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Abstract. The drawbeads in stamping tools are usually designed based on experience from the
forming of steel. However, aluminium alloys display different forming behaviour to steels,
which is not reflected in the drawbead design for tools used for stamping aluminium. This paper
presents experimental results from different semi-circular drawbead geometries commonly
encountered in automotive dies and compares them to those obtained from Stoughton’s
analytical drawbead model and the 2D plane strain drawbead model set up using LS-DYNA.
The study was conducted on lubricated NG5754 strips. The results presented are in terms of
drawbead restraining force versus strip displacement, as a function of drawbead depth. The FE
drawbead model agrees well with the experiments whereas the analytical model overpredicted
the drawbead forces.

1. Introduction

The significance of drawbeads in automotive sheet metal forming operations has been illustrated in [1].
The drawbead restraining force, hereafter referred to as restraining force, is the braking force
experienced by the strip when it is drawn through the drawbeads. It is the sum of the bending and
unbending forces and sliding friction forces. Drawbeads can locally control the sheet metal flow in
drawing of complex non-axisymmetric automotive components and offer a distinct advantage of
imparting a higher restraining force to the blank without a significant increase in the blank size and
overall blankholder force. The tensile force exerted on the blank reduces the circumferential stresses
which cause wrinkling [2] and helps in achieving stretch in the part to increase its impact strength. Even
though aluminium alloys, because of light-weighting initiatives, have been of particular interest in the
automotive industry, the drawbead design guidelines for automotive forming are based on forming of
steels [3] and may not be appropriate for forming of aluminium alloys [4].

Trial and error experiments to determine the optimum drawbead geometry for a complex automotive
part and for new sheet materials is an onerous task. Therefore, several analytical and FE drawbead
models were developed to predict the restraining force and the blankholder force taking into account the
effect of drawbead geometry, sheet material properties, and the process parameters. Tufecki et. al. [5]
analysed drawbead force models and concluded that the Stoughton drawbead force model agreed well
with the drawbead strip draw experiments performed in line with the experiments conducted by Nine
[6] on AKDQ steel, rimmed steel, and 2036-T4 aluminium test strips. The Stoughton model [7] attempts
to not only predict the restraining force and the blankholder force but also the calculation of the effective
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bending radius of the strip and hence, suits partial and full drawbead penetrations. The model uses
constants which directly relate to mechanical parameters obtained from a tensile test and is a good
formulation for understanding the significant factors in drawbead design.
It has been demonstrated that 2D plane strain models for drawbeads give an agreeable prediction of
drawbead forces [8] if the width of the sheet is significantly larger than the thickness. Findings from an
extensive review [1] also confirmed that 2D plane strain drawbead models are able to reflect the local
deformation behaviour and allow the use of both linear and non-linear contact models to define dynamic
friction conditions.

The aim and scope of this paper are to determine a suitable approach for predicting restraining forces
required in drawbead design by comparing the Stoughton analytical restraining force model with a
numerical 2D plane strain drawbead model and drawbead strip-draw experiments.

2. Research methodology

2.1 Experimental set-up

The experiments were performed on a new drawbead tool, based on Nine’s design [6]. The layout can
be seen in figure 1. Four drawbead depths ‘d’, were used; 3.9mm, 5.8mm, 8.7mm, and 11mm. The strips
were drawn at 85mm/s and a blankholder force of 15kN was applied to ensure that the blankholder
remain closed. Aluminium NG5754 strips, 500mm long, S0mm wide and 1.5mm thick were carefully
deburred and lubricated with a synthetic forming lubricant having a viscosity of 244.5mm?/s at 20°C,
with a coat weight of 1.5+0.5gm/m?. The strips were drawn in the rolling direction on both, roller
drawbead and fixed drawbead set-ups. The roller drawbead set-up approximates frictionless conditions.
Each experimental run was repeated twice to account for the measurement error.
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Figure 1: Drawbead geometry used in Figure 2: Restraining force as a function of
experiments and simulations draw length, NG5754, u=0, depth=8.7mm

2.2 FE Model set-up

A drawbead model as shown in figure 1, closely representing the experimental set-up was built in LS-
DYNA where the groove and the drawbead are modelled as rigid steel tools with a fine mesh and the
strip had a 0.3mm square mesh with 5 elements through the thickness for better discretization. A 2D
plane strain element type ELFORM 13 with 4 integration points was chosen. As the restraining force in
the experiment stabilized after 50mm, figure 2, the draw length in the FE model was set to 60mm to
reduce the computational time. The material flow curves used in the model were obtained from the
uniaxial tensile test in the rolling direction. Voce hardening rule (o, =117 + (319 —117)(1 —
e~124€) where o, is the flow stress in MPa and € is the effective plastic strain)was used to generate the
flow stress curve used in LS-DYNA’s MAT 24. The Coulomb friction model (t = pp,
where T is frictional shear stress, pis the coefficient of friction and p is the contact pressure) was used to
define friction in the FE model. For the Stoughton analytical drawbead model, a Hollomon hardening
rule (0y = 459 €%28 MPa) was used. Other material properties are given in table 1.
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Table 1. NG5754 material properties

Density (kg/m?) Young’s modulus (MPa) Poisson’s ratio Lankford coefficient

2700 70000 0.33 0.67

3. Resultsand discussion

Figure 2 shows the restraining force obtained from the drawbead strip-draw experiment and the FE
model. Figures 3a and 3b compare the restraining forces obtained from the drawbead strip-draw test, the
2D plane strain FE model and the Stoughton model for p of 0 and 0.15 respectively. It can be seen that
apart from the lowest and highest drawbead depths, the results from LS-DYNA agrees reasonably well
with the experiments. The FE model follows the linear relationship between the restraining force and
the drawbead depth as established by the experiments. However, the Stoughton drawbead model

overpredicted the restraining force for both, the friction and the frictionless case. The model also showed
a slightly non-linear trend.
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Figure 3a. Restraining force, u=0 Figure 3b. Restraining force, u=0.15

As illustrated in figures 4a and 4b, at the lowest drawbead depth of 3.9mm, there are only 3 strip
nodes in contact and more than 24 nodes for the depth of 8.7mm. Therefore, the contact definition at the
lowest depth is poor which may have led to smaller restraining forces simulated by LS-DYNA. At the
highest depth, the FE model showed larger effective plastic strain in the strip, approximately 0.67, due
to bending and unbending effect. This value is substantially higher than 0.19 which was observed at the
point of instability in the uniaxial tensile test. It can be argued that LS-DYNA extrapolated the flow
curve beyond effective plastic strain of 0.19 to obtain the effective stress at an effective plastic strain of
0.67 which resulted in the overprediction of the restraining force.

Figure 4a.ontact at d=3.9m,p=0.15 Figure4b.Contact at d=8.7mm,p=0.15
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The coefficient of friction value was determined from the FE model by trying different values until
satisfactory correlation with the results from the fixed drawbead strip-draw experiments was obtained.
The coefficient of friction of 0.15 agreed well with experiments. While attempting to derive a coefficient
of friction from the simulation, it was observed that no single value of the coefficient of friction gave
good agreement with experimental results. This was in line with the Nine’s formula [6] which gave
lower coefficients of friction for increasing drawbead depth. Also, Ren [9] stated that a single coefficient
of friction did not match the entire range of drawbead depths in the simulations and suggested a contact
pressure based non-linear friction model which outputs lower coefficients of friction for higher
drawbead depths. Both [6] and [9] contradict Coulomb’s linear friction model and indicate that friction
representation could be a significant source of variation in the simulated restraining forces. If this is true,
then the restraining forces predicted by the FE model with p=0, should agree with the results from roller
drawbead strip-draw experiments. It can be seen from figure 3a that there is some difference between
the simulated and experimental restraining forces for the frictionless case at lowest and highest depths.
This difference increases in the presence of friction instead of helping in achieving a good correlation
as illustrated in figure 3b. Hence, the Coulomb friction model can be appropriately applied in numerical
modelling of sheet metal flow over drawbeads. However, a good contact definition must be ensured
while simulating lower drawbead penetrations and applying a flow curve with larger effective plastic
strains obtained from materials tests, for example, Watts-Ford test, may be beneficial.

4. Conclusion

In this paper, the Stoughton analytical drawbead model and an FE model of the drawbead strip-draw
test were compared with the drawbead strip-draw experiments which were conducted on lubricated
NG5754 aluminium strips. The Stoughton model significantly overpredicted the restraining forces
whereas the numerical 2D plane strain drawbead model accurately predicted the restraining forces,
especially for the drawbead depth ranging from 5.8mm to 8.7mm. For the both friction cases, p=0 and
p=0.15, the FE model predicted a smaller restraining force at the lowest drawbead depth and
overpredicted the restraining force at the highest drawbead depth. With proper contact definition for
lower drawbead penetrations and an experimental flow curve with larger effective plastic strains, a 2D
numerical plane strain model with Coulomb’s friction law can reasonably predict the drawbead
restraining forces.
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