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Abstract

Recent advances have demonstrated the benefits of temporal aggregation for

demand forecasting, including increased accuracy, improved stock control

and reduced modelling uncertainty. With temporal aggregation a series is

transformed, strengthening or attenuating different elements and thereby

enabling better identification of the time series structure. Two different

schools of thought have emerged. The first focuses on identifying a single

optimal temporal aggregation level at which a forecasting model maximises

its accuracy. In contrast, the second approach fits multiple models at mul-

tiple levels, each capable of capturing different features of the data. Both

approaches have their merits, but so far they have been investigated in iso-

lation. We compare and contrast them from a theoretical and an empirical

perspective, discussing the merits of each, comparing the realised accuracy
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gains under different experimental setups, as well as the implications for

business practice. We provide suggestions when to use each for maximising

demand forecasting gains.

Keywords: Forecasting, demand planning, temporal aggregation, model

selection, exponential smoothing, MAPA

1. Introduction

Demand forecasting plays a crucial role in the operations of modern or-

ganisations (Fildes et al., 2008; Syntetos et al., 2016). It supports a variety

of business decisions, from operational, to tactical, to strategic level, such as

capacity planning (Miyaoka and Hausman, 2008), resource planning (Bar-

row, 2016; Jalal et al., 2016), advertising and promotional planning (Trapero

et al., 2014; Ma et al., 2016), demand planning (Trapero et al., 2012; Syntetos

et al., 2015), analysing competition effects (Merino and Ramirez-Nafarrate,

2016), tactical production planning (Sagaert et al., 2017), among others.

Accordingly, practitioners need to define the forecast objective in terms of

forecast horizon and time bucket (e.g. daily, weekly, monthly, etc.), so as to

support the appropriate decisions.

An important assumption is that the level of required forecasting matches

the level of available collected data. However, often this not true. For ex-

ample, in many organizations, managers from several departments are in-

volved in forecast generation and adjustment, that supports decisions for pro-

duction, inventory management, logistics, procurement, and others (Lapide,

2004); with each function having different decision horizons. For example,

budget forecasts are not required at the, typically, weekly resolution of in-
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ventory management, and refer to much longer horizons than the latter.

As a remedy the original data series can be aggregated over time (tempo-

ral aggregation, TA) to align the decision parameters with the forecast mod-

elling, or alternatively disaggregated. Recently there has been a resurgence

in researching TA for forecasting. In the past the research had mostly fo-

cused in modelling macroeconomic time series, but current work has demon-

strated its usefulness for forecasting business time series, and in particular for

the purpose of demand forecasting to support decision-making in operations

management (Babai et al., 2012; Kourentzes and Petropoulos, 2016a; Boylan

and Babai, 2016). Using TA a time series is modelled at a pre-specified ag-

gregation level, instead of its original sampling frequency. Forecasts are then

created at the aggregate level, which may be disaggregated to the original

frequency, if so needed. The motivation for using TA is that it smooths the

original series, removing noise and even some of its component, simplifying

the generation of forecasts, which is desirable in itself (Green and Armstrong,

2015). The exact effects depend on the selected aggregation level, a critical

consideration for the effectiveness of TA.

To this end, the econometric literature has explored the effect of TA,

mainly on AutoRegressive Integrated Moving Average (ARIMA) processes

(Silvestrini and Veredas, 2008), providing some evidence of the benefits and

caveats of the practice, while more recent forecasting research has helped

identify analytically the optimal aggregation level for a small number of

processes, under specific modelling conditions (Rostami-Tabar et al., 2013,

2014). Nonetheless, general guidelines for how to best select the aggrega-

tion level do not exist, and this introduces substantial uncertainty in the
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modelling process. This has lead Kourentzes et al. (2014) to propose using

multiple TA levels instead of a single one. In this case, modelling happens

at multiple levels and the output is a combined forecast.

Therefore, although there is a strong theoretical and empirical evidence

that TA can be beneficial to forecasting, there is no consensus as to how best

perform it. The two alternative schools of thought recommend from the one

hand to use a single optimal TA level, and from the other hand to use multiple

levels, since the identification of a single level is problematic. The aim of this

paper is threefold: (i) we contrast the two approaches both from a theoretical

and empirical perspective; (ii) we benchmark these against heuristic based

alternatives; and (iii) provide additional evidence of the usefulness of TA

for demand forecasting over traditional time series modelling, at the original

sampling frequency.

We find that overall TA is beneficial for demand forecasting over conven-

tional time series modelling. Each school of thought offers different advan-

tages and has different limitations. The main limitation of identifying an

optimal single aggregation level is that it assumes knowledge of the demand

process at both the original and the aggregate level, with the obvious impli-

cations for practice. On the other hand, using multiple levels is particularly

robust to model uncertainty and is found to provide accuracy improvements

for wide number of cases. However, the forecast is suboptimal by design in

the strict sense of mean squared error fit. Finally, we translate these findings

to implications for business forecasting practice.

The rest of the paper is organised as follows: section 2 provides an

overview of the use and developments of TA in demand forecasting and
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section 3 describes the two alternative approaches in using TA. Section 4

describes the datasets used and the setup of our evaluation, while section 5

presents the results, followed by concluding remarks in section 6.

2. Temporal aggregation in business forecasting

Non-overalapping TA can be seen as a filter of high-frequency components

of the time series. As we aggregate, low frequency components will dominate

and depending on the level of aggregation higher frequency components will

become weaker or vanish altogether. For example, consider a monthly sea-

sonal time series that is aggregated to an annual series. The high frequency

seasonal component is filtered, while the observed variance of the time series

will be mostly due to the trend/cycle component.

In the econometric literature TA has been researched for several decades

and the focus has mainly been on its effects on ARIMA processes. The

key theoretical results can be summarised as follows: (i) TA reduces the

number of available observations; hence causing loss of estimation efficiency;

(ii) the dynamics of the underlying ARIMA process become more compli-

cated, mainly due to the moving average component; and (iii) the identifiable

ARIMA converge to relatively simple IMA processes, often IMA(1,1) (Wei,

1978; Rossana and Seater, 1995). The literature provides evidence of accu-

racy gains of forecasting directly using temporally aggregated data, rather

than aggregating forecast from disaggregate series (Silvestrini and Veredas,

2008).
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2.1. Temporal aggregation at a single level

More recently there has been substantial research on TA for business

forecasting and supply chain management. Nikolopoulos et al. (2011) rec-

ommend using TA for modelling and forecasting intermittent time series in

a supply chain context. Their main motivation is to avoid modelling the

intermittency at the sampling frequency directly and instead model the se-

ries with conventional forecasting methods, once the intermittency has been

reduced substantially. They demonstrate that on average TA provides accu-

racy improvements. This finding has been validated several times in the con-

text of intermittent demand forecasting (Babai et al., 2012; Petropoulos and

Kourentzes, 2014a). It is important to note that Nikolopoulos et al. (2011)

do not provide a conclusive solution with regards to the identification of the

appropriate TA level. Instead, they recommend a heuristic that is mean-

ingful for inventory management: aggregate to the level that corresponds to

the lead time plus review period. Petropoulos et al. (2016) demonstrate that

some intermittent demand forecasting methods, such as Croston’s method,

can be interpreted as special cases of TA and propose various alternative

setups of TA, which in turn can reduce the variability of the the non-zero

demand or the inter-demand intervals and demonstrate benefits for forecast

accuracy.

Spithourakis et al. (2011) extended the work by Nikolopoulos et al. (2011)

to fast moving demand data, validating that TA leads to forecast accuracy

improvements. Jin et al. (2015) utilise a large set of paired order and point-

of-sale data in a retail supply chain to examine the impact of TA on forecast

accuracy. They show that it increases forecast accuracy and reduces com-
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putational intensity of forecast generation. Luna and Ballini (2011) use TA

to predict daily time series of cash withdrawals and find similar or better

forecast accuracy to modelling the daily series directly.

Exploring further the impact of TA for demand forecasting Rostami-

Tabar et al. (2013) and Rostami-Tabar et al. (2014) derive analytically the

optimal aggregation level when the underlying demand process follows Au-

toRegressive AR(1), Moving Average MA(1), AutoRegressive Moving Aver-

age ARMA(1,1) and exponential smoothing is used to produce the forecasts.

The choice of forecasting model is motivated by the problem context, where

single exponential smoothing is the norm for producing demand forecasts

for non-trended and non-seasonal time series. They determine analytically

the conditions under which non-overlapping TA outperforms the traditional

modelling approach. Using the optimal TA levels, they demonstrate accuracy

improvements and show that TA’s superiority is a function of the demand

process parameters, forecasting method parameters, and aggregation levels.

However there are no expressions for more complex ARIMA forms or different

forecasting models. This is an important limitation given the prevalence of

seasonal and trended demand series in practice. Moreover, it should be noted

that the ARIMA type processes can only represent fast moving items. For

slow moving items, the consideration of other process such as Integer ARMA

(INARMA) processes is relevant (Mohammadipour and Boylan, 2012).

2.2. Multiple temporal aggregation levels

The majority of the aforementioned literature had taken the approach

to explore how to best model the time series at a single aggregate level

instead of the original that the time series was sampled. Kourentzes et al.
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(2014) argue that there are two concerns with this approach: (i) for the

majority of time series we do not have a way to identify the optimal TA

level; and (ii) even if there was one, due to sampling, there is a substantial

uncertainty about the underlying process and the appropriate model to apply

to a time series. Based on these, they recommend using multiple levels of

TA and combining the separate forecasts. This approach not only benefits

from managing the modelling risk, but also utilises the established gains

of forecast combination (Barrow and Kourentzes, 2016; Blanc and Setzer,

2016). Kourentzes et al. (2014) provide empirical evidence to demonstrate

gains over conventional forecasting. Since, modelling with multiple TA levels

has been used successfully to intermittent demand, promotional modelling

and inventory management (Petropoulos and Kourentzes, 2014a; Kourentzes

and Petropoulos, 2016a; Barrow and Kourentzes, 2016). An advantage of

this approach is that it is not restricted to specific demand processes and

allows for a wider variety of forecasting models.

Although both approaches for using TA (single optimal and multiple lev-

els) have demonstrated forecasting gains, so far there is no comparative study

between the two. Arguably using multiple levels is suboptimal in the strict

sense (see section 3.2), yet more flexible and widely applicable. On the other

hand using a single optimal level is expected to provide better performance,

assuming that the identification of the underlying demand process is reliable.

3. Temporal aggregation approaches

In this section we briefly outline the two alternative approaches for using

non-overlapping TA for demand forecasting. In general, given a time series
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with observations yt and t = 1, . . . , n, non-overlapping TA can be performed

as:

y
[k]
i =

∑ik

t=1+(i−1)k
yt, (1)

where k is the aggregation level. We denote the temporally aggregated time

series with a superscript [k]. Eq. (1) implies that the first n−bn/kck observa-

tions of the time series may be ignored in the construction of the aggregated

series, depending on k. Naturally, the resulting time series has less observa-

tions than the original one.

Note that Eq. (1) acts as a moving average on the original series, filtering

high frequency components. To exemplify the effect of this we illustrate it

in Figure 1. A series is sampled at a monthly frequency and exhibits a clear

repeating seasonal pattern and an outlier at the beginning of 2015. Both

outlier and seasonality are high-frequency components. As the series is ag-

gregated at a quarterly level (k = 3) the effect of the outlier is mitigated, but

the seasonality remains, although it is smoother. At the annual aggregation

level (k = 12) the seasonality is fully removed and a slight trend that is

present in the series becomes apparent. This trend was not observable at the

lower aggregation levels. The forecasting literature has taken advantage of

this effect of TA to improve the quality of forecasts (for example, Pedregal

and Trapero, 2010; Kourentzes et al., 2014).

3.1. Identifying the optimal temporal aggregation level

Rostami-Tabar et al. (2014) evaluate analytically the impact of non-

overlapping temporal on demand forecast accuracy. They assume that the

underlying series follow an ARMA(1,1) and its special cases AR(1) and

9



Monthly level

2013 2014 2015 2016 2017

8
0
0

1
0
0
0

1
2
0
0

Quarterly level

2013 2014 2015 2016

2
5
0
0

3
5
0
0

Annual level

2013.0 2013.5 2014.0 2014.5 2015.0 2015.5 2016.0

1
1
5
0
0

1
2
5
0
0

Figure 1: Original time series sampled at a monthly frequency and aggregated at quarterly

and annual levels.

MA(1) that can be mathematically written in Eq. (2), Eq. (3) and Eq. (4)

respectively:

yt = C + φyt−1 − θεt−1 + εt, (2)

yt = C + φyt−1 + εt, (3)

yt = C − θεt−1 + εt, (4)

where C is constant, |φ| < 1 is the autoregressive parameter, |θ| < 1 is
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the moving average parameter and εt is an independent random variable for

underlying demand series in period t, normally distributed with zero mean

and variance σ2.

The forecasting method considered is the Single Exponential Smoothing

(SES). Using SES, the aggregate forecast of demand is calculated as follow

ŷ
[k]
i = αy

[k]
i−1 + (1− α)ŷ

[k]
i−1, (5)

where 0 < α < 1 is the smoothing parameter used at the aggregated demand

series. Forecast accuracy of the aggregated demand series is calculated using

Mean Square Error (MSE):

MSE = Variance
(
y
[k]
i − ŷ

[k]
i

)
=

1

n

n∑
i=1

(
y
[k]
i − ŷ

[k]
i

)2
(6)

The optimal aggregation level minimises the forecast MSE of the ag-

gregated demand for each demand process under consideration, when SES

is used as the forecasting method. These are analytically identified. The

aggregation level that leads to the most error reduction is determined by

comparing variances at the aggregate level. This approach works as follows:

first, buckets of aggregated demand are created at the aggregation level k,

using Eq. (1); then SES, Eq. (5), is applied to these aggregate series and

finally the variance of aggregated forecast error is calculated using Eq. (6).

According to Rostami-Tabar et al. (2014), the MSE of aggregate fore-

casts can be derived as follows for ARMA(1,1), AR(1) and MA(1) demand
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processes:

MSEARMA =
2σ2

(
k (1− 2φθ + θ2) + (φ− θ) (1− φθ)

(∑k−1
i=1 2 (k − i)φi−1

))
(2− α) (1− φ2)

+
2σ2α

(∑k
i=1

(
iφ(i−1)

)
+
∑k

i=2 (i− 1)φ(2k−i)
)

(φ− θ) (1− φθ)

(2− α) (1− φk + αφk) (1− φ2)

,

(7)

MSEAR = 2σ2

(
k +

∑k−1
i=1 2 (k − i)φi

(1− φ2) (2− α)

)

−
2σ2α

(∑k
i=1

(
iφ(i−1)

)
+
∑k

i=2 (i− 1)φ(2k−i)
)

(2− α) (1− φk + αφk) (1− φ2)

, (8)

MSEMA =
σ2 (2k (1 + θ2)− 2 (k − 1) θ + 2αθ)

2− α
. (9)

In order to obtain the optimal aggregation level, k∗ for each process, the

first derivative of Eqs. (7), (8) and (9) need to be calculated. The calculation

of the first derivative of Eq. (9) with respect to k shows that MSEMA is

a decreasing function of k. A higher aggregation level results in a lower

MSEMA. Therefore, for MA(1) demand process the optimal aggregation

level is the highest value in the considered range.

However, the calculation of the first derivative for Eqs. (7) and (8) is

infeasible. Consequently, to determine the optimal aggregation level a nu-

merical investigation is conducted across the range of 2 ≤ k ≤ K, where K is

the maximum value of the considered aggregation levels, and the aggregation

level with the minimum value of MSE is selected.

3.2. Multiple aggregation prediction algorithm

The Multiple Aggregation Prediction Algorithm (MAPA) proposed by

Kourentzes et al. (2014) models a time series at multiple TA levels to achieve
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better estimation of the various time series components. As TA strengthens

and attenuates different components of the series, the multiple views permit

capturing these better.

Modelling a time series with MAPA can be seen as a three step procedure.

In the first step, multiple aggregated series are constructed from the original

time series, creating K different series. It is recommended to aggregate up to

the annual level, so as to filter any seasonal components fully, thus enabling

to better capture the cycle/trend (Petropoulos and Kourentzes, 2014b). To

avoid any complications introduced by changes in the scale of the aggregate

time series Eq. (1) is divided by k, changing the summation to an average.

In the second step, each series is modelled independently. Although in

theory one could use any forecasting method to this purpose, the authors

demonstrated MAPA with state space exponential smoothing. The idea is

that at each aggregation level, different components of the time series will be

easier to capture. The underlying structure of the time series is constant, yet

what is observable changes depending on the TA level we focus on. Further-

more, since modelling the time series does not depend on identifying a single

model, which may be appropriately done or not, MAPA mitigates modelling

uncertainty.

In the third step, the outputs of the various models are combined in a

single forecast. In contrast to conventional forecast combination, MAPA pre-

scribes to combine each state (or component) of the model separately. First,

the various fitted states are extrapolated into the future. Then these are all

oversampled appropriately to bring hem to the original sampling frequency.

For example if at aggregation level k = 2 the predicted values of a state are
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(2, 4), these will be returned to the original sampling frequency as: (2, 2, 4, 4),

where each value is repeated k times. For the case of exponential smooth-

ing that states may interact in an additive or multiplicative way, Kourentzes

et al. (2014) provide formulas to transform them all to additive. Subsequently

all estimated versions of a state, across all TA levels, are linearly combined

and the combination may be weighted or not. For example, in the context

of exponential smoothing a trend state may be estimated at each TA level.

These are then linearly combined to a single trend state. When a trend state

is missing it is assumed to be zero. The reasoning behind this choice is that

if at an aggregation level no trend is estimated then this is evidence that

the estimate trends at other levels may be wrong and should be damped,

which is done through the combination. This is repeated for the remaining

states. An exception is done for any seasonal states, where these would be

impossible to estimate, for example when modelling annual data. Finally,

the combined states are added to provide the final forecast.

This counter-intuitive approach to combination is necessary due to the

different information that each state may encode. Consider for example

combining the forecasts of a seasonal model constructed on a monthly time

series and its non-seasonal counterpart constructed at an annual level series.

Simply combining the two forecasts would result in a seasonal part half that

is the size of what it should be. On the other hand, combining per state

overcomes this problem.

The final MAPA forecast reconciles information from all TA levels, allow-

ing the model to provide a more holistic representation of the high and low

frequency components present in the time series, whereas when modelling at
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a single level modelling focuses mostly at the components that capture most

of the variance of a time series. TA is therefore used as a device to transform

information available on the original time series in different ways.

MAPA will be by definition suboptimal for any single TA level and ob-

viously for the original time series in a mean squared fit error sense, as it

reconciles information from different levels. In conventional model building

one has to select the appropriate model and estimate its parameters. The

latter typically happens either with maximum likelihood estimation or by

minimising some relevant squared in-sample error (Gardner, 2006), so that

the resulting parameters are optimal for the given sample. Similarly the

model is selected so as to minimise some similar, typically penalised, cri-

terion, such as the Akaike Information Criterion that has been showed to

perform well for this task (Burnham and Anderson, 2002; Hyndman et al.,

2008). With TA the same process is applied at the aggregated time series,

and the resulting model is optimised for that view of the data. In the case of

MAPA, this is repeated at every aggregation level, and once the forecasts are

combined, the resulting final forecast is not optimal, in the sense described

above, for any individual aggregation level and under-fits to all of them. Fur-

thermore, as the selected model at each aggregation level may vary, there is

no guarantee that the combined final forecast will reflect the ‘best’ model for

any aggregation level. Hence, MAPA is suboptimal for any single TA level,

and instead attempts to provide a holistic forecast from all aggregation levels

(Petropoulos and Kourentzes, 2014b).

This has interesting implications for the choice of the appropriate fore-

casting model. While conventional forecast model building implies that the
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‘best’ model is chosen, under MAPA it is explicitly understood that none of

the fitted models is ‘best’ and the notion of model selection is only appropri-

ate locally for each TA level. A generalisation of MAPA has been proposed

by Athanasopoulos et al. (2017) that can operate even when the available

predictions are not the product of statistical models.

4. Empirical evaluation

In this section we outline the setup of the empirical evaluation which is

used to assess the performance of TA and of the two alternatives schools of

though for demand forecasting purposes.

4.1. Data

We conduct the empirical evaluation using both real and simulated time

series. The real time series have several advantages, capturing the complexity

of real applications and having realistic sample size, therefore permitting us to

draw direct conclusions for the usefulness of the TA approaches for business

forecasting. However, the underlying data generating process is unknown,

which can limit some aspects of the empirical evaluation. More specifically,

for the selection of the optimal TA level, as outlined in section 3.1, there are

derivations only for some types of data generating processes. By controlling

that with simulated data, we can assess the performance of the method when

the data generating process is correct, approximate or inappropriate for the

existing derivations. Therefore, using simulated time series, although any

insights are limited by the simplicity of the series, allows us to investigate

the performance of the competing TA approaches in a controlled setup and

explore the conditions under which each approach performs best, as well as
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the sensitivity of selecting a single optimal aggregation level when there are

deviations from the expected data generating process.

We use two real datasets.The first is from a major UK fast moving con-

sumer goods manufacturer and has 229 time series, of 173 weekly observations

each. From these the last 43 weeks are used as a test set. All time series

are non-seasonal. Forecasts for these time series are essential for inventory

management purposes. The second dataset contains 133 weekly time series

tracking call volumes of different types in a call centre of a major UK media

company. The series range from 108 to 169 weeks. The last 43 time series

are kept as a test set. Forecasts for this case are necessary for workforce

planning in the call centre.

For the manufacturer dataset the augmented Dickey-Fuller test finds that

90% of the time series are stationary, suggesting that ARIMA(p,0,q) is ap-

propriate, while for the remaining 10% of the series first differences are ade-

quate, therefore suggesting ARIMA(p,1,q), where p and q are the orders of

the autoregressive and moving average parts respectively. For the call centre

dataset the respective values are 26% and 74%. Note that for this particular

dataset any series that exhibited seasonality have been de-seasonalised prior

to the experiment. We mirror these ARIMA orders to the simulated time

series.

We simulate ARIMA(p,d,q) processes with p = (0, 1, 2), d = (0, 1) and

q = (0, 1, 2). For each process we generate 500 series. Each time series is 100

observations long, from which 60 are used as fitting sample and the rest are

retained as a test set. The values of the autoregressive and moving average

coefficients are randomly sampled for each series from a uniform distribution,
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while ensuring that any resulting process is stable and invertible.

Note that we restrict the empirical evaluation to non-seasonal time series.

This is done to facilitate the comparison between the two TA approaches,

as there are currently no analytical formulas to derive the single optimal

aggregation level for the methodology presented in section 3.1 for seasonal

time series. This is not a restriction when using multiple TA levels, as in this

case knowledge of the underlying process is not required.

4.2. Evaluation scheme and metrics

The forecast horizon is set to be h = 13 periods, reflecting a quarter in

weekly data. We use a rolling origin evaluation scheme. Using the complete

training set the first forecast is created for the first 13 periods of the test set.

Then we roll the forecast origin forward, including one additional observation

in the training set. Models are re-optimised and new forecasts are produced.

The process is repeated until forecasts are generated for the last 13 periods

of the test set. The rolling origin evaluation scheme has the advantage that

it permits sampling forecast errors multiple times and it mitigates the effect

of outliers in either the forecast origin or the test period (Tashman, 2000).

We assess the performance of each forecast using a bias and an accuracy

metric. Following the recommendations by Davydenko and Fildes (2013) we

use relative error metrics, due to their ease of interpretation, good statistical

properties and being scale independent, allowing us to summarise across

different time series.

To measure accuracy we use the Average Relative Mean Absolute Error
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(ARMAE, referred to as AvRelMAE by Davydenko and Fildes, 2013):

ARMAE = n

√∏(
MAEi

MAEb

)
,

where n is the number of time series over which the summary metric is

calculated and MAEi is the Mean Absolute Error of forecast i, calculated as:

MAE = m−1

m∑
t=1

|yt − ŷt|.

The MAE is calculated over m origins, for any given forecast horizon, and

yt and ŷt are the actuals and forecasts respectively. MAEb is the benchmark

forecast, which in this case is the forecast produced on the original time

series, without using any TA.

Davydenko and Fildes (2013) argue conclusively why ARMAE should be

preferred over other accuracy metrics, such as the Mean Absolute Percentage

Error or the Mean Absolute Scaled Error that are biased. ARMAE has both

desirable statistical properties and is easy to interpret.

We define the Average Relative Absolute Mean Error (ARAME) to mea-

sure bias, as follows:

ARAME = n

√∏∣∣∣∣MEi

MEb

∣∣∣∣,
ME = m−1

m∑
t=1

(yt − ŷt).

ARAME is constructed following the arguments for ARMAE. Although it

removes the direction information of bias, as measured by ME, it retains the

magnitude of bias. Therefore it still allows us to assess whether a forecast

is less or more biased. Removing the direction of bias is necessary so as to
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be able to summarise across time series using the geometric mean, which is

appropriate for ratios. We avoid using bias metrics such as the Mean Percent-

age Error, because of the misleading interpretation it has due to calculation

induced bias.

Both metrics are easy to interpret. If their value is under one then forecast

i is more accurate, or has less bias, than the benchmark and vice-versa if

their value exceeds one. Alternatively, calculating the difference of ARMAE

or ARAME from 1 provides the percentage improvement over the benchmark

used in the denominator.

4.3. Methods

To satisfy the aims of this analysis we consider three alternatives in terms

of TA: (i) no aggregation, where modelling is done on the original time series;

(ii) single aggregation level, where modelling is done on a temporally aggre-

gated view of the series; and (iii) multiple aggregation levels, as prescribed

by MAPA.

When using a single TA level we consider two options to identify the

appropriate level. First, we use a simple heuristic proposed by Nikolopou-

los et al. (2011) that prescribes the aggregation level to match the forecast

horizon (more specifically that would be the lead time plus review period).

Second we use the formulas for identifying the optimal aggregation level

for AR(1), MA(1) and ARMA(1,1) processes (Rostami-Tabar et al., 2013,

2014). Obviously in a realistic situation the true model is always unknown.

Therefore, we can only approximately find the most likely model, subject to

sampling uncertainty. In practice we do this in the following way: initially

for a time series all AR(1), MA(1) and ARMA(1,1) models are fitted and the
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best is chosen using the Akaike Information Criterion corrected for sample

size (AICc, Burnham and Anderson, 2002). Subsequently we identify the

optimal TA level as described in section 3.1.

Finally, the forecasts are generated using the Single Exponential Smooth-

ing (SES, Hyndman et al., 2002):

ŷt+1 = αyt + (1− α)ŷt,

where, α is a smoothing parameter between 0 and 1. Note that SES is equiva-

lent to ARIMA(0,1,1), but it is widely used to model any ‘level’ time series, as

defined in the exponential smoothing framework. This makes it appropriate

to model series without seasonality or persistent trends (trend exponential

smoothing is equivalent to ARIMA(0,2,2) model, Hyndman et al., 2008, with

higher order of differencing than any of the series in our datasets). Further-

more, SES is the most widely used statistical method for demand forecasting

(Gardner, 2006; Rostami-Tabar et al., 2013).

Combining the above, we obtain the following: (i) Orig-SES : using SES

on the original time series; (ii) Heur-SES : using the heuristic to select the

single aggregation level on which SES is fitted; (iii) Opt-SES : similar to

Heur-SES, but at the optimal TA level; (iv) MAPA-SES : using MAPA, but

restricted to use SES at all aggregation levels.

A main argument of MAPA is that the appropriate model for a time

series is unknown and difficult to identify by investigating a single view of

the time series. Furthermore, differences in the identified model are expected

across the TA levels. Therefore we also use an unrestricted MAPA, where

at each TA level any exponential smoothing model maybe selected, as it was

originally proposed (Kourentzes et al., 2014). In order to have a comparable

21



benchmark we also use exponential smoothing with model selection at the

original time series. The selection of the models is based on AICc (Hyndman

et al., 2008). This results in two additional forecasts over the four mentioned

above: (v) Orig-ETS ; and (vi) MAPA. Note that currently there are no

derived analytical formulas for identifying the optimal aggregation level for

other exponential smoothing forms than SES.

All forecasts are implemented in R (R Core Team, 2016) using the fore-

cast package version 7.1 (Hyndman, 2016) and the MAPA package version

1.9.1 (Kourentzes and Petropoulos, 2016b). Code for finding the optimal

aggregation level, as per section 3.1, is implemented in function get.opt.k of

the TStools package (Kourentzes and Svetunkov, 2016).

5. Results

Tables 1 and 2 provide the summary ARMAE and ARAME figures respec-

tively. The summary values are geometric means across all origins, horizons

and series. Each row corresponds to a particular subset of time series and

the best performing forecast is highlighted in boldface. We also provide the

geometric mean values across all ARIMA with zero, first and any differenc-

ing order: ARIMA(∗,0,∗), ARIMA(∗,1,∗) and ARIMA(∗,∗,∗). The last three

rows refer to the results for the real datasets, with the last row being the

average performance across both manufacturing and call centre sets.

We first focus on table 1 that provides the forecast accuracy. Orig-SES is

used as the benchmark in the calculations and therefore has always an error

equal to 1. Considering the simulated time series with no differencing, there

is strong evidence that TA improves performance over forecasts produced on
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Table 1: ARMAE

Demand
No aggregation Single level Multiple levels

Orig-SES Orig-ETS Heur-SES Opt-SES MAPA-SES MAPA

Simulated series

ARIMA(1,0,0) 1.000 0.979 0.974 0.975 0.972 0.961

ARIMA(0,0,1) 1.000 1.002 0.960 0.965 0.972 0.973

ARIMA(2,0,0) 1.000 0.971 0.986 0.983 0.973 0.949

ARIMA(0,0,2) 1.000 1.002 0.969 0.969 0.978 0.979

ARIMA(1,0,1) 1.000 1.001 0.966 0.971 0.964 0.963

ARIMA(2,0,2) 1.000 0.983 0.990 0.982 0.974 0.953

ARIMA(1,1,0) 1.000 1.000 1.439 1.223 1.062 1.004

ARIMA(0,1,1) 1.000 1.051 1.290 1.173 1.030 1.037

ARIMA(2,1,0) 1.000 0.891 1.444 1.207 1.062 0.916

ARIMA(0,1,2) 1.000 1.048 1.278 1.091 1.011 1.012

ARIMA(1,1,1) 1.000 0.975 1.349 1.191 1.056 0.990

ARIMA(2,1,2) 1.000 0.927 1.327 1.139 1.044 0.922

ARIMA(∗,0,∗) 1.000 0.989 0.974 0.974 0.972 0.963

ARIMA(∗,1,∗) 1.000 0.980 1.353 1.170 1.044 0.979

ARIMA(∗,∗,∗) 1.000 0.985 1.148 1.068 1.007 0.971

Real datasets

Manufacturing 1.000 1.011 0.999 0.999 0.992 0.994

Call centre 1.000 1.005 1.121 1.080 0.980 0.979

Overall real sets 1.000 1.009 1.042 1.028 0.987 0.987

the original time series. Initially let us restrict the discussion to SES based

forecasts. For ARIMA(1,0,0) the optimal aggregation level can be calculated.

However, we observe that both Heur-SES and MAPA-SES, perform better

23



than Opt-SES, if only marginally. We attribute this to the sampling uncer-

tainty that affects both the identification of the underlying process, but also

for the parameters estimation required to calculate the optimal aggregation

level. This is echoed in the results for ARIMA(0,0,1), where Opt-SES per-

forms worse than Heur-SES. Rostami-Tabar et al. (2013) showed that when

the time series follows MA(1) process it is beneficial to aggregate as much

as possible. Heur-SES does that, always aggregating to k = 13. On the

other hand, Opt-SES because of the sampling uncertainty at times incor-

rectly identifies lower aggregation levels as appropriate. Similar comments

can be made about ARIMA(1,0,1). In general for the remaining processes

that the optimal aggregation level is only approximately identified the per-

formance is similar to Heur-SES. This is reflected in the reported errors for

ARIMA(∗,0,∗).

When the unrestricted MAPA and Orig-ETS are considered, we see that

the former offers substantial gains in accuracy and overall performs best for

ARIMA(∗,0,∗).

When looking at the simulated time series with first order differencing,

it is evident that TA does not perform that well. However, this is to be ex-

pected as Orig-SES is optimal or approximately optimal for these time series,

while forecasts on the temporally aggregated series are produced using sub-

stantially fewer observations. This is particularly evident in the performance

of Heur-SES and Opt-SES. On the other hand, MAPA performs compara-

tively to the forecasts produced on the original time series. This is reflected

in the overall performance for ARIMA(∗,1,∗), where MAPA offers gains over

Orig-SES and is marginally better than Orig-ETS.
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Across all simulated series, looking at the results for ARIMA(∗,∗,∗) we

observe that MAPA offers performance gains over both Orig-SES and Orig-

ETS, demonstrating that TA can be beneficial for demand forecasting accu-

racy. However, MAPA-SES that does not take full advantage of the multiple

views of the time series, being restricted to SES, is marginally worse that

Orig-SES, while both Heur-SES and Opt-SES underperform. Like before, we

attribute this to sampling uncertainties that make the estimation of the true

time series models very challenging.

Looking at the results for the real datasets we observe that the most

accurate forecasts are produced again by MAPA and MAPA-SES, both out-

performing the conventional Orig-SES and Orig-ETS. It is interesting to note

that for the real time series that the underlying process is both unknown,

but also more complex, Orig-ETS performs worse than Orig-SES. In this case

the model selection problem is more acute than for the simulated time series.

On the other hand the multiple time series views afforded by MAPA result

in minimal differences between MAPA and MAPA-SES.

In Figs. 2 and 3 we provide the ARMAE per forecast horizon for the

simulated series, summarised as ARIMA(∗,0,∗) and ARIMA(∗,1,∗), and the

real time series respectively. The horizontal black line is the benchmark

Orig-SES, on which all other accuracies are calculated from.

Observe that for ARIMA(∗,0,∗) TA offers substantial gains. As the fore-

cast horizon increases the relative forecasting accuracy as measured by AR-

MAE increases. Notably as forecasts based on TA are build on aggregate

data their good performance for long horizons is to be expected.

A different result emerges when we consider the performance of TA fore-
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Figure 2: ARMAE per horizon for simulated ARIMA(∗,0,∗) and ARIMA(∗,1,∗).

casts for ARIMA(∗,1,∗) over the different forecast horizons. At shorter hori-

zons Orig-ETS dominates, but for longer forecast horizons, as the uncertainty

increases, its performance becomes indistinguishable to Orig-SES. The rela-

tive performance of both Heur-SES and Opt-SES to Orig-SES improves as

the forecast horizon increases. This is attributed to the forecasts being pro-

duced at aggregated time series. Opt-SES performs better to Heur-SES over

all horizons, demonstrating that even though the calculation of the optimal

aggregation level is inappropriate, as no exact formulas have been derived for

ARIMA(∗,1,∗) processes, the existing analytical derivations still offer benefits

over Heur-SES, even when applied approximately. Finally the performance

of the two MAPA based forecasts improves over horizons, but as discussed

above, they do not offer benefits of the same magnitude as in the case of

ARIMA(∗,0,∗).

The results for the real time series (Fig. 3), where the underlying models
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Figure 3: ARMAE per horizon for real datasets.

are both unknown and more complex, making SES suboptimal, demonstrate

the benefits of TA. For the manufacturing dataset all Heur-SES, Opt-SES,

MAPA-SES and MAPA perform better than Orig-SES at most forecast hori-

zons. In contrast, the relative accuracy of Orig-ETS degrades as the the

horizon increases. For the call centre dataset the Heur-SES and Opt-SES

perform worse than the benchmark Orig-SES and Orig-ETS, across all hori-

zons. We attribute this behaviour to the complexity of the original time

series. On the other hand, both MAPA-SES and MAPA, which do not as-

sume a specific underlying model for the series, perform better than the

benchmarks. Finally, we focus on the relative accuracy in the pairs Orig-

SES–MAPA-SES and Orig-ETS–MAPA, where similar shape of behaviour of

errors is observed across horizons, but with the TA based forecasts being in

both cases consistently and substantially better.

We turn our attention to the ARAME results in table 2. Overall we
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Table 2: ARAME

Demand
No aggregation Single level Multiple levels

Orig-SES Orig-ETS Heur-SES Opt-SES MAPA-SES MAPA

Simulated series

ARIMA(1,0,0) 1.000 0.984 1.037 1.042 1.000 0.988

ARIMA(0,0,1) 1.000 1.014 1.004 0.998 0.993 1.000

ARIMA(2,0,0) 1.000 0.990 1.100 1.053 1.010 0.999

ARIMA(0,0,2) 1.000 1.005 0.987 0.981 0.986 0.994

ARIMA(1,0,1) 1.000 0.990 1.104 1.080 1.013 0.999

ARIMA(2,0,2) 1.000 0.986 1.067 1.029 1.003 0.998

ARIMA(1,1,0) 1.000 0.821 1.981 1.432 1.200 1.061

ARIMA(0,1,1) 1.000 0.941 1.850 1.454 1.213 1.134

ARIMA(2,1,0) 1.000 0.700 2.013 1.389 1.188 0.929

ARIMA(0,1,2) 1.000 0.911 1.864 1.331 1.170 1.094

ARIMA(1,1,1) 1.000 0.773 1.655 1.343 1.142 0.996

ARIMA(2,1,2) 1.000 0.756 1.751 1.330 1.158 0.942

ARIMA(∗,0,∗) 1.000 0.995 1.049 1.030 1.001 0.996

ARIMA(∗,1,∗) 1.000 0.812 1.848 1.379 1.178 1.023

ARIMA(∗,∗,∗) 1.000 0.899 1.392 1.192 1.086 1.010

Real datasets

Manufacturing 1.000 0.992 1.051 1.075 1.014 0.970

Call centre 1.000 1.007 1.929 1.624 1.235 1.252

Overall real sets 1.000 0.998 1.314 1.251 1.090 1.065

observe that forecast built on the original time series are less biased than

those built on aggregate versions of them, with only some exceptions. On the

one hand, this is an intuitive result, given that both Orig-SES and Orig-ETS
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are modelled at the original time series, for which the fit will be unbiased. On

the other hand, the TA based forecasts will be unbiased for their respective

levels. This is in agreement with observations by Kourentzes et al. (2014).

For the real time series that the modelling uncertainty is much higher,

MAPA performs well, as it takes advantage of TA to mitigate this. In con-

trast, the processes in the simulated data are relatively simple and therefore

there is limited scope for MAPA to reduce the modelling uncertainty.

6. Conclusions

In this paper we investigated the use of TA for demand forecasting. More

specifically we contrasted two different school of thoughts for how forecasting

can be done using TA: (i) identifying and using a single optimal aggregation

level; and (ii) using multiple levels. Each approach is shown to have its

advantages.

Although theoretically using the optimal level would be advantageous, its

performance is inhibited by two factors. First, analytical derivations exist

only for a limited number of processes. Arguably this is not a substantial

limitation as Rostami-Tabar et al. (2013) has shown a methodology how to

develop the derivations for other processes. Nonetheless, with the available

derivations, currently this TA modelling approach excludes direct modelling

of seasonal time series, which can be important for some applications, and

requires some appropriate pre-processing. Second, identifying the optimal

level assumes knowledge of both the underlying process of the original time

series and of the process at the aggregate level, which both come at high

modelling uncertainty, especially for business time series that are typically
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relatively short. Nonetheless, we demonstrate that there are benefits over a

simple heuristic to identify the aggregation level.

Using multiple TA levels is theoretically suboptimal, in the strict MSE

sense, as the derivations for the optimal levels demonstrate. However, using

multiple levels is particularly able at mitigating the modelling uncertainty.

This is shown to be very useful for real series. In both the manufacturing

and the call centre datasets using multiple temporal aggregation performed

consistently more accurate than the benchmarks, across all forecast hori-

zons. The two datasets exhibit substantial differences in terms of structure,

given the diverse real application they originate from, but also the augmented

Dickey-Fuller test results provided in section 4.1, and naturally the appro-

priate forecasting model is unknown. By using multiple TA levels to produce

the forecasts, we were able to mitigate modelling uncertainty, as compared

against the state-of-the-art selection approach for the exponential smoothing

benchmark, and provide consistently more accurate forecasts. The accuracy

gains are consistent with other application areas reported in the literature.

Irrespectively of which TA approach is used, aggregating a time series

filters elements of the data, thus requiring simpler forecasting models. This

is desirable in practice, as it is evident by the minimal use of complex fore-

casting methods (Weller and Crone, 2012), often attributed to the so called

‘algorithm aversion’ (Dietvorst et al., 2015). We provide further evidence

that this comes at no forecast accuracy costs. In fact, the opposite is true, as

highlighted by our empirical evaluation both on real supply chain data and

the simulated examples.

Using multiple TA offers an additional advantage for business forecast-
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ing. The forecasts are by construction reconciled at different planning levels,

short-term corresponding to low levels of TA and long-term corresponding to

higher levels of TA, thus leading to aligned decisions. It is common in organ-

isations that predictions for different objectives and horizons are based on

different forecasting methods, which may result in substantial disagreements

between them. MAPA avoids this problem, providing reconciled forecasts to

support aligned decisions and limiting associated inefficiencies.

We conclude that using TA for demand forecasting is beneficial. There

is adequate evidence to support further research in identifying the optimal

aggregation level, however effort should be made to address the modelling

uncertainty challenge. With regards to MAPA based approaches, we find

them to be a practical approach for taking advantage of TA for forecasting

time series. Using multiple levels is a novel view of how to implement TA,

which has not been investigated in extensively in the forecasting literature

that has primarily looked at the effects of using a single level. We found that

it was at least as good at forecasting at the original time series, and in many

cases substantially more accurate. Therefore additional research should be

done to further develop the approach.
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