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Abstract

Vehicle climate control systems aim to keep passengers thermally comfortable.
However, current systems control temperature rather than thermal comfort and
tend to be energy hungry, which is of particular concern when considering elec-
tric vehicles. This paper poses energy-efficient vehicle comfort control as a
Markov Decision Process, which is then solved numerically using Sarsa(λ) and
an empirically validated, single-zone, 1D thermal model of the cabin. The res-
ulting controller was tested in simulation using 200 randomly selected scenarios
and found to exceed the performance of bang-bang, proportional, simple fuzzy
logic, and commercial controllers with 23%, 43%, 40%, 56% increase, respect-
ively. Compared to the next best performing controller, energy consumption
is reduced by 13% while the proportion of time spent thermally comfortable is
increased by 23%. These results indicate that this is a viable approach that
promises to translate into substantial comfort and energy improvements in the
car.
Keywords: Thermal Comfort, Reinforcement Learning, Equivalent
Temperature, Comfort Model, Energy Consumption

1. Introduction

Vehicle HVAC (Heating, ventilation, and air conditioning) systems aim to
ensure that passengers are thermally comfortable. Traditionally, controllers for
these systems are hand-coded and tuned to try to achieve this goal. However,
there are a number of drivers for change:

1. Current systems only control cabin temperature whereas thermal comfort
is also dependent on a multitude of other factors (such as radiant heat
and airflow).
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2. Past systems have relied on waste heat from the engine whereas electric
vehicles produce much less heat and so a different design is required.

3. Current systems are energy hungry whereas electric and hybrid vehicles
demand a much more energy efficient approach. ? report that air con-
ditioning systems reduce the fuel economy of fuel-efficient cars by about
50%.

These drivers for change make redesign of many parts of the vehicle comfort
delivery system timely. As this comfort system design changes, the controller
must also adapt to best make use of the available actuation options.

The main idea in this paper is to show that Reinforcement Learning (RL) re-
liably produces a controller that uses less energy while delivering better comfort
than existing hand-coded approaches (Section 4). We also show that the trade-
off between energy and comfort can be adjusted to suit situations that demand
either more comfort or better energy efficiency (Section 4.3.1). The approach
requires a model of the cabin environment and we provide a simple, empirically
validated, lumped model of the cabin’s thermal environment (Section 3.1). The
problem is then defined in terms of the state space (Section 3.3), action space
(Section 3.5) and reward function (Section 3.6). Issues and implementation
ramifications of this approach are discussed in Section 5.

2. Related work

2.1. HVAC control methods in vehicles
Much of the work on HVAC control (????) remains rooted in thermal com-

fort models developed for home and office indoor environments. The best known
comfort model is the Predictive Mean Vote (PMV) (???), which estimates com-
fort based on: environmental parameters (such as air temperature, mean radiant
temperature, relative air velocity and relative humidity); and personal paramet-
ers (such as metabolic rate and clothing thermal resistance). For example, ?
derive a PMV-based fuzzy logic control mechanism, with rules like “if temper-
ature is medium and activity is low, then PMV is near neutral”.

Although many aspects of vehicle thermal environment control are derivative
of that in buildings, the vehicle’s thermal environment is transient and non-
uniform (?). Thus it is recognised that what is appropriate in the thermal
comfort model for a building may not be appropriate in a car (??).

While there are a number of thermal comfort models available, there is dis-
agreement between these models about what contribution different parameters
should have, or even what parameters to include (?). Moreover, there are clearly
parameters that might be considered but are not generally included. For ex-
ample, occupants may enter the vehicle with latent or stored heat, they may
have a physiological condition (such as a fever), or they may have cultural or
personal preferences (?). While there are many factors that can affect comfort,
not all affect it equally. While air temperature remains central to comfort, as
the number of sensors and intelligence of the controller within the car increases,
it becomes possible to include more factors.
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A number of additional models, estimators, and predictors populate the lit-
erature, typically accompanied by a strategy for HVAC control (e.g., ? predicts
comfort based on facial skin temperature and cabin air temperature; ? proposed
a zonal HVAC system driven on an occupant thermal comfort level based on
sensor measurements, thermal comfort charts, the ASHRAE thermal scale, ISO
7730, the PMV index, the PPD index and their combination; ? applies artificial
intelligence methods to extract thermal comfort knowledge from the interaction
between the passengers and the HVAC controls). Not surprisingly, most, if not
all, of the proposed controllers are based on machine learning techniques. A
prime reason is that car cabin comfort control is non-linear with respect to the
observable state, for example: (a) the transfer of heat as a function of vent
speed and vent temperature is non-linear; (b) any plant output limitation af-
fects response in a non-linear fashion (?); (c) comfort models, such as Predicted
Mean Vote (PMV) and equivalent temperature (ET), are a non-linear function
of their inputs.

Fuzzy logic is a common HVAC control approach given the imprecise nature
of comfort (?????????) and many fuzzy-logic controllers have been found to
perform better than the traditional air temperature controllers. ? demonstrated
that even better results were obtained when the parameters of the comfort
oriented fuzzy controller were optimised by a genetic algorithm. Such controllers
are, however, computationally expensive and can be difficult to design.

2.2. Reinforcement learning-based control applications
? and ? have examined the problem of optimising HVAC thermal comfort-

based control through a RL-based technique in the context of buildings rather
than cars. ? developed and simulated a reinforcement learning-based controller
using Matlab/Simulink. The reward is a function of the building occupants’
thermal comfort, the energy consumption and the indoor air quality. The pro-
posed controller was compared to a Fuzzy-PD controller and a traditional on/off
controller (an evaluation approach also applied here). The results showed that,
after a couple of simulated years of training, the reinforcement learning-based
controller performed better in comparison to the other two controllers.

? highlight an issue with regard to reinforcement learning-based controllers—
that of sufficient exploration. Taking random actions, even during short times,
is unacceptable for a system deployed in a real environment and the authors
recommend to exhaustively train the controller prior deployment and allow min-
imal or no exploration at all afterwards. This work provided inspiration and a
good foundation for our work in vehicle cabins.

? have examined the problem of optimising comfort and energy using Q-
learning with a state space that includes the time of day. They break the control
problem down into: bang-bang control (when to turn the heater on or off) and
set-point control (what temperature to request at what time). In their work, the
tenant immediately responds to discomfort, which might seem unrealistic, but
it provides similar input to the thermal comfort model used here. By including
time, they neatly provide for pre-heating or cooling and this approach might
also be used for the car cabin.
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State s

Reward 
R(s,a)

Action a

Policy
Q(s,a)

Initial states S0

Cabin model

RL Agent

Figure 1: The process of finding an optimal policy with RL involves modelling the cabin
environment T , identifying the state S and action A spaces, defining the distribution S0 of
initial states, and defining an appropriate reward function R(s, a).

Less recently, ? have examined the problem of a simulated heating coil
and combined a PI (proportional-integral) controller with an RL supervisor.
They showed that the combined approach outperforms the base PI controller.
This combination is similar to the approach here where the RL action is a vent
temperature set-point that is passed to a base controller to achieve.

? provide a detailed review of computational intelligence approaches in the
built environment and show that, for the built environment, a variety of adaptive
control approaches have been tried and advanced approaches (such as RL) have
led to improved comfort and energy savings.

This past work demonstrates that RL, while untested, may be appropriate
in this domain.

3. Materials and methods

We formulate the cabin comfort control problem as a Markov Decision Pro-
cess (MDP) with continuous states defined by the tuple 〈S, S0, A, T,R, γ〉, where
S is the (infinite) set of states of the cabin environment from which a set of ini-
tial states S0 ⊆ S is drawn, A is a finite set of actions (e.g., setting the blend
door position), T : S×A→ S is a deterministic environmental model that maps
states and actions to subsequent states, R : S ×A→ < is a function expressing
the reward for taking an action in a particular state, and γ is a discount factor
such that, for γ < 1, a reward achieved in the future is worth less than a reward
achieved immediately.

The solution of the MDP is a policy π : S → A or mapping from states
to actions and, in particular, an optimal solution is one that maximises the
long-term, discounted expected reward. In algorithms such as Q-learning and
Sarsa(λ), rather than find the policy directly, we estimate the expected value or
utility Qπ (s, a) of each state, action combination when following policy π. This
expected value is the immediate reward R (s, a) plus the discounted subsequent
reward, which can thus can be defined recursively,

Qπ (s, a) = R (s, a) + γQπ (T (s, a) , π (T (s, a))) . (1)
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We can then progress greedily towards the optimum policy by updating the
policy π to be that which maximises Qπ, or,

π (s)← arg max
a∈A

Qπ (s, a) . (2)

Since the policy for any state is easy to calculate from Qπ, it does not need to
be explicitly stored.

For finite state MDPs, algorithms such as Monte Carlo Exploring Starts
(MCES) and Monte Carlo ε-soft ?, §5.3,5.4 use repeated application of (1) and
(2) to converge on the optimal policy. To avoid getting stuck in a local minima,
they include some random exploration and this is sufficient to ensure that they
always converge on the global optimum policy. For continuous state MDPs,
Qπ (s, a) must be approximated using a function f

(
~θ, s, a

)
parameterised by

a vector ~θ and algorithms, such as Sarsa(λ), that use this approach may not
converge on the optimum policy but may oscillate (?).

A learning episode begins by selecting an initial state at random from the
distribution s0 ∼ S0 and then continues with the agent selecting an action and
the cabin model returning a new state and reward until a maximum number
of steps is reached. For some problems, it is possible to have a terminal state
that ends the episode. However, this is not possible here, since the reaching
comfort is not sufficient; the agent needs to efficiently maintain comfort as well.
The initial state distribution should be comprehensive to avoid leaving parts
of the state space unexplored. The agent is ε-greedy, which means that with
probability ε it selects a random action and otherwise it selects according to the
largest estimated utility for that state, as per (2).

Although it might be possible to implement a learning system directly in
the car, prior works in this domain (such as, ?) suggest learning in simulation
first. In principle, the learnt policy can then be implemented in the car cabin
either as a fixed policy or as a start point for continued learning. In this work,
we only examine the system in simulation and implementing in the car is left
to future work.

Given this basis for learning, we now define each aspect of the MDP, begin-
ning with the model.

3.1. Cabin Thermal Environmental Model

Car cabin thermal modelling has been investigated by a number of au-
thors (??), typically to examine the trade-off between comfort and energy use.
Simple 1D models are appropriate for optimisation (e.g., ? examines the ef-
fect of different coolant fluids) since they allow the consequences of changes
to be quickly evaluated. Some simplifying assumptions are necessary and dif-
ferent works tend to make different assumptions about the cabin environment.
For example, ? include the effect of engine heat on supply and return ducts,
whereas ? include radiant heat effects for a multi-zone minivan. Our focus here
is to provide a clearly described, simple model that might be expanded upon
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Figure 2: Schematic of the simplified cabin model used for learning a controller.

but which is validated against data from a real car in a climatic wind tunnel
(Section 3.2).

Our simple cabin model is shown in Figure 2 and this corresponds to a
system of three heat balance equations (heat in = heat out + heat stored),

Q̇h + Iin (Tamb − Tc) = Ifan (Tx − Tc) (3)

Ifan (Tx − Tc) + Q̇sol + Q̇occ + Tm − Tc
Rm

= Tc − Tamb
Rc

+ Cck
dTc
dt

(4)

Tc − Tm
Rm

= Cm
dTm
dt

(5)

where Q̇ is the change in heat energy, I is the current (or mass flow of heated
air), T is the temperature, R is the thermal resistivity, and C is the thermal
capacitance. Subscripts are: h heat pump, in input air, amb ambient air, c cabin
air, fan blower fan, x mixed air, sol solar load, occ occupant, and m interior
mass. A cabin capacitance factor k is used to account for the difference between
the experimentally observed capacitance of the cabin air and the theoretical
thermal capacitance of air. This difference is probably due factors such as the
air mixing time (which is otherwise assumed to be instantaneous in the model).
The recirculation factor α = Iin/Ifan corresponds to the percentage of fresh air.
Note that the mixing chamber heat storage is assumed to be negligible. For
the purposes of this work, we take the work done (or energy consumed) by the
HVAC to be simply Wh =

∣∣Q̇h∣∣ and ignore the energy cost for the fan.
Model constants, shown in Table 1, were selected to best match the tar-

get car, a Jaguar model XJ sedan. This car was used for model validation in
Section 3.2.

It is assumed that there is no air leakage. Nor is the vehicle velocity taken
into account. In comparison with ? this model does not deal with the internals
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Table 1: Model constants
Cabin volume Vc 2.5 m3

Cabin capacitance factor k 8
Solar load Q̇sol 150 W
Occupant load Q̇occ 120 W
Cabin resistivity Rc 1/ (5.741626794× 4.0) K.W−1

Interior mass resistivity Rm 1/ (75× 1.08) K.W−1

Interior mass capacitance Cm 450× 0.02× 7850 J.K−1
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Figure 3: Car cabin warm-up experiment showing real and simulated (denoted ‘model’) results
time-aligned at 18 ℃. The time-series shows overshoot in the controller, probably due to lag
in the in-car sensor. The proportional controller with an averaged sensor (see Section 4.1) is
used with the simulated model and this produces a similar overshoot.

of the evaporator but rather considers the combined heat sum from a heat pump.
Also, heat effects from the internal combustion engine (through the firewall or
supply ducts) are not considered here (and may be inappropriate for an electric
vehicle). ? have a more sophisticated model that includes two zones for a
minivan. In comparison to the work here, they include radiative heat transfer
between cabin walls and the interior mass as well as between the cabin walls
and the sky.

3.2. Model validation

The simulation data was compared to empirical data collected by the authors
within various warm-up and cool-down scenarios (described in ?). Figures 3
and 4, based on experiments with a Jaguar XJ in MIRA LTD’s climatic wind
tunnel, show warming (from cold) and cooling (from hot) the car cabin based
on head-rest height temperature sensors over a number of experiments and also
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Figure 4: Car cabin cool-down experiment showing real and simulated (denoted ‘model’)
results time-aligned at 35 ℃.

showing the simulated or ‘model’ results. Simulated results are based on the
bang-bang controller described further in Section 4.1. These graphs demonstrate
that the simulation broadly matches the characteristics of the physical system
and thus that a controller that performs well with the simulation is likely to
work well in practise in terms of control of temperature.

Although the modelling of energy use is based on reasonable assumptions,
at this stage we have no experimental data with which to validate the model.
Energy use is difficult to estimate precisely in practise since, for example, latent
heat from the engine is used to heat the cabin. Thus energy use in practise may
differ from the simulation.

3.3. State representation
The state of the cabin environment is a vector comprising: the cabin air

temperature Tc, the interior mass temperature Tm and the outside air temper-
ature Tamb. Equivalent temperature (ET) is not an explicit component of the
state but is computed using a formula (referring to sedentary conditions only,
that is energy metabolism < 70Wm−2) introduced by ??,

Te =
{

0.5(Tc + Tr), for air flow v̇c ≤ 0.1ms−1

0.55Tc + 0.45Tr + 0.24−0.75
√
v̇c

1+Icl
(36.5− Tc) , for v̇c > 0.1ms−1

(6)
The air flow corresponding to the cabin occupant v̇c is not directly available
and it is estimated here by dividing the vent air flow vi by 10. The value was
selected based on cabin air flow measurements in the literature ?. The mean
radiant temperature Tr is assumed to be equal to the interior mass temperature
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Tm. For this work, the clothing insulation Icl is set to a constant value of
0.7 clo corresponding to long trousers and short sleeve, light-coloured blouse or
shirt. Note that ET is provided as input to the ‘et’ variants of the hand-coded
controllers but is not explicitly provided to the RL controller.

At the beginning of each controller training episode, the initial state vector
is selected at random from a uniform distribution over the full range of values
for each of:

• Interior temperature Tm: [0, 50] ℃.

• Outside temperature To: [0, 40] ℃.

• Cabin air temperature Ta: [0, 50] ℃.

The representation of the state is minimal, sufficient (along with the action)
for the reward function, and Markovian (in terms of the simulation). Some
elements that are held constant in this model (such as the solar load) might
also be included in the state vector if they were allowed to vary.

Selection of the initial state and range of states is influenced by the episode
length and what is likely to occur. Episode length places a limit on the extreme
values. For example, it might take more than 500 steps to achieve a comfortable
state from a very high or low start temperature. From such a start point, any
policy looks equally bad.

We also eliminate start states where the interior mass temperature is dif-
ferent from the cabin temperature by more than 30 ℃, as this situation is con-
sidered to be unlikely.

Function approximation is used by the Sarsa(λ) algorithm to avoid having
to discretise the state and also to support a large state space. Function approx-
imation involves defining a parameter vector θ = (θ1, θ2, . . .)T thus allowing Q
to be approximated by a smooth function

Q̂ (s, a) = fθ (s, a) .

The function approximator used in this case is tile coding and the configuration
of the function approximator is further below.

3.4. Tile coding

The tile coding parameters used for this problem are presented in Table 2.
In contrast with other work, rather than use a separate function approximator
for each action, a single function approximator is used with tiles that span the
combined state and action spaces. The tile coding used to represent the action-
values included 30 tiles, 10 tiles integrating variables (Ta, Tm, To, Ti, vi, Ar) and
20 tiles integrating variables (Ta, Ti, vi, Ar). Note that ET is not included (since
it is not part of the state vector).
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Table 2: Tile coding parameters used to learn the control policy.
Variable Minimum Maximum Intervals
Ta 0 50 26
Tm 10 40 7
To 0 40 7
Ti 0 60 3
vi 1 100 3
Ar 0 1 3

3.5. Action representation
The set of actions consists of a vector (vi, Ti, Ar)T where each component

of the vector takes on one of a small set of discrete values. Specifically, there
are four possible vent air flows vi ∈ {1, 34, 67, 100} `s−1. Five possible vent
air temperatures can be selected, which are evenly defined over the range Ti ∈
[7, 60] ℃. Lastly, three recirculation flap positions are available Ar ∈

{
0, 1

2 , 1
}
.

This yields a total of 60 (4× 5× 3) possible actions.

3.6. Reward function
The learning goal is to maximise the time spent in comfort (defined here as

when the occupant ET is 24 ± 1 ℃) while minimising energy use. This can be
expressed as the reward function,

R (s, a) = RC (s)− E (s, a) /w (7)

RC(s) =
{

0 if Te ∈ 24± 1 ℃
−1 otherwise

(8)

E(s, a) =
∣∣Q̇E∣∣+ 2vi (9)

where RC is the penalty for being uncomfortable, E is the energy cost, w =
30 000 is the energy weight divisor (which, in lay terms, means that a 1% im-
provement in comfort is equivalent to 300 W). This weight can be adjusted to
give a different trade-off between energy and comfort (see Section 4.3.1). The
above reward function could be further extended to include goals such as min-
imising fan noise or keeping the screen clear. Illegal states (where component
values are out of bounds) are not explicitly penalised but act as an absorbing
state with worst case penalty, which is sufficient to ensure that the learning
agent avoids them.

3.7. Meta parameters
Meta parameters control the learning process and may affect how quickly

learning proceeds. The first is the number of steps per episode, which is set
at 500. This allows the agent to reach a comfortable state from any start
state but also that the episode length is not so long that new start states are
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rarely experienced. The reward discount factor γ = 0.99 ensures that a policy
is appropriately rewarded for actions that do not produce immediate reward.
Given that the reward function does not give reward for moving towards comfort
(but only for reaching it), setting γ close to 1 allows the agent to learn to achieve
comfort even from extreme initial temperatures. The learning rate α = 0.01,
exploration factor ε = 0.16 (for first 190 000 episodes and zero thereafter), and
eligibility trace decay λ = 0.98 were decided by looking at the performance over
the first 2 000 episodes, as discussed in Section 4.3.1.

3.8. Evaluation method
The performance of the RL controller is tested using a set of 200 randomly

pre-selected start states ST ⊂ S0 at regular intervals during learning. This set
is referred to as the test scenario set. This approach provides a standard test
that can be used for all controllers to provide fair comparison while ensuring
that the test is reasonably comprehensive over possible start states.

4. Evaluation

The RL-based controller is evaluated by comparing its performance with: a
bang-bang controller, a proportional controller, a commercial controller, and a
fuzzy-logic controller. For each controller, three possible temperature sensors
Ts are simulated: the true cabin air temperature (air), the average of cabin
and interior mass temperatures (avg), and the equivalent temperature (et). All
controllers actuate as per the action representation (see Section 3.5).

4.1. Bang-bang, proportional and commercial controllers
The first three hand-coded controllers are somewhat similar. The bang-

bang controller blows the maximum fan rate to cool or warm the cabin until it
is within 1 ℃ of the target, at which point it blows the minimum fan rate and
tries to match the target temperature. The proportional controller is similar
but it reduces the fan speed exponentially vi = 100 − 99 exp

(
|Ts−24|

10

)
as the

sensor temperature nears the target temperature. The commercial controller is
based on a commercial specification. This tends to use lower fan rates than the
proportional controller, probably to avoid noise and vibration, but is otherwise
quite similar.

4.2. Simple fuzzy logic controller
For the evaluation here, a simple fuzzy logic controller was implemented in

Java using the fuzzylite library version 1.0 (?). Apart from the sensor temper-
ature Ts , this controller also receives interior mass temperature Tm. Fuzzy set
membership functions for input temperatures Ts, Tm are neutral (24± 1 ℃),
cold (below neutral) and hot (above) with some ramped overlap between
each range. For vent temperature, the sets are low (below 10 ℃), medium
(around 20 ℃), high (above 30 ℃) and for vent flow rate, low (below 30 `s−1),

11
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Figure 5: Simple fuzzy controller rules expressed as a table with outputs Ti/vi. The two
inputs (sensor Ts and interior mass temperature Tm) are used to derive control of the vent
temperature Ti (high, medium or low) and fan speed vi (high, medium, or low). E.g., if Ts

is hot and Tm is cold, then Ti is set low and vi is set medium.

medium (around 50 `s−1), and high (above 70 `s−1) with similar ramped over-
laps.

The fuzzy logic rules are summarised in Figure 5. These rules are slightly
modified from those used by ? and ?.

4.3. Results
The relative performance of the RL controller compared with that of the

hand-coded controllers is given in Table 3. The RL controller gives the largest
(least negative) average per-step reward, uses less power and provides more
comfort. This performance evolves during learning as shown in Figure 6. The
RL controller achieves an average reward of −1.2 after 200 000 learning episodes
(approximately 6.3 simulated years). Learning for the Sarsa(λ) algorithm (im-
plemented in Java), corresponding to 200 000 episodes, completed in 85 minutes
on a 2.9 GHz Intel® Core™ i7 processor.

These results translate into an average factor of 37% energy reduction over
the test scenarios set when compared to the simple fuzzy logic-based controller,
while thermal comfort was achieved and maintained successfully.

Figure 7 shows how each controller controls the occupant ET in a cool down
scenario (45 ℃ cabin air, 45 ℃ block temperature and 20 ℃ outside temperat-
ure). Some oscillation in ET is caused by turning on and off the fan, due to
ET’s definition, which depends on air flow rate. The RL controller cools slightly
more quickly and avoids the fluctuation in ET present in both other approaches
and thus performs better overall.

4.3.1. Effect of parameter choices
Learning parameters (such as α, ε, λ) affect the RL learning rate. For ex-

ample, Figure 8 shows how the mean reward over episodes 1 000–2 000 changes
with the learning rate α and that a rate of 0.01 produces the fastest learning.
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Table 3: Reward, comfort and energy performance of the controllers over the test scenario set
for commercial, bang-bang, proportional, fuzzy logic and RL agents. Sensors for the manual
agents are cabin temperature (air), an average of cabin and interior mass (avg), or equivalent
temperature (et).
Agent Average reward % Time Spent

in Comfort
Average HVAC
power

commercial-avg −2.9 5% 1.4 kW
commercial-et −2.9 5.1% 1.4 kW
bang-bang-et −2.8 28% 2 kW
commercial-air −2.8 6.6% 1.3 kW
fuzzy-avg −2.7 2.6% 0.94 kW
fuzzy-air −2.5 2.2% 0.76 kW
proportional-et −2.3 18% 0.91 kW
bang-bang-air −2.3 13% 0.72 kW
proportional-air −2.2 12% 0.59 kW
proportional-avg −2.2 17% 0.7 kW
fuzzy-et −2.1 42% 1.2 kW
bang-bang-avg −1.6 55% 0.88 kW
rl −1.2 67% 0.77 kW
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Figure 6: Policy performance during learning for Sarsa(λ). The first 190 000 episodes are with
exploration ε = 0.16 while the rest are with no exploration ε = 0. A LOESS fit of the reward
(with shaded 0.95 confidence interval) is also shown.
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Figure 7: Comparison of how each agent responds to an initially warm cabin.

Similar experiments reveal best values for λ (0.98) and ε (0.16). Although these
parameter choices are suitable during early stages of learning, different values
may be better later on. In particular, reward performance improves substan-
tially if exploration is turned off ε = 0 in the later stages of learning.

The weighting of energy versus comfort in the reward function can make a
significant difference to the performance of the resulting policy. The tradeoff
being made is reflected in Figure 9, which shows the performance for policies
learnt with different energy divisor values in terms of energy use and percentage
comfort. The black line drawn in the graph corresponds to the trade-off curve
(or Pareto optimal front) and shows a progressive change in balance between
comfort and energy as the energy divisor w is increased. Mostly, comfort and
energy use increases as the energy divisor w is increased. However, there is some
backtracking (e.g., at w = 104.3) that suggests that the policy learnt for some
divisors is sub-optimal.

5. Discussion

There are several limitations of the RL controller as currently described.
First, not all factors relevant to thermal comfort are simulated or included
in the ET comfort metric, such as humidity, clothing level, or the metabolic
work rate of the subject. Of these, possibly the most significant is humidity.
Incorporating humidity into the model could be valuable since it also helps
identify window fogging and thus allows a penalty for fogging to be included in
the reward function. If a certain thermal comfort model leads to sub-optimal
comfort when implemented as a controller, then this implies that there might
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Figure 8: Mean reward for the test scenario set obtained over episodes 1000 to 2000 shows
that a small, but not too small, learning rate α = 0.01 provides peak performance. Error bars
show the two-tail 95% confidence interval.
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Figure 9: Effect of energy weight on comfort and energy showing the different trade-offs made
to either increase comfort or reduce energy use. The black line connects results for the RL
agent with an exponentially increasing energy divisor (log10 w = [3, 4.5] in 0.1 steps) and
corresponds to the Pareto optimal front. Other agents are: bang-bang (bb), commercial (c),
fuzzy, and proportional (pr). The sensor type for each agent is either cabin air (air), average
of cabin and interior mass (avg), or equivalent temperature (et).
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be a problem with the comfort model and thus help identify which parameter
or feature is missing. Given the diversity of opinions about comfort models
and relative importance of parameters in the literature, this iterative approach
seems best.

Second, the hand-coded controllers shown in this paper may not perform as
well as current state-of-the-art HVAC controllers. Although we tried a commer-
cial controller, this performs poorly in simulation. Although this may suggest
that the simulation is imperfect or that the reward function does not take into
account important factors, it also seems likely that there is room for improve-
ment. To understand how much of an improvement can be obtained, side-by-side
in-car comparison is needed.

Third, some users may prefer less fan noise, even at the expense of being
thermally uncomfortable. Furthermore, adjusting the fan speed or recirculation
setting constantly may be distracting. On the other hand, some users prefer
to hear the fan as it reassures them that the HVAC is actively attempting to
restore comfort. An advantage of our approach is that a range of user types can
be catered for by using different reward functions with added penalties for such
things as fan noise. Note that the fact that the commercial controller performs
poorly in terms of thermal comfort could be due to a deliberate design decision
to constrain fan noise.

5.1. Pathway to implementation in the car

Occupant ET, which is used here as a proxy for comfort, cannot be directly
measured in a real car cabin and the need for a proxy inspired the development
of a Virtual Thermal Comfort Sensor (VTCS) (?). VTCS makes use of a dis-
tributed set of sensors to estimate ET based on a machine-learning approach.
Note that all learning occurs off-line and thus little computation is required to
implement the VTCS approach in the car. In principle, VTCS can be used to
estimate comfort for different zones such as upper and lower body as well as
different passenger positions.

A key consideration in the development of a controller is the accuracy of the
sensor. No matter how good the controller, inaccurate measurements will lead
to incorrect control. The VTCS approach has an additional advantage that it
becomes possible to integrate a set of inexpensive sensors to accurately estimate
ET rather than rely on a single sensor.

The RL agent developed in this paper is designed to sit on top of existing low-
level controllers (such as those that control the speed of the compressor motor).
This approach has the advantage that it makes the RL controller generic and
retains any existing low-level safety mechanisms.

Implementing in the car provides an opportunity to receive feedback from
the end-user. This feedback might come in the form of manual temperature
adjustments. Such feedback can be incorporated as a penalty in the reward
function and thus enable some learning of preferences. It is unclear whether
learning of preferences in this way would occur quickly enough.
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6. Conclusions and future work

Our results show that the RL-based controller delivers better comfort (67%
time in comfort versus 55% for the bang-bang controller with averaged sensor)
more efficiently (0.77 kW for RL versus 0.88 kW for the bang-bang controller).
Note that the exact level of energy use may vary from this in practise since the
energy use aspect of the simulation has not been fully validated. The perform-
ance of the RL controller is striking for two reasons: First, the reward function
does not ‘coach’ the agent towards the solution; reward is only provided when
comfort is reached. Second, the RL controller is not explicitly informed of the
current ET but still manages to control it in a stable way.

There are a number of opportunities for future work. As discussed in Sec-
tion 5, some of the limitations of the approach are due to the simulator and
the controller might be improved by enhancing its realism. However, work to
date on integrating with a Dymola-based cabin simulation (?) has shown that
ensuring that the simulation is sufficiently fast remains a key challenge. There
are several options to improve the simulation to make it more realistic. For
example, humidity is a key factor in thermal comfort and enables identifying
screen fogging. Furthermore, a zoned approach to the simulation would allow
differential control of comfort for different parts of the body and for different
seat positions. Testing in the car is another avenue for future work that would
allow better comparison against existing controllers.

Actuation has become more complex with the introduction of heated and
cooled surfaces. Although it makes sense for radiant and blown-air systems to
work in concert, no current system attempts this. Similarly, natural ventilation
can be used to reduce cabin temperatures in hot climates with minimal energy
consumption. This work opens the door to development of a holistic controller
that integrates such disparate actuators.

From the cabin HVAC designer’s perspective, the RL approach raises the
abstraction level from coding boolean or fuzzy rule sets towards making decisions
about how to best model occupant comfort and its relative importance versus
noise level, screen clarity, and energy efficiency. As this work shows, the resulting
controller can be expected to substantially improve over manually coded designs.
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