

Modelling opacity using petri nets

Bryans, JW, Koutny, M & Ryan, PYA

Published PDF deposited in Coventry University’s Repository

Original citation:
Bryans, JW, Koutny, M & Ryan, PYA 2005, 'Modelling opacity using petri
nets' Electronic Notes in Theoretical Computer Science, vol 121, pp. 101-115
https://dx.doi.org/10.1016/j.entcs.2004.10.010

DOI 10.1016/j.entcs.2004.10.010
ISSN 1571-0661

Publisher: Elsevier

This is an Open Access article distributed under the terms of the Creative
Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by/4.0/), which permits non-commercial re-
use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Copyright © and Moral Rights are retained by the author(s) and/ or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This item cannot be
reproduced or quoted extensively from without first obtaining permission in
writing from the copyright holder(s). The content must not be changed in any way
or sold commercially in any format or medium without the formal permission of
the copyright holders.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CURVE/open

https://core.ac.uk/display/228148823?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dx.doi.org/10.1016/j.entcs.2004.10.010
http://creativecommons.org/licenses/by-nc/4.0/

Modelling Opacity Using Petri Nets

Jeremy W. Bryans, Maciej Koutny and Peter Y. A. Ryan1 ,2

School of Computing Science
University of Newcastle

Newcastle upon Tyne, NE1 7RU, U.K.

Abstract

We consider opacity as a property of the local states of the secure (or high-level) part of the system,
based on the observation of the local states of a low-level part of the system as well as actions.
We propose a Petri net modelling technique which allows one to specify different information flow
properties, using suitably defined observations of system behaviour. We then discuss expressiveness
of the resulting framework and the decidability of the associated verification problems.

Keywords: opacity, non-deducibility, Petri nets, observable behaviour

1 Introduction

The notion of secrecy has been formulated in various ways in the computer
security literature. One well known formulation is that of non-interference,
generally attributed to Goguen and Meseguer in [5] and [6], but the idea can
be traced back to earlier work of Feiertag [3] and Cohen [2]. This seeks to
formalise the absence of any information flow or more precisely, the absence
of any causal flow from one process to another. A reformulation of this notion
in terms of structural characteristics of Petri nets has recently been given by
Busi and Gorrieri [1].

In this paper we examine a different approach to formulating information
flow policies, following an approach that can be traced back to the notion
of non-deducibility due to Sutherland [11]. The essential idea is to stipulate

1 This research was supported by the EPSRC GOLD and SCREEN projects and DSTL
2 {jeremy.bryans, peter.ryan, maciej.koutny}@newcastle.ac.uk

Electronic Notes in Theoretical Computer Science 121 (2005) 101–115

1571-0661 © 2005 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.10.010
Open access under CC BY-NC-ND license.

http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

that whatever observations an uncleared user may make of the system, the
space of possible high level (secret) inputs consistent with those observations
is unchanged. In other words, the uncleared user should be unable to make
any useful deductions about the interactions of a secret user with the system.
A number of problems and limitations of the original formulation have been
noted over the years and several variants proposed. An overview can be found
in [9].

A variant of the idea has appeared recently in the context of the analysis
of security protocols as the notion of opacity [4]. Whereas non-interference
seeks to capture the complete absence of information flow, opacity is specific
to a particular item of information. Thus, for example, the value of a vari-
able v say, is deemed to be opaque for a particular run of a protocol if the
adversary is unable to deduce its value from the observations and deductions
available to him during the run. For the protocol to satisfy such a require-
ment it must be the case that, for any alternative value of v, there is another
possible run of the protocol that gives rise to observations by the adversary
that are indistinguishable from the original observations. Of course care has
to be taken over the definition of ‘indistinguishability’ here, especially in the
presence of cryptography and non-determinism. A specialisation of this notion
is to require that the adversary be unable to determine the satisfaction of a
particular property.

A number of important information flow requirements are naturally cap-
tured by such a formulation. Anonymity is a prime example of a situation
where some information flow is permitted whilst particular items of informa-
tion must be kept secret. Thus, for ballot secrecy, it will typically be regarded
as acceptable for an observer to know that a particular member of the elec-
torate cast a vote, but it is essential that the actual vote is kept secret.

Similarly, for encrypted channels and cryptographic protocols, it is often
regarded as acceptable or unavoidable that an adversary can perform traffic
analysis, observe sources, destinations and lengths of messages, but essential
that the contents of the messages remain secret.

Such scenarios fit awkwardly into traditional, strict formulations of non-
interference which regard information flow as a binary property.

Note that, as is standard in the modelling of information flows, we assume
that the adversary has full knowledge of the construction of the system. This
is an analogue of Kerckhoffs’ principle in cryptography of not seeking security
in obscurity and is in effect a worst case assumption.

In this paper we extend the notion of opacity to systems in general, rather
than just to cryptographic protocols and cast it in the framework of Petri
nets. The flexibility in defining the adversary’s visibility of transitions and

J.W. Bryans et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 101–115102

places as well as flexibility of predicates over states allows us to express very
rich information flow requirements. The ability to define arbitrary adversary
views of the system state gives a convenient way to model certain threat
scenarios, e.g., various forms of probing using side channel analysis.

Casting our models in Petri nets gives us access to a raft of existing results
and tools that have been developed in the Petri net community.

2 Petri nets

In this section, we introduce Petri nets with weighted arcs [7], and give their
operational semantics in terms of step sequences.

A (weighted) net is a triple N = (P, T, W) such that P and T are disjoint
finite sets, and W : (T × P) ∪ (P × T) → N. The elements of P and T
are respectively the places and transitions, and W is the weight function of
N . In diagrams, places are drawn as circles, and transitions as rectangles. If
W (x, y) ≥ 1 for some (x, y) ∈ (T ×P)∪ (P × T), then (x, y) is an arc leading
from x to y. As usual, arcs are annotated with their weight if this is 2 or more.
We assume that, for every t ∈ T , there is a place p such that W (p, t) ≥ 1.

The pre- and post-multiset of a transition t ∈ T are multisets of places,
preN (t) and postN (t), respectively given by

preN (t)(p) = W (p, t) and postN (t)(p) = W (t, p),

for all p ∈ P . Both notations extend to finite multisets of transitions U :

preN (U) =
∑
t∈U

U(t) · preN (t) and postN (U) =
∑
t∈U

U(t) · postN (t) .

A marking of a net N is a multiset of places. Following the standard
terminology, given a marking M of N and a place p ∈ P , we say that p is
marked if M(p) ≥ 1 and that M(p) is the number of tokens in p. In diagrams,
M will be represented by drawing in each place p exactly M(p) tokens (black
dots).

Transitions represent actions which may occur at a given marking and then
lead to a new marking. Here we define this dynamics in terms of multisets of
(simultaneously occurring) transitions.

A step is a non-empty finite multiset of transitions, U : T → N. It is
enabled at a marking M if M ≥ preN (U). Thus, in order for U to be enabled
at M , for each place p, the number of tokens in p under M should at least
be equal to the total number of tokens that are needed as an input to U ,
respecting the weights of the input arcs.

If U is enabled at M , then it can be executed leading to the marking
M ′ = M−preN (U)+postN (U). This means that the execution of U ‘consumes’

J.W. Bryans et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 101–115 103

from each place p exactly W (p, t) tokens for each occurrence of a transition
t ∈ U that has p as an input place, and ‘produces’ in each place p exactly
W (t, p) tokens for each occurrence of a transition t ∈ U with p as an output
place. If the execution of U leads from M to M ′ we write M [U〉M ′.

An execution from a marking M to a marking M ′ is a sequence

µ = MU1M1 . . . Mn−1UnM ′

such that

M [U1〉M1 · · · Mn−1 [Un〉M ′ .

We also say that M ′ is reachable from M .

3 Observing Petri net behaviour

In this section, we introduce a specific device aimed at modelling various
observation capabilities based on the executed behaviours of a Petri net. Our
framework is deliberately general to allow one to deal with a wider range of
observation scenarios.

We start by making a small (but important from the point of view of
applications) adjustment of the standard notion of a marked net, by assuming
that the system specification we are given at the outset is a pair Σ = (N,M0),
where N is a net as defined in the previous section and M0 is a non-empty
finite set of initial markings. This allows us to easily model situations where
only partial information of the initial state of the system is available to an
observer.

We will denote by [M0〉 the set of all markings reachable from any of
the markings in M0, and by RG(Σ) the reachability graph of Σ defined as
the labelled directed graph whose nodes are the markings in [M0〉, and the
labelled arcs represent all steps executed at these markings according to the
rules from the previous section (see, e.g., figure 2(a,b) for an example of a net
with a single initial marking and its reachability graph). We will denote by
RGsteps(Σ) the set of all the steps labelling the arcs of RG(Σ).

3.1 Visibility of reachable markings and executed steps

In our approach, we assume that there is a mapping obs which for each reach-
able marking in [M0〉 and every step of executed transitions in RGsteps(Σ)
returns some label. This label is meant to capture the observable or visible
aspects of system behaviour, in this case global states (markings) and executed
actions (steps of transitions). We do not place any restrictions on the nature
of the obs mapping at this point; indeed, it is left under-specified deliberately
to accommodate a wide range of observation scenarios.

J.W. Bryans et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 101–115104

Suitable choices of obs mapping can be used to encode the various levels
of visibility of system behaviour that we attribute to the environment or ad-
versary. Thus transitions visible only to a secret user might be mapped to a τ
label. Such events would be completely invisible to the environment, i.e., the
environment would not be aware that any transition had occurred. Transi-
tions corresponding to the transmission of encrypted values could be mapped
to a single label. We discuss flavours of invisibility further in section 3.3.
Transitions deemed visible to the adversary may be left unchanged.

Note that, in particular, obs allows us to ‘detect’ properties like deadlock-
freeness or acceptance sets. The theory is rich enough to incorporate and
reason about them. It is another matter, of course, how deadlocks would be
detected or observed in the real life system, but these issues are beyond the
scope of the current paper.

We assume that markings and steps are visible using different sets of ob-
served labels (i.e., obs(M) �= obs(U), for all M ∈ [M0〉 and U ∈ RGsteps(Σ));
in other words, observers can always distinguish between a state and a tran-
sition.

The two basic forms of defining the obs mapping are transition labelling
and marking projection. In the first case, we assume that each transition t
has its own (not necessarily unique) label �(t) and then the visibility of a step
U = {t1, . . . , tk} is defined as the multiset �(U) = {�(t1), . . . , �(tk)}. In the
case of marking projection, we assume that Vis ⊆ P is a set of places on
which we can always see the tokens, and all places in P \Vis are hidden from
us (in the extreme case, Vis = ∅ which effectively means that no information
about the tokens is available). Then, for every marking M , we define M |Vis

as a multiset over Vis such that M |Vis(p) = M(p) for every place p ∈ Vis .

Having defined the observable aspects of individual markings and steps of
transitions, it is straightforward to define the effect of the observation mapping
on the executions of the marked net Σ: given an execution

µ = M0U1M1 . . .Mn−1UnMn,

where M0 ∈ M0, we observe it as the sequence

obs(µ) = obs(M0)obs(U1)obs(M1) . . . obs(Mn−1)obs(Un)obs(Mn).

The whole behaviour of Σ can now be viewed as the labelled directed graph
obs(RG(Σ)) obtained from RG(Σ) by replacing each arc label U by obs(U),
and by labelling each node M by obs(M). Moreover, any actual observation
of the system behaviour is simply a sequence of node and arc labels along any
directed path originating from one of the initial nodes.

J.W. Bryans et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 101–115 105

3.2 Opacity

In the present framework, we are interested in whether an observer can es-
tablish a property P at some specific state(s) of the execution of the system
solely on the basis of its visible version. We consider here any state property,
i.e., one which can be evaluated at any reachable marking in [M0〉. Clearly,
any such property can simply be represented as the set of those reachable
markings where it holds, and so we will take P to be any subset of [M0〉.

Now, given an observable execution of the system, we will be interested
in finding out whether the fact that an underlying marking belongs to P can
be deduced by the observer. Note, however, that we are not interested in
establishing whether the underlying marking does not belong to P. To do
this, we would rather consider the property P = [M0〉 \ P.

What it means to deduce a property can mean different things depending
on what is relevant or important from the point of view of real application.
Below, we formalise three possible ways of defining variants of opacity:

• P is initial-opaque if for every execution µ from any marking M0 ∈ M0∩P,
there exists an execution µ′ from a marking M ′

0 ∈ M0\P such that obs(µ) =
obs(µ′).
I.e., we are only interested in the holding of our property in the initial state.

• P is final-opaque if for every execution µ from any marking M0 ∈ M0 to a

marking M̂ ∈ P, there exists an execution µ′ from a marking M ′
0 ∈ M0 to

a marking M̂ ′ /∈ P such that obs(µ) = obs(µ′).
I.e., we are only interested in the holding of our property in the current
state.

• P is always-opaque if for every execution

µ = M0U1M1 . . .Mn−1UnMn

from any marking M0 ∈ M0 and every i ≤ n such that Mi ∈ P, there exists
an execution

µ′ = M ′
0U

′
1M

′
1 . . .M ′

n−1U
′
nM ′

n

from a marking M ′
0 ∈ M0 such that obs(µ) = obs(µ′) and M ′

i /∈ P.
I.e., we are interested in the holding of our property at all states of the
observed execution.

Later on, initial-opacity is illustrated by the dining cryptographers ex-
ample. It would appear that it is suited to modelling situations in which
initialisation information such as crypto keys, etc., needs to be kept secret.
More generally, situations in which confidential information can be modelled
in terms of initially resolved non-determinism can be captured in this way.
On the other hand, always-opacity would seem more appropriate to capture

J.W. Bryans et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 101–115106

situation in which secret information is input at run time, for example due to
high level interactions. We will be exploring the application of these formal
properties in a future paper.

Proposition 3.1 If P is always-opaque then it is both initial-opaque and
final-opaque; no other implication of this kind in general holds.

Proof. The first part follows from the definitions. Moreover, together with
the two counterexamples below, it implies that the second part holds as well.

The first example shows that in general initial-opacity does not imply
final-opacity. Take the net in figure 1(a) with the initial markings M0 =
{{s1, s2}, {s1}} (the reachability graph is shown in figure 1(b)). Assume fur-
ther that obs is given by the transition labelling �(t) = a, and marking projec-
tion on the place s1. The resulting observation graph is shown in figure 1(c).
Suppose now that we are interested in establishing that the invisible place s2

is non-empty, which is captured by P = [M0〉 \ {{s1}}. It is easily seen that
P is initial-opaque, but it is not final-opaque (basically, after executing the
only transition, s2 is bound to contain at least one token).

The second example shows that final-opacity does not imply initial-opacity.
Take the net in figure 1(d) with the initial markings M0 = {{s}, ∅} (the
reachability graph is shown in figure 1(e)). Assume further that obs is given by
the transition labelling �(t) = �(u) = a, and marking projection on the empty
set of places. The resulting observation graph is shown in figure 1(f). Suppose
now that we are interested in establishing that the invisible place s contains a
token, which is captured by P = {{s}}. It is easily seen that P is final-opaque,
but it is not initial-opaque (basically, after executing any sequence of the two
transitions, we know for sure that s must have contained initially a token, but
since we have no idea which of the two transitions was executed at the end of
the sequence, the current marking of s is undetermined). �

Proposition 3.2 For x ∈ {initial , final , always}, it is the case that P = ∅ is
x-opaque, P = [M0〉 is not x-opaque, and if P ⊆ P ′ and P ′ is x-opaque then
P is x-opaque.

Proof. Follows from definitions. �

What now follows are crucial results stating that the three notions of opac-
ity are decidable provided that the system has finitely many states.

Theorem 3.3 If [M0〉 is finite 3 then it is decidable whether P is initial-
opaque.

3 Note that the finiteness of [M0〉 is decidable, and can be checked using the standard
coverability tree construction [7].

J.W. Bryans et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 101–115 107

(a)

s1

s2

t

(b)

{s1, s2}

{s2, s2}

{s1}

{s2}

{t} {t}

(c)

{s1}

∅

{s1}

∅

{a} {a}

(d)

s

t

u

{u}

(e)

{s}

∅

{t}
{a}

(f)

∅

∅

{a}

Fig. 1. Two counterexamples for the proof of proposition 3.1.

Proof. The proof of this and the next two results are based on a language-
theoretic argument centered around a directed graph G obtained from RG(Σ)
in the following way: for each arc (M, U, M ′), the label U is changed to the
two-label sequence obs(U)obs(M ′). Note that G is finite since [M0〉 is finite
and so RG(Σ) is a finite reachability graph.

To decide initial-opacity we proceed as follows. First, we construct a fi-
nite state machine F1 by taking G with a fresh initial node connected by an
obs(M)-arc with every node M ∈ M0 ∩ P, and all the states being treated
as final. After that we construct in a similar way a finite state machine F2,
except that now the initial node is connected by an obs(M)-arc with every
node M ∈ M0 \ P.

It is easy to see that P is initial-opaque iff L(F1) ⊆ L(F2), where L(Fi) is
the language accepted by Fi. �

J.W. Bryans et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 101–115108

Theorem 3.4 If [M0〉 is finite then it is decidable whether P is final-opaque.

Proof. First, we construct a finite state machine F1 by taking G with a fresh
initial node connected by an obs(M)-arc with every node M ∈ M0, and all the
states in [M0〉 ∩P being treated as final. After that we construct in a similar
way a finite state machine F2, except that now all the states in [M0〉 \ P are
treated as final.

It is easy to see that P is final-opaque iff L(F1) ⊆ L(F2). �

Theorem 3.5 If [M0〉 is finite then it is decidable whether P is always-
opaque.

Proof. Let ξ = (M, ll′, M ′) be any arc in G such that M ′ ∈ P. First, we
construct a finite state machine F ξ

1 by taking G with a fresh initial node

connected by an obs(M̂)-arc with every node M̂ ∈ M0, an extra arc (M, a, M ′)
where a is a fresh label, and all the states in [M0〉 being treated as final. After
that we construct a finite state machine F ξ

2 by taking G with a fresh initial

node connected by an obs(M̂)-arc with every node M̂ ∈ M0, an extra arc

(M̂, a, M̂ ′) for each existing arc (M̂, ll′, M̂ ′) in G such that M̂ ′ /∈ P, and all
the states in [M0〉 being treated as final.

It is easy to see that P is always-opaque iff P is initial-opaque and, for
every arc ξ as above, L(F ξ

1) ∩ L ⊆ L(F ξ
2), where L is the language generated

by the regular expression A∗aA∗ and A is the set of all arc labels used in F ξ
1

except for the label a. �

3.3 Invisible transitions

So far we have tacitly assumed that it is always possible to observe in some
way every step of executed transitions (i.e., some label is always generated).
However, one might also wish to deal with totally invisible transitions and
steps. We now will outline how such a feature could be incorporated within
our present framework.

To start with, we assume that there is a special label τ which can be used
to label steps of transitions which are completely invisible to an observer.
Moreover, we assume that executing an invisible step does not change the
visibility of the marking (any such change would indicate that something must
have been executed even if we do not know what). Then, given an execution
µ = M0U1M1 . . .Mn−1UnMn, where M0 ∈ M0, we denote by obsτ (µ) the
sequence obtained from

obs(M0)obs(U1)obs(M1) . . .obs(Mn−1)obs(Un)obs(Mn)

by deleting all pairs obs(Ui)obs(Mi) such that obs(Ui) = τ . With this modified

J.W. Bryans et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 101–115 109

definition of observability, our notions of opacity are re-stated:

• P is τ -initial-opaque if for every execution µ from any marking M ∈ M0 ∩
P, there exists an execution µ′ from a marking M ′ ∈ M0 \ P such that
obsτ (µ) = obsτ (µ

′).
• P is τ -final-opaque if for every execution µ from any marking M ∈ M0 to

a marking M̂ ∈ P, there exists an execution µ′ from a marking M ′ ∈ M0

to a marking M̂ ′ /∈ P such that obsτ (µ) = obsτ (µ
′).

The case of always-opacity is more complicated and will be discussed in a
forthcoming paper. What is important, however, is that the properties already
established in this paper for different forms of opacity carry over to their τ -
versions.

3.4 Step vs. interleaving semantics

In this paper we adopted the step semantics of Petri nets. But the whole dis-
cussion could just as well be carried out in terms of the interleaving semantics.
No change to the notions developed nor the results would be necessary (other
than assuming that all executions are based on singleton steps of transitions).
The resulting model, however, would not be equivalent to the current one.

Take, for example, the net in figure 2(a) (with exactly one initial marking
{s1, s3}, as shown in the diagram), whose reachability graph RG(Σ) is given in
figure 2(b). Assume further that all steps are ‘visible’ as the same label a, and
that each reachable marking M is visible as the projection M |{s4,s5}. Applying
obs to the reachability graph results in the graph obs(RG(Σ)) in figure 2(c).
Moreover, under the interleaving semantics, the graph obs(RG(Σ)) is as in
figure 2(d).

Suppose now that we are interested in establishing whether the system
is final-opaque w.r.t. the presence of a token in place s2; in other words,
P = {{s2, s4, s5}}. Then, using the interleaving version we can find that after
the observed execution ∅a{s4, s5} the place s2 is marked, and so P is not
final-opaque. On the other hand, the same cannot be established using the
graph in figure 2(c) based on steps of transitions; in fact, in this case P is
final-opaque.

4 Dining cryptographers

To illustrate our approach, we use a simplified (and more intimate) version
of the dining cryptographers with just two dining companions. This version
is also used in [4]. The standard dining cryptographers involves three diners
and admits some further anonymity properties, e.g., a paying cryptographer

J.W. Bryans et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 101–115110

(a)

s1 s3

s4 s5

s2

t u v

(b)

{s2, s4, s5}

{s1, s3}

{s3, s4} {s1, s5}

{s4, s5}

{u}

{t} {v}
{t, v}

{v} {t}

(c)

{s4, s5}

∅

{s4} {s5}

{s4, s5}

a

a a

a

a a

(d)

{s4, s5}

∅

{s4} {s5}

{s4, s5}

a

a a

a a

Fig. 2. Step vs. interleaving semantics.

can remain anonymous w.r.t. his or her companions. Our construction is
straightforwardly extended to three or more diners.

Two cryptographers, Anne and Bob, enjoy a meal in a restaurant. When
they call for the bill, the waiter tells them that it has already been paid. Anne
and Bob each wish to know whether the bill was paid by the NSA, or if it was
one of them. However, if one of them paid, they do not want an eavesdropper,

J.W. Bryans et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 101–115 111

Yves, on the neighbouring table to know which of them paid. The protocol
they choose to solve this problem is as follows:

They toss two coins, visible to both of them, ensuring that Yves cannot
see either of them. If Anne paid, she lies about the parity of the two coins
(she calls ‘agree’ if she sees a head and a tail, and ‘disagree’ otherwise). If
Anne did not pay, she tells the truth about the parity of the coins. Similarly
for Bob. Now Anne and Bob both know if one of them paid: if their calls
are the same they know that the NSA paid, otherwise it must have been one
of them (and in this example they actually both know which). Yves, on the
other hand, can only tell whether or not one of Anne and Bob paid, but not
which one.

AP

A¬P

c1h

c1t

c2h

c2t

BP

B¬P

A0

A1

A1

A0

A1

A0

A0

A1

B0

B1

B1

B0

B1

B0

B0

B1

Fig. 3. Net for the dining cryptographers example with one of the 12 initial markings.

Figure 3 presents a possible encoding of the protocol. The two places at the
left of the diagram represent Anne’s initial state (having paid is represented
by placing a single token in place AP , and having not paid is represented by
placing a single token in place A¬P), and the two places at the right represent
Bob’s initial state. The possible initial markings for these places are

{AP, B¬P}, {A¬P, BP}, {A¬P, B¬P}.
The top two places in the centre of the diagram represent one coin (heads is

J.W. Bryans et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 101–115112

represented by placing tokens in place c1h, and tails is represented by placing
tokens in place c1t), and the bottom two places represent the second coin. For
each pair, the marked place must contain two tokens. This is because both
Anne and Bob must see each coin. The possible initial markings for the coins
are therefore

{c1h, c1h, c2h, c2h} {c1h, c1h, c2t, c2t}
{c1t, c1t, c2h, c2h} {c1t, c1t, c2t, c2t}

The set of possible initial markings, M0, is the cross product of the cryptog-
rapher markings and the coin markings.

The eight transitions on the left represent the eight possible scenarios for
Anne, given by two possibilities for each coin multiplied by the two possibilities
for her own initial state. Each transition on the left is labelled with ‘A0’
(if Anne says the coins ‘disagree’) or ‘A1’ (if Anne says the coins ‘agree’).
Similarly for Bob on the right. This gives the transition labelling � which will
be used for defining the visibility of steps.

Yves’ observation function is simple. He can see none of the places (he
does not know the initial state of Anne and Bob, nor the state of the coins),
but he can see all of the labels of the executed transitions (he can hear all
that Anne and Bob say). In other words, for every reachable marking M and
executed step U , we have the following (see section 3.1):

obsY (M) = M |∅ = ∅

obsY (U) = �(U).

Note that Yves also knows the structure of the original net, i.e., the protocol.

We wish to demonstrate that after observing the execution of transitions,
although Yves may be able to determine whether the meal was paid for by
one of the cryptographers, he can never know which one. The two (symmet-
ric) properties we wish to be initial-opaque are therefore P1 = {M ∈ M0 |
M(AP) = 1} and P2 = {M ∈ M0 | M(BP) = 1}.

If, for example, Yves observes {A0, B1} he knows that the initial marking
was either {AP, B¬P} with either two heads or two tails, or {A¬P, BP} with
the two coins distinct. Yves cannot determine the satisfaction of either of the
two properties. Similarly if he observes {A1, B0}. Note, however, that Yves
can in either case determine the satisfaction of the property P = {M ∈ M0 |
M(AP)+M(BP) = 1}, i.e., he knows when one or other of the cryptographers
paid the bill. In terms of our framework, both P1 and P2 are initial-opaque,
but P is not. If Yves hears {A0, B0} or {A1, B1} he of course knows that
neither of the cryptographers paid.

J.W. Bryans et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 101–115 113

This example can easily be altered to model the point of view of one of
the two cryptographers. We simply change the obs function to model the
increased level of knowledge. For example, the observation function of Anne
is such that, for every reachable marking M and executed step U ,

obsAnne(M) = M |{AP,A¬P,c1h,c1t,c2h,c2t}

obsAnne(U) = �(U).

Anne knows her own initial state, and can see the state of both of the coins.
Given this observation function, she learns what she wants to know — whether
or not Bob paid the bill.

5 Conclusions and future work

We have presented a Petri net framework in which a rich class of information
flow requirements can be conveniently expressed and analysed. The example
of the dining cryptographers illustrates how an anonymity property can be
captured. This kind of property is problematic to capture in the traditional,
strict formulations of non-interference.

We have further presented a number of decidability results for the opacity
properties presented here.

In future work we intend to explore the formulation of richer information
flow requirements, e.g., partial, conditional, intransitive flows [8]. We also
intend to explore the relationship of the approach presented here to process
algebraic formulations of generalised non-interference [9] and anonymity [10].
Here, richer notions of information flow are formalised as the invariance of an
appropriate abstraction of the system under certain transformations. Thus
anonymity can be expressed as invariance under permutations over a set of
identities. Message secrecy can similarly be expressed as invariance under
(length preserving) transformations of plaintext and so on.

A major challenge in such work is the choice of appropriate abstractions
to encode the adversary’s observational capabilities. This is particularly del-
icate where cryptographic mechanisms are involved. Adversary deductions,
algebraic manipulations, and key compromise complicate the modelling. It
may be that incorporating the possibility of dynamic obs mappings may help
address such issues.

We will also investigate the problem of preservation of opacity properties
under refinement and composition of Petri nets.

A further line of research is to explore analogues in this framework of the
notion of non-deducibility on strategies, due to Johnson and Wittbold [12].

J.W. Bryans et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 101–115114

This seeks to capture the possibility of a secret user and an uncleared user
colluding and using adaptive strategies to cause information flows in violation
of the policy. This is likely to require more precise modelling of various flavours
of non-determinism within the Petri net framework.

References

[1] Busi, N., and R. Gorrieri, Structural Non-interference with Petri Nets, Proc. of WITS, 2004,
27-42.

[2] Cohen, E., Information Transmission in Computational Systems, Proc. of ACM Symposium
on Operating System Principles, 1997, 133-139.

[3] Feiertag, R. J., A Technique for Proving Specifications are Multi-level Secure, SRI International,
Techical Report, 1980.

[4] Mazaré, L., Using Unification for Opacity Properties, Proc. of WITS, 2004, 165-176.

[5] Goguen, J. A., and J. Meseguer, Security Policies and Security Models, Proc. of IEEE
Symposium on Security and Privacy, 1982, 1-10.

[6] Goguen, J. A., and J. Meseguer, Inference Control and Unwinding, Proc. of IEEE Symposium
on Research in Security and Privacy, 1984, 75-86.

[7] Reisig, W., and G. Rozenberg, “Lectures on Petri Nets,” Springer Verlag, 1998.

[8] Rushby, J., Noninterference, Transitivity and Channel-Control Security Policies, SRI
International, Techical Report, 1992.

[9] Ryan, P. Y. A., Mathematical Models of Computer Security, Proc. of Foundations of Security
Analysis and Design, Springer-Verlag, Lecture Notes in Computer Science 2172, 2001, 1-62.

[10] Schneider, S. A., and A. Sidiropoulos, CSP and Anonymity, Proc. of ESORICS, 2000, 198-218.

[11] Sutherland, D., A Model of Information, Proc. of National Computer Security Conference,
1986, 175-183.

[12] Wittbold, J. T., and D. M. Johnson, Information Flow in Nondeterministic Systems, Proc. of
Symposium on Research on Security and Privacy, 1990, 144-161.

J.W. Bryans et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 101–115 115

	Introduction
	Petri nets
	Observing Petri net behaviour
	Visibility of reachable markings and executed steps
	Opacity
	Invisible transitions
	Step vs. interleaving semantics

	Dining cryptographers
	Conclusions and future work
	References

