi+1 . . . ∃x11φk19 ).

This time each φ(i)k19
is a bivariate quantifier-free formula in k19 and

the corresponding xi . This time we construct a two-dimensional
CAD for each φ

(i)
k19

. The projection order is important: we first
project xi , then the CAD base phase decomposes the k19-axis, fol-
lowed by an extension phase that decomposes the xi -space over
the k19-cells obtained in the base phase. This is feasible with one
limitation: we do not extend over zero-dimensional k19-cells. In
other words, we accept finitely many blind spots in parameter space,
which we can explicitly read off from the CAD so that in the end
we know exactly what we are missing.

Figure 1 shows our CAD tree for φ(2)k19
. The first layer next to

the root shows the decomposition of the k19-axis. The five zero-
dimensional (rectangular) cells are the previously mentioned blind
spots, among which the smallest one with negative value of k19
is not relevant. Those zero-dimensional cells also establish the
limits of the full dimensional (oval) cells in between. The cylinders
over those one-dimensional k19-cells each contain either one or
three zero-dimensional x2-cells where φ

(2)
k19

holds. We have deleted

from the tree all x2-cells where φ
(2)
k19

does not hold. We make two
observations, important for a qualitative analysis of our system:
(i) For all positive choices of k19—extending to infinity—there is

at least one positive solution for x2.
(ii) There is a break point around k19 = 409.253 where the system

changes from unique solutions to exactly three solutions.
Recall that for all floating point numbers given here as approxima-
tions we in fact know exact real algebraic numbers. For instance,
the exact break point is the only real zero in the interval (409, 410)
of an irreducible defining polynomial

10∑
i=0

cik
i
19 with integer coefficients ci as in Table 2. (6)

3All QE-related computations have been carried out on a 2.4 GHz Intel Core i7 with 3
GB RAM or cores on a compute server with similar speed and memory limitations.



Table 1: The unique solution x (200) for k19 = 200 and the three solutions x (500)
1 , . . . , x (500)

3 for k19 = 500. We have actually com-
puted real algebraic numbers, which are pairs of univariate polynomials and isolated intervals. For convenience we are giving
machine float approximations here, which can be made arbitrarily precise.

x (200) = (90.6512, 2.67311, 10.4996, 17.8545, 35.9695, 32.0501, 0.0954536, 15.5631, 2.39331, 0.641001, 45.4331)

x
(500)
1 = (17.6392, 6.97675, 367.57, 36.6772, 5.50874, 12.811, 0.511775, 83.4416, 8.06095, 0.25622, 2.73253)

x
(500)
2 = (122.034, 14.6721, 234.974, 14.5102, 7.16952, 35.064, 0.42579, 69.4223, 7.43877, 0.70128, 15.2681)

x
(500)
3 = (323.761, 9.49621, 37.1013, 6.72938, 13.6295, 43.1428, 0.127807, 20.8381, 3.21139, 0.862856, 61.4581)

Figure 1: The pruned CAD tree for x2. Ellipses and rectangles are full-dimensional and zero-dimensional cells, respectively.
We have removed cells where k19 is negative or where the input formula is false.

All other CAD trees are quite similar to the one just discussed.
Even the break point from one to three solutions for xi is identical
for all i ∈ {1, . . . , 11} so that we can generalize our observations:
(i) For all positive choices of k19—extending to infinity—there is

at least one positive solution for (x1, . . . ,x11).
(ii) There is a break point β around k19 = 409.253 where the

system changes its qualitative behavior. We have exactly given
β as a real algebraic number in Equation (6). For k19 < β there
is exactly one positive solution for (x1, . . . ,x11). For k19 > β
there are at least 3 and at most 311 positive solutions for
(x1, . . . ,x11).

The overall computation time for our parametric analysis is 4.3 min-
utes. It is strongly dominated by 2.8 minutes for the computation
of one particular CAD tree, for φ(11)

k19
. It turns out that the suit-

able projection order with xi eliminated first is computationally
considerably harder than projecting the other way round. As a
preprocessing step we apply CAD-based simplification of the φ(i)k19
with the opposite, faster, projection order. Here we use Qepcad
B, which performs better than Redlog at simple solution formula
construction.

2.1.2 Triangular Decomposition methods with the Reg-
ular Chains Library. We now describe an alternative approach
to the solution using regular chains methods. Regular chains are

the triangular decompositions of systems of polynomial equations
(triangular in terms of the variables in each polynomial). Highly ef-
ficient methods for working in complex space have been developed
based on these; see [25] for a survey.

Recent work by Chen et al. [4] proposes adaptations of these
tools to the real analogue: semi-algebraic systems. They describe
two algorithms to decompose any real polynomial system into
finitely many regular semi-algebraic systems. The first does so di-
rectly while the second, Lazy Real Triangularize (LRT) produces the
highest dimension solution component and unevaluated function
calls, which if all evaluated would combine to give the full solution.
These algorithms are implemented in the Regular Chains Library4
in Maple which we use throughout this subsection.

We apply LRT on the quantifier-free formula (5) evaluated with
the parameter estimates for k1, . . . , k18 given at the start of Section
2, so we have one free parameter as in the previous section. We
need to choose a variable ordering: our analysis requires that k19
be the indeterminate considered alone; the remaining variables are
placed in lexicographical order (the in-built heuristics to make the
choice could suggest nothing better). The solutions must hence
contain constraints in k19, constraints in (x1,k19), in (x2,x1,k19)
and so on. We define the main variable of a constraint to be the
highest one present in this ordering.

4www.regularchains.org

www.regularchains.org


Table 2: Coefficients ci and dj of polynomials occurring in Equations (6) and (7), respectively.

c10 = 351590934502740290936895033267017158736060313940693076650155371250411
c9 = −213699072852157674283997527746395583273033983170426080574800781989093156
c8 = 25374851641220554774259605635053469432582109883965015804077119110958034090
c7 = 12972493018300022707027639267804259251235991618029852880330004508564391594000
c6 = −8468945963692802414226427249726123493448372439778349029355636316929687020660000
c5 = 2231098270337406450670301663172664333421440833875848621423683265663846533079600000
c4 = −376265008904112258290319173193792052014899485528994925965885895511831873444245100000
c3 = 39262101548790869407057994985320156500968958361396178908180026842806643766783104000000
c2 = −2492623990743029234974354081270296106309603462451517057779877596842448287799337600000000
c1 = 70978850735887473459176997186175978425873267246760023212940616924643171868478080000000000
c0 = −1062871192838985876948077114923898204990434138901495394834749613184670362810368000000000000

d6 = 16838105723097694257603469
d5 = −24078605201553273505077988k19 + 7723967969644977896148686580

d4 = 8176202638735769127032169k2
19 − 7723411665463544477701499460k19 + 1232154357941338876156606812900

d3 = 1465408757440589841803452380k2
19 − 798169557586805582842481309800k19 + 83152655240002767729550477640000

d2 = 85462524901276846107251669400k2
19 − 35266411401427656834572095140000k19 + 2556805354853318332197489636000000

d1 = 1631685649719702672282505500000k2
19 − 721989571100461862477342320000000k19 + 28843755938318780823218400000000000

d0 = −7013104139459910876520500000000000k19.

LRT produces one solution component and 6 unevaluated func-
tion calls in less than 3 seconds. In the evaluated component: for
each of x2, . . . , x11 there is a single equation which had this as the
main variable. Further, these are all linear in their main variable
meaning they can be easily rearranged into the solution formulae
in Table 3.

The constraints on (x1,k19) are that x1 > 0 and that a polynomial
equation of degree 6 be satisfied:

f (x1,k19) =
6∑
i=0

dix
i
1 = 0 (7)

where the coefficients di are univariate polynomials in k19 of maxi-
mum degree 2 as given in Table 2.

Finally, the constraints on k19 are that it be positive; it not be a
root of the polynomial in Equation (6); nor two other polynomials
as described in Table 4. Thus this solution component is valid for all
positive values of k19 excluding three points. As before, we could
give these as exact algebraic numbers but for brevity give float
approximations: 409.253, 16473.337, and 25084.536.

Three of the six unevaluated function calls define the solutions
at these points, however evaluating these solutions is not possible
in reasonable time. The other three define empty solution sets (eval-
uating to discover this is instantaneous). So, as with our previous
approach, we proceed accepting a small number of blind spots.

The output of LRT has quickly given us the structure of the
solution space valid at all but three isolated values of k19. However,
it does not identify where the number of real solutions change:
although the break point identified earlier has been rediscovered

there is no information from which we can infer its significance;
and there is no significance in our application of the other two
isolated points.

To finish the analysis we need to decompose (x1,k19)-space
according to the real roots of f (x1,k19); and also x1 and k19 since
the constraints x1 > 0 and k19 > 0 were specified separately in
the output (the case for these variables only). CAD is ideally suited
for this task. Using the Regular Chains algorithm [5] in Maple a
CAD for f (x1,k19) divides the plane into 135 cells in a few seconds.
This CAD decomposes the k19 axis into 11 cells, i.e. identifying five
points which approximate to: −379.993, −87.776, 0, 409.253, and
25084.536.

On the cell for k19 ∈ ]0, 409.253[, the cylinder above in the
(x1,k19) plane is divided into 11 cells: three of which cover x1 > 0
(two 2d sectors and a 1d section). This indicates that f (x1,k19)
has a single positive real solution for such k19. However, on the
two cells for k19 ∈ ]409.253, 25084.536[ and k19 ∈ ]25084.536,∞[

the cylinders above are divided into 15 cells; seven of which cover
x1 > 0. So in these cases f (x1,k19) has three positive real solutions
for such k19.

At the end of this analysis we have rediscovered the break point
where the systemmoves from a single positive real solution to three.
We also have explicit solutions valid for all except three isolated
k19 values. To obtain a solution select the k19 value of interest
then identify the real roots of f (x1,k19) (we know in advance how
many depending on the k19 value chosen); then for each x1 solution
substitute recursively into the equations of Table 3; starting from
the bottom and including the new variable solution discovered from



Table 3: Triangular solution formulae valid for all positive k19 excluding three isolated points

x11 = −
1
60

x2
2 +

1
600

(10k19 − 10x1 − 37x3 + 10x4 − 2100)x2 −
9

200
x2

3 +
1

600
(−27x1 + 27x4 + 27k19 − 4650)x3 − x1 + x4 + k19 − 50

x10 =
1

150
x2(x2 + x3 − x4 − k19 + x1 + 150)

x9 =
1

18200
(69x3 + 182x2)(x2 + x3 − x4 − k19 + x1 + 150)

x8 =
15
364

(x2 + x3 − x4 − k19 + x1 + 150)x3

x7 = 50 −
2

101
x4x1 − x4

x6 =
2

101
x4x1

x5 = x2 + x3 − x4 − k19 + x1 + 150

x4 =
2525000

101x2 + 1000x1 + 50500

x3 =
−101x3

2 − (−101k19 + 1101x1 + 65650)x2
2 − (1000x2

1 + (−1000k19 + 200500)x1 − 50500k19 + 5050000)x2 + 150000x1)

101x2
2 + (1000x1 + 50500)x2

x2 =
n

d
where n = 30625833064790009548991419920x5

1 + (−43795148662369306906962603840k19

+ 37749979225487731805273686504663200)x4
1 + (14871210647782462053693235920k2

19
− 16963336293692750919154910690672400k19 + 6815925407229297763234036009365120000)x3

1
+ (1538325448222983229930530049200k2

19 − 862702164104208291031357996000020000k19

+ 279241219028720368578809336249748000000)x2
1 + (29370341694954648101085099000000k2

19
− 12995812279808313524592161760000000k19 + 3705960282117523242886769213700000000000)x1

− 126235874510278395777369000000000000k19

d = 232763663752113237974029404420089x5
1 + (−332853615301041845577671639990228k19

+ 88646303215205075376308147029677220)x4
1 + (113024761399450186949390623074789k2

19
− 80843908028331498139954527761762740k19 + 11682465068391769796632986929072776500)x3

1
+ (11455232309649034305597048791479020k2

19 − 5547251026060433566640620528023877000k19

+ 619147207587597001268026254404647600000)x2
1 + (290245997063001550130198026458525000k2

19
− 141348286758352762323489548674398500000k19

+ 14547288529581382252587071541494600000000)x1

− 1247498501818579946626756931775000000000(k19 − 100)
x1 has at most 6 solutions for a given value of k19, according to Equation (7).

Table 4: Constraints on k19 for solution formulae in Table 3 and Equation (7) to be valid

k19 > 0 ∧ polynomial in (6) , 0∧

23197989433419579994929k2
19 − 89407400615452409453098800k19 − 4822419303419166525491149190000 , 0∧

505465566622475867655547880786544637953790406059982726185509k4
19

− 12725780456964391893178560515183873684222178969868366920505134120k3
19

+ 1175510330915205241831243213231417517003037315562884193657451445400k2
19

− 281867359883676159811192082978541193600292804324596911878337972560000k19

− 42434363570215587465668423701563932185051066892741207931879307200000000 , 0



each substitution into the next. The solutions in Table 1 may be
easily rediscovered this way.

Repeating the Process for Different Choices of the Lone Free Param-
eter/Fixed Parameter Values. We may repeat the approach described
above for different choices of free parameter and different choices
of fixed parameter values. For example:

• Withk17 set to 95 instead of 100we find that the break point
between 1 and 3 real positive solutions moves to k19 =
369.917. With k17 set to 105 it moves to k19 = 450.077.

• Allowing k17 to be free and fixing k19 = 200 we find that
there is only ever one positive real solution.

• Allowing k17 to be free and fixing k19 = 500 we find the
number of positive real solutions moving from 1 to 3 to 1
breaking at k17 = 85.988 and k17 = 110.869.

• Similarly, allowing k18 to be free and fixing k19 = 200
we find there is only ever one positive real solution; but
fixing k19 = 500 instead we find 3 real solutions between
k18 = 44.434 and 58.329 and 1 otherwise.

The results above hint that there is a shape approximating a narrow
paraboloid in (k17,k18,k19)-space within which bistability may oc-
cur; with bistability available for any k17 and k18 value but bounded
from below in the k19 coordinate. We note that these additional
experiments all produce results which, as with the one described
in detail, are valid at all but a handful of isolated values of the free
parameter.

2.2 Stability of the Fixed Points
We use the three linear conservation constraint equations (3) to
eliminate x1, x7, and x11 from system (1) and symbolically compute
the Jacobian J̃ of the obtained reduced system. We then numerically
compute the eigenvalues of J̃ for the instances arising from the
substitution of the different positive fixed points for the variables
and the corresponding parameter values.

We have used the float approximations for the unique solution
x (200) with k19 = 200 and the three solutions x (500)

1 , . . . , x (500)
3 for

k19 = 500 in Table 1. For the single positive fixed point x (200) the
Jacobian J̃ (x (200)) has eigenvalues with negative real part only and
hence can be shown to be stable. For k19 = 500 one of the three
positive fixed points x (500)

2 can be shown to be unstable, as J̃ (x (500)
2 )

has one eigenvalue with positive real part; the other seven had
negative real parts. In contrast x (500)

1 and x (500)
3 can be shown to be

stable. Hence for k19 = 500 the system is indeed bistable.
A verification of the stability of the fixed points using exact real

algebraic numbers by the well-known Routh–Hurwitz criterion
is possible algorithmically [16], but seems to be out of range of
current methods for this example. Notice that also in other studies
on multistationarity of signalling pathways [7, 15] the question of
stability has not been addressed.

2.3 Numerical Homotopy Methods
Finally, we compare our symbolic results with numerical ones ob-
tained using the homotopy solver Bertini [2]. Bertini computes
complex roots of polynomial systems using methods from numeri-
cal algebraic geometry [24].

For the parameter values as above and k19 = 500 we obtain six
solutions, three of which are positive real solutions. For k19 = 200
we obtain a single positive solution. In both cases the relevant solu-
tions coincide with the ones obtained with our symbolic analyses
up to the used numeric precision.

However, for larger values of k19 Bertini produces incorrect
results due to numerical instability. For instance, we falsely obtain
exactly one positive real solution for k19 = 6000 and no positive
real solution for k19 = 10000.

Figure 2 shows a Bertini-based grid sampling of parameter re-
gions, varying k19 between 200 and 1000 and fixing one of k17 and
k18 while varying the other among the default values (4). While
this suffers from the discrete nature of sampling and potentially
unreliable results as discussed, it is nevertheless useful for the gen-
eration of hypothesis about the nature of the parameter regions.
Figure 2 seems to identify a region of bistability (in blue) within
the parameter space, as hypothesised at the end of Section 2.1.2.

Bertini indicates holes in this region (the green dots within the
blue). However, computation at these particular points reveals nu-
merical errors: where an insufficiently high precision causes what
is actually a positive real solution to appear to have a negative
component. It seems there is scope for fruitful interplay between
symbolic and numeric methods here; with numerics postulating
hypotheses for the symbolic methods to check and refine.

3 CONCLUSIONS AND FUTUREWORK
We have shown that the determination of multistationarity of an
11-dimensional MAPK network can be achieved by combinations
of currently available symbolic computation methods for mixed
equality/inequality systems if, for all but potentially one parameter,
numeric values are known. The aspiration of a semi-algebraic de-
scription of the ranges for all parameters in the conservation laws
(3) yielding multistationarity will now be pursued, with the present
results demonstrating that this aspiration may be within reach.

As there are many very relevant systems having dimensions
between 10 and 20 it seems to be worth the effort to enhance and
improve the present algorithmic methods, and in particular their
combination, to solve such important application problems for
symbolic computation.
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Figure 2: Grid sampling two-parameter regions using Bertini.We combinek19 withk17 (left) andwithk18 (right). Colors indicate
the computed numbers of positive real fixed points: blue 3, green 2, yellow 1, red 0. The dotted lines indicate values of the
parameters as in Equation (4).
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