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Abstract 

In the present paper, the effect of parameterization on the results of isogeometric 

analysis of free-form approximated curved beams is investigated. An Euler-

Bernoulli beam element for an initially curved beam with variable curvature is 

developed. The model is applied to four different examples.  The effect of three 

parameterization strategies (the equally spaced method, the chord length method 

and the centripetal method) in the curve approximation process is considered. Also, 

the effect of least square approximation error is taken into consideration. The 

results strongly suggest avoiding the equally spaced method. Among the chord 

length and centripetal methods, the method which leads to a less least square error 

is recommended. 

1. Introduction: 

The concept of isogeometric analysis (IGA) was first introduced by Hughes et al 

[1] in 2005. It can be viewed and interpreted as a logical extension to the finite 

element method. The method employs shape functions based on different types of 

Splines (B-spline, NURBS, T-splines, etc.). The main feature of this approach is 

that the shape functions not only represent the CAD geometry, but also are 

considered as a basis for the numerical approximation of the solution space. IGA 

integrates finite element ideas in commercial CAD systems without the necessity 

to generate new computational meshes. This approach was successfully applied to 
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a wide range of physical problems such as solid mechanics [2-4], fluid mechanics 

[5], heat transfer [6], and Eigen value problems [7]. 

Very recently, the isogeometric analysis of curved beams has attracted many 

researchers. Bouclier et al. [8] investigated the use of higher order NURBs to 

address static straight and curved Timoshenko beams with several approaches that 

are usually employed in standard locking free finite elements. Nagy et al. [9] 

studied sizing and shape optimization of curved beams using IGA. Cazzani et al. 

[10] presented a plane curved beam element which is almost insensitive to both 

membrane and shear locking. They stated that membrane and shear locking 

phenomena can be easily controlled by either properly choosing the number of 

elements or the NURBs degree. 

 In general, a free-form curve can be constructed from arbitrary input data points 

using interpolation or approximation methods [11]. In interpolation, the curve is 

precisely passed through all data points, while in approximation, the least square 

error between data points and their corresponding points on the curve is 

minimized.  

In the work done by Luu et al. [12], the gap between the free vibration 

isogeometric analysis of curved beams with constant curvature and those with 

variable curvature is eliminated. They considered a Tschirnhausen cubic curved 

beam configuration to study the dynamic behavior of a free form curved beam. 

There exist different types of interpolation and approximation methods 

distinguished by their different parameterization methods. Two visually identical 

curves may have different parameterizations which lead to different control points 

and knot vectors. One can interpret the parameterization as a “hidden” concept that 

can affect the results of IGA. Different parameterizations will lead to different 

discretization which can in turn cause mesh distortion. Mesh distortion is a serious 

problem in both FEA and IGA. Kolman [13]  tested two types of parameterizations 

for a straight line; a non-linear parameterization given by uniformly spaced control 

points and a linear parameterization as a result of employing the Greville abscissa. 

Cotrell et al. [14] showed that the non-linear parameterization is superior for 

outlier frequencies. Other researchers [15] have investigated the effect of 

perturbing control points in one-dimensional setting, and extended this concept to 



multiple dimensions. Perturbing a control point in one-dimensional setting would 

change the parameterization, whereas the line is visually unchanged.  Although 

there exists a series of studies briefly addressing the effect of parameterization [16-

19], a much needed comprehensive research focusing on the effect of 

parameterization on free form approximated (interpolated) curved beam is 

necessary. Therefore the present work aims to provide a sound insight into this 

concept based on IGA.  

The article is organized as follows: Firstly, in section 2 a brief introduction into B-

spline and NURBs functions is presented and the interpolation and approximation 

methods as well as three parameterization techniques are introduced. After that, the 

formulation of isogeometric analysis of free form (variable curvature) curved 

beams is presented in section 3. This formulation is adopted from the concept of 

shell isogeometric element developed in [20]. In section 4, the effect of 

parameterization on isogeometric analysis of curved beams is shown and a 

complete discussion on the results is given. Finally section 5 concluded the 

discussion. 

2.  Basic Definitions 

B-spline curve and surface algorithms required for implementing surface skinning 

are briefly introduced in this section. 

2.1.  B-spline curves and surfaces 

B-spline theory is a parametric method of describing curves and surfaces. 

Outstanding properties and programming capabilities have made the method 

popular for CAD/CAM applications. A clamped B-spline curve is a piecewise 

polynomial which is expressed by: 

 

(1) 𝐶(𝑢) =∑𝑁𝑖,𝑝(𝑢)𝑃𝑖

𝑛

𝑖=0

 

where p is the degree and 𝑃𝑖 , 𝑖 = 0, . . , 𝑛  is the control polygon which is defined by 

𝑃𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ).The term 𝑁𝑖,𝑝(𝑢), 𝑖 = 0,… , 𝑛 represents  B-spline basis functions 

that are defined on the  knot vector, U: 



(2) 𝑈 = {0,… ,0⏟  
𝑝+1

, 𝑢𝑝+1, … , 𝑢𝑚−𝑝−1, 1, … ,1⏟  
𝑝+1

} 

The extension of B-spline theory to a tensor product of two B-spline curves results 

in a definition for B-spline surface, S: 

 

(3) 
𝑆(𝑢, 𝑣) =∑∑𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)𝑃𝑖.𝑗

𝑚

𝑗=0

𝑛

𝑖=0

 

where p and q are surface degrees in u and v directions respectively and 𝑃𝑖,𝑗
𝑖=0,…,𝑛
𝑗=0,…,𝑚

 

is a net of control points defined as 𝑃𝑖,𝑗 = (𝑥𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗). Also 𝑁𝑖,𝑝(𝑢), 𝑖 = 0,… , 𝑛 

and 𝑁𝑗,𝑞(𝑣), 𝑗 = 0,… ,𝑚 are B-spline basis functions in u and v directions which 

are defined on the following knot vectors respectively: 

 

(4) 

𝑈 = {0,… ,0⏟  
𝑝+1

, 𝑢𝑝+1, … , 𝑢𝑟−𝑝−1, 1, … ,1⏟  
𝑝+1

} 

𝑉 = {0,… ,0⏟  
𝑞+1

, 𝑣𝑞+1, … , 𝑣𝑠−𝑞−1, 1, … ,1⏟  
𝑞+1

} 

Further details of B-spline curves and surfaces can be found in [11]. 

2.2.  Approximation of curves and surfaces 

Three necessary stages should be passed on to obtain an approximated surface 

a) Selecting proper parameter for each data point 

b) Generating a proper knot vector 

c) Calculating control points as the output of problem 

There are several methods to fulfill each of the above stages. What are going on 

are formulations related to a specific method which has been used in this work. 

2.2.1. Parameter selection 

Parameters are in fact the reflection of distribution of data points. Three 

parameterization techniques, the equally spaced, chord length and centripetal 

methods are used for most applications. The input data points and their 

corresponding parameters are denoted by 𝑄𝑖  , 𝑖 = 0,… , 𝑘, and 𝑡𝑖  , 𝑖 = 0,… , 𝑘. Thus, 

the evaluated point on the approximated curve at 𝑡𝑖 is equal to Qi. 



In the equally spaced method: 

 

(5) {

𝑡0 = 0
𝑡𝑖 = 𝑖/𝑘
𝑡𝑘 = 1

 

 

In the chord length method data point parameters are calculated by: 

 

(5) {

𝑡0 = 0

𝑡𝑖 = 𝑡𝑖−1 +
|𝑄𝑖 − 𝑄𝑖−1|

𝐿
𝑡𝑘 = 1

 

where 

𝐿 =∑|𝑄𝑖 − 𝑄𝑖−1|

𝑘

𝑖=1

 

And for the centripetal method, parameters may be obtained by: 

 

(6) 

{
 

 
𝑡0 = 0

𝑡𝑖 = 𝑡𝑖−1 +
√|𝑄𝑖 − 𝑄𝑖−1|

𝐿
𝑡𝑘 = 1

 

where 

𝐿 =∑√|𝑄𝑖 − 𝑄𝑖−1|

𝑘

𝑖=1

 

2.2.2. knot vector generation 

Several methods are suggested for knot vector selection, amongst them, the 

following algorithm is usually preferred and implemented [11]: 

 

 

(8) 

𝑑 =
𝑘 + 1

𝑛 − 𝑝 + 1
 

𝑖 = 𝑖𝑛𝑡(𝑗𝑑)   ,    𝛼 = 𝑗𝑑 − 𝑖 

𝑢𝑝+𝑗 = (1 − 𝛼)𝑢̅𝑖−1 + 𝛼𝑢̅𝑖     ,    𝑗 = 1,… , 𝑛 − 𝑝 



where k is the number of data points, n is the number of control points and p is the 

degree of B-spline. The "int" command gives the largest integer smaller than its 

input real number. The above algorithm will ensure that there are a specific and 

almost equal number of parameters between each two consecutive middle knots 

which plays an important role in the stability of solutions [21]. 

2.2.3. Least square approximation 

In the least square method, the following error function is to be minimized: 

 

 

which leads to the following system of equations [11]: 

(10) (𝑁𝑇𝑁)𝑃 = 𝑅 

where N is a (n-1) by (k-1) matrix: 

 

(11) [

𝑁1,𝑝(𝑡1) ⋯ 𝑁𝑛−1,𝑝(𝑡1)

⋮ ⋱ ⋮
𝑁1,𝑝(𝑡𝑘−1) ⋯ 𝑁𝑛−1,𝑝(𝑡𝑘−1)

] 

and R is a (n-1) vector: 

 

(12) [

𝑁1,𝑝(𝑡1)𝑅1 +⋯+𝑁1,𝑝(𝑡𝑘−1)𝑅𝑘−1
⋮

𝑁𝑛−1,𝑝(𝑡1)𝑅1 +⋯+𝑁𝑛−1,𝑝(𝑡𝑘−1)𝑅𝑘−1

] 

 

𝑅𝑖  is defined by: 

(13) 𝑅𝑖 = 𝑄𝑖 −𝑁0,𝑝(𝑡𝑖)𝑄0 −𝑁𝑛,𝑝(𝑡𝑖)𝑄𝑘  , 𝑖 = 1,… , 𝑘 − 1 

 

It should be noted that P, the vector of control points, is the unknown of problem. 

 

 

 

 

(9) ∑|𝑄𝑖 − 𝐶(𝑡𝑖)|
2

𝑘−1

𝑖=1

 



3. Isogeometric analysis of plane free form curved beams 

For the description of free form curves, it is advantageous to use curvilinear 

coordinates and local bases as depicted in Fig. (1).  

 

Figure 1. Curved beam configurations in reference and deformed (current) states 

where the vectors 𝑨⃗⃗  and 𝒂⃗⃗  are the base vectors in reference and current 

configurations respectively. The deformation of a thin, elastic and uniform Euler-

Bernoulli beam is comprised of membrane and flexural components. The position 

of each point on the deformed beam (Fig. (2)) can be expressed using the following 

relations: 



 

 

 

 

 

 

 

 

Figure 2.  A curvilinear configuration 

(14) 𝑥(𝜃1, 𝜃2) = 𝑟(𝜃1) + 𝜃2𝑎2(𝜃
1) 

 

where 𝜃1 and 𝜃2 are curvilinear coordinates and r is the position vector of 

corresponding point on the midline of the beam. The director 𝒂⃗⃗  ⃗ can be written as: 

(15) 𝒂 = 𝐴2 +𝛷 × 𝐴2 

where 𝛷 is the rotation vector. Considering the rotation angle, the rotation vector 

can be written as: 

(16) 𝛷 = 𝜑𝐴2 

 

𝜑 is the rotation angle and can be obtained using the following equation: 

(17) 
𝜑 = −

1

‖𝐴2‖
(𝑎1 − 𝐴1). 𝐴2 = −

1

‖𝐴2‖
𝜈,1. 𝐴2 

 

Where ν,1 is the partial derivative of midline displacement field, 𝜈 , of beam with 

respect to the coordinate 𝜃1and ‖𝐴2‖ is the Euclidean norm of 𝐴2. 

The difference between position vectors x and X will lead to a displacement field 

“u” at each point of a plane curved beam: 



(18) 𝑢 = 𝑥 − 𝑋 
 

 

The derivation of the Green-Lagrange strain tensor coefficients 𝜀𝑖𝑗 requires partial 

derivatives of the displacement field, u, with respect to the coordinate 𝜃1: 

(19) 𝑢,1 = 𝑣,1 + 𝜃
2(Φ,1 × 𝐴2 +Φ× A2,1) 

 

Considering the finite Green-Lagrange formula, the individual strain can be 

obtained as follows: 

(20) 𝜀11 = 𝑣,1𝐴1 + 𝜃
2(𝑣,1𝐴2,1 +Φ,1 × 𝐴2. 𝐴1) 

 

With the strain component of equation (20), the internal virtual work of the Euler-

Bernoulli beam can be defined: 

(21) 
𝛿𝜋 = ∫𝛿(𝜀)𝑇𝐶𝜀𝑑Ω

 

Ω

 

 

where C is the material property coefficient. 

In IGA, this discretization is performed using the B-spline and NURBs functions. 

According to the isoparametric concept, the discrete displacement field of the 

midline, 𝑣, is determined from the sum of NURBs element basis functions and 

associated displacements of the control points as follows: 

 

(22) 𝑣(𝜉) =∑𝑁𝑖
𝑝
(𝜉) 

𝑛𝑐𝑝

𝑖=1

𝑣𝑖 

 

where 𝑛𝑐𝑝 is the number of control points, 𝜉 is the parameter, p is the B-spline 

degree, 𝑁𝑖
𝑝
 are the basis functions and finally 𝑣𝑖 are control point values. 

In as much as the vector 𝐴1 is always tangent to the curve, it can be written as: 

 

(23) 𝐴1(𝜉) =∑𝑁𝑖
𝑃(𝜉),𝜉

𝑛𝑐𝑝

𝑖=1

𝑃𝑖 

 



where 𝑃𝑖 are the control points of the input geometry. The problem unknowns (𝑣𝑖) 

are computed by discretization of equation (21) using equations (20), (22) and 

(23). 

4. Results and Discussion 

The effect of parameterization on the isogeometric analysis of free form curved 

beams was investigated. A free form curve can be constructed from a set of data 

points using approximation and interpolation techniques. As described in section 2, 

there are various parameterization methods which may lead to visually identical, 

yet intrinsically different curves, because they have different control points and 

different knot vectors. 

The curved beam isogeometric analysis was performed on four benchmark 

examples. In all examples, the number of meshes can be altered by employing 

different number of control points as an approximation (interpolation) input. For 

comparison purposes, the variation of the approximation least square error is also 

plotted versus the number of control points. The results are reported in the 

subsequent sections. 

Example 1: A cantilever straight beam: 

The configuration and input data points are shown in Figs. (3) and (4) respectively. 

Since the input data points are uniformly distributed, the error outputs for chord 

length and centripetal approximations are the same. 

 

Figure 3. The configuration of a cantilever straight beam 



 

Figure 4. The input data points of a cantilever straight beam 

The variation of least square and tip deflection errors versus the number of control 

points are depicted in Figs. (5) and (6) respectively.  

 

Figure 5. Least square error versus the number of control points for different types of 

parameterization in example 1 



 

Figure 6. Tip deflection error versus the number of control points for different types of 

parameterization in example 1 

 

Example 2: A quarter circular in-plane cantilever curved beam: 

Figs. (7) and (8) are showing the configuration and input data points of a cantilever 

quarter circle beam. The data points are again uniformly distributed, hence the 

chord length and centripetal outputs are identical. 

 

Figure 7. The configuration of a quarter circular in-plane cantilever curved beam 



 

Figure 8. The input data points of the beam in example 2 

The variation of least square and vertical tip deflection errors versus the number of 

control points are depicted in Figs. (9) and (10) respectively.  

 

Figure 9. Least square error versus the number of control points for different types of 

parameterization in example 2 

 



 

Figure 10. Vertical tip deflection error versus the number of control points for different 

types of parameterization in example 2 

 

Example 3: A cantilever quarter circularin-plane curved beam with non-uniform 

input data points: 

This example is devised to investigate the effect of non-uniform input data points. 

The configuration is similar to the previous example, with the exception of the 

distribution of data points which is different as shown in Fig. (11).  



 

Figure 11.The non-uniform input data points of the beam in example 3 

The variation of least square and vertical tip deflection errors versus the number of 

control points are depicted in Figs. (12) and (13) respectively. 

 

Figure 12. Least square error versus the number of control points for different types of 

parameterization in example 3 



 

Figure 13. Vertical tip deflection error versus the number of control points for different 

types of parameterization in example 3 

 

Example 4: A cantilever Tschirnhausen plane curved beam: 

To take the curvature variation into consideration, the Tschirnhausen curve was 

considered. The Configuration is demonstrated in Fig. (14). 

 

Figure 14- The configuration of a Tschirnhausen cantilever beam used in example 4 

The data points were calculated from the following Tschirnhausen parametric 

equation: 



𝑥 = 3𝑎(𝑡2 − 3) 

𝑦 = 𝑡𝑎(𝑡2 − 3) 

Choosing a=1, the data points are shown in Fig. (15).  

 

Figure 15. The input data points of a Tschirnhausen curve 

Considering this geometry as a cantilever beam, with a clamped edge at right, the 

variation of least square and tip deflection errors versus the number of control 

points are demonstrated in Figs. (16) and (17). 



 

Figure 16. Least square error versus the number of control points for different types of 

parameterization in example 4 

 

 

Figure 17. Vertical tip deflection error versus the number of control points for different 

types of parameterization in example 4 

 



4.1. Effect of arc-length parameterization 

Parameterization has significant influence on mesh distortion of the geometry. 

With a linear parameterization, the arc-length mapping from a model space into its 

parameter space is achieved. In this case, The Jacobian corresponding to this 

mapping is constant [15]. These characteristics of the arc-length parameterization 

were evaluated for all examples considered in this work. For a fixed number of 

control points, the variation of model coordinate, X, and Jacobian versus the B-

spline parameter for different parameterization approaches are shown in Figs. (18) 

and (19) for Example1. 

 

 

Figure 18.Plot of the parameterization for the cases of equally spaced and Chord length 

parameterizations for example 1 



 

Figure 19. Plot of the Jacobian of the parameterization for the cases of uniformly spaced 

control points and linear parameterization for example 1 

From these figures, it is clear that the chord length and centripetal 

parameterizations are more likely to lead to a linear (or arc length) 

parameterization.  

However, centripetal parameterization is not always linear. Fig. (20) shows the plot 

of the Jacobian versus the spline parameter for example 4. 



 

Figure 20.Plot of the Jacobian of the parameterization for all parameterization methodsfor 

example 4 

Although the centripetal parameterization is not linear in this example, its 

deflection error is slightly smaller than the chord length parameterization (Fig. 

(17)). This may be due to the fact that centripetal parameterization, like chord 

length parameterization, takes the initial distribution of data points into 

consideration.  

Considering this fact, we can conclude that in most cases, mesh distortion in chord 

length and centripetal parameterizations is generally less than equally spaced 

parameterization, hence, chord length and centripetal parameterizations give more 

accurate results. 

 

4.2. Effect of the least square approximation error 

In general, less error of the least square approximation leads to less deflection 

errors. However this is not always true as it depends on the parameterization 

method used. By careful observation of Figs. (12) and (13), one can find out that 



an equally spaced parameterization with 32 control points has led to less 

approximation error than a centripetal parameterization with 5 control points, 

whereas the deflection error of the latter is less. Moreover, there is not a uniform 

relation between the least square error and the deflection error for the equally 

spaced procedure. 

 By careful examination of the results obtained for example 4, it is suggested that 

the convergence rate of centripetal method in variable curvature problems is faster 

than the chord length method. This may be due to the fact that the convergence of 

the approximation least square error to zero in centripetal method is faster than in 

the chord length method. On the other hand, in example 3, where non-uniform 

input points were introduced, the chord length method is superior. This is because 

at a fixed number of control points its least square error is less than the error in 

centripetal method. Therefore, it maybe concluded that between the chord length 

and centripetal methods, the one which leads to less approximation error is more 

likely to also lead to less deflection error. 

5. Conclusions: 

- The effect of parameterization and least square approximation error on 

isogeometric analysis results of free-form curved beams was considered. 

- Implementing “chord length” and “centripetal” parameterizations showed 

that by increasing the accuracy of approximation, i.e. increasing the number 

of approximation control points, the accuracy of isogeometric results was 

also increased. 

- Implementing “equally spaced” approximation suggested that increasing the 

accuracy of approximation did not necessarily lead to more accurate results. 

- “Chord length” and “centripetal” approaches that reflect the initial 

distribution of input points resulted in more accurate results. Therefore, it 

could not be concluded that use of a linear parameterization would always 

results in more accurate IGA solutions. 

- The authors highly suggest avoiding equally spaced parameterization for 

IGA. Among chord length and centripetal methods, authors recommend the 

method which results in a less least square error. 
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