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A phase-field method coupled with CALPHAD for the
simulation of ordered -carbide precipitates in both

disordred � and ↵ phases in low density steel

Aireza Rahnama, Richard Dashwood, Sridhar Seetharaman1

Internationational Digital Laboratory, Warwick Manufacturing Group, University of Warwick, Coventry,

United Kingdom, CV4 7AL

Abstract

In order to simulate multi-component diffusion controlled precipitation of ordered

phases in low density steels using the phase-field method, the Gibbs free energy of

the �, ↵ and  phases in the quaternary Fe-Mn-Al-C system was linked to the CAL-

PHAD method using a three-sublattice model which is based on the accumulation of

considerable thermodynamic data in multi-component systems and the assurance of

continuous variation of the interface area. This model includes the coherent precipita-

tion of  phase from a disordered FCC � phase and semi-coherent precipitation of the

same  phase from a disordered BCC ↵ structure. The microstructure evolution of -

carbide was simulated with three-dimensional phase-field model. The simulation was

first performed for a single particle in both � and ↵ phases to investigate the evolution

of interfacial and elastic strain energy during the precipitation process. The simulation

results show that  has a cuboidal morphology in � and elongated plate-like morphol-

ogy in ↵ which is in agreement with the morphologies reported in the literature. The

multi-particle simulations were also performed for the precipitation of  phase from

both disordered � and ↵. The results also demonstrate that the size of  precipitates in

� is remarkably smaller than that in ↵ phase.
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1. Introduction

The weight reduction of automotive vehicles has been stimulated by improvements

through reduction in vehicles’ exhaust emission and minimization of fuel consumption.

[1, 2]. The development of lightweight steels is recognized as a possible measure [3, 4]

to achieve these goals. The low density steels with superior combinations of specific5

strength and ductility have attracted considerable attention recently [5, 6, 7]. It was

reported that the addition of 5-6 wt.% of Al results in 8-10% weight saving compared

to conventional automotive steels [8]. Various alloys based on the Fe-Mn-Al-C sys-

tem have been developed. The strengthening mechanisms for these low density steels

include precipitation hardenable (↵+-carbide) [10], duplex phase (↵+�) [11, 12], or10

triplex phase (↵+�+-carbides) types [8, 7]. Many scholars have been investigating

the effect of (Fe,Mn)3AlC perovskite -carbide as the most effective strengthening

mechanism of austenite [13, 14, 18], since the austenite phase has the characteristics

of low yield strength. The nano-sized, ordered  precipitates are reported to increase

the yield strength and tensile strength above 1 GPa [14]. Therefore, the utilization of15

austenite and  precipitates is normally considered as a promising approach for im-

provement of mechanical properties in low density steels.

Many researchers have attempted to simulate microstructure evolution using vari-

ous computational methods [15, 16, 17]. However, phase-field has been considered as

the most powerful method for predicting the mesoscale morphological and microstruc-20

ture evolution [19, 20, 22]. Phase field modelling is a phenomenological approach.

Thus, the input parameters play a key role in obtaining realistic results. The bulk free

energies of each phase as a function of all the variables included in the model are de-

termined by the parametrization of phase-field models. Phase field methods coupled

with CALPHAD databases is, thus, one of the best approach to investigate the com-25

plex morphological developments in multicomponent alloys. To provide a realistic

thermodynamic parametrization of all phases in a material, Grafe et al. [23] proposed

to employ thermodynamic data from databases based on the CALPHAD method. This

approach has been recently employed for various studies [24, 37].

Although many studies have been devoted to simulate the precipitation of ordered30
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phases[26, 27, 28, 37, 57], there is no single phase field model has been developed

to simulate the precipitation kinetics and microstructural evolution of -carbide in a

quaternary system like Fe-Mn-Al-C. In this study, an effort was made to simulate

the precipitation of ordered -carbide from both disordered FCC and BCC phases.

The Gibbs free energy for multi-component Fe-Mn-Al-C systems was linked to CAL-35

PHAD method. A Gibbs energy single formalism for /� and /↵ phases with a

three-sublattice model for this quaternary system was employed. In these simulations,

the order parameter of each element correspond to long-range ordering in the  phase,

because the order parameter is expressed using the element site fractions of a three-

sublattice model in the CALPHAD method. This approach is based on report for or-40

dering mechanism in Ni-Al system [37]. The simulation results illustrating the effects

of ordering, elastic strain and interfacial energy on the precipitation evolution.

2. Model

To control the materials properties, it is important to understand the microstruc-

tural development. Experimental studies on phase equilibria have been, thus, carried45

out for the Fe-Al-C [33] and Fe-Mn-Al-C [34] systems. Furthermore, CALPHAD

type thermodynamic calculations have been extensively performed in materials sci-

ence to critically assess the phase relations under arbitrary thermodynamic conditions,

for instance investigation of the Fe-Al-C system has been done by Ohtani et al. [35]

and Connetable et al. [48] where the ordered -carbide in the Fe-Al-C ternary sys-50

tem was calculated by applying formalisms that allow intermixing between Fe and Al,

and non-stoichiometry in the carbon content. However, a narrow range of Al content

were calculated in both studies. In addition, the carbon content region in the Fe-Al-C

system clearly deviates toward the low carbon content from the stoichiometric compo-

sition Fe3AlC [33] whereas this is not the case in the Mn-Al-C system where carbon55

content exactly reaches the stoichiometric composition Mn3AlC [36]. Chin et al. [53]

extended the thermodynamic database for the ternary Fa-Al-C system to the quaternary

Fe-Mn-Al-C system.

In this study, an ordinary two-sublattice CALPHAD type model for the excess en-
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ergy term were used for the Gibbs energy of the disordered phases FCC (�) or BCC (↵)60

solution [42, 43]. Also, a three-sublattice model was employed, (Fe,Mn)3Al2(C, V a)1,

which enables intermixing between Fe and substitutional Mn atoms on the face site

while allows incomplete occupation of C atoms in the central octahedral site of the

ordered -phase [53].

The sum molar Gibbs energy for the disordered FCC (�) or BCC (↵) phases was65

expressed as:

G
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X

i
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For each alloying element, the site fraction ’i’ on each sublattice ’s’ is referred by
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(s)
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, where i, j, k and l can be Mn, Al, or C on any of the sublattices. c
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to a molar Gibbs energy of element ’i’ with the structure of FCC or BCC. n
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70

and L

disord

i

, j, k denote binary and ternary interaction parameters, respectively. For 

phase, the molar Gibbs energy can be described as the sum of an ordering contribution

of the -carbide phase and the Gibbs energy of the diordered � or ↵ phases [37]:
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�G

ord(y(s)
i

) is written as:
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ord(y(s)
i
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) (3)

The term �G

L

012(y(s)
i

) is described as:75
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In Eq.3, the two terms cancel each other when the site fractions are equal, thus cor-

responding to a disordered phase. These two terms are calculated using the same func-

tion in the sublattice formalism but different site fractions. �G

ord(y(s)
i

) is function of

the site fraction y

(s)
i

and �G

L

012(y(s)
i

= c

i

) of the site fractions of the disorder phase

of same composition. It should be noted that this formalism was proposed by Dupin et80

al. after classical sublattice formalism and incorporated into ThermoCalc by Sundman

[50]. In the current work, we followed they formalism where we introduced the rela-

tionship between overall composition x

i

and site fractions y(s)
i

as dx
i

= 3
4dy

(I)
i

+ 1
4dy

3
i

.

All variables in Eq.1, Eq.2, and Eq.3 can be assessed by phase diagram calculations as

listed in Table.1.85
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Table 1: Thermodynamic parameters for the Fe-Mn-Al-C quaternary system.

BCC : (Fe,Mn,Al)1(C, V a)3
0GBCC

Al:C =0 GFCC
Al + 30Ggraphite

C + 100000 + 80T [48]
LBCC

Al:C,V a = 130000 + 14T [48]
LBCC

Fe:C,V a = �190T [42]
LBCC

Al,Fe:V a = �122960 + 31.9888T + (yAl � yFe)2945.2 [45]
0TcBCC

Al,Fe:V a = �437.95 1TcBCC
Al,Fe:V a = �1719.7 [52]

LBCC
Al,Mn:V a = �120077 + 52.851T + (yAl � yMn)(�40652 + 29.2764T ) [46]

LBCC
Fe,Mn:V a = �2759 + 1.237T [47]

0TcBCC
Fe,Mn:V a = 123 [47]

LBCC
Fe,Mn:C = 34052� 23.467T [44]

FCC : (Fe,Mn,Al)1(C, V a)1
0GBCC

Al:C =0 GFCC
Al +0 Ggraphite

C + 81000 [48]
LFCC

Al:C,V a = �80000 + 8T [48]
LFCC

Fe:C,V a = �34671 [42]
LFCC

Mn:C,V a = �43433 [44]
LFCC

Al,Fe:V a = �104700 + 30.65T + (yAl � yFe)22600 + (yAl � yFe)
2(29100� 13T ) [48]

LFCC
Al,Mn:V a = �69300 + 25T + (yAl � yMn)8800 [46]

LFCC
Fe,Mn:V a = �7762 + 3.865T + (yFe � yMn)(�259) [47]
0TcFCC

Fe,Mn:V a = �2282 1TcFCC
Fe,Mn:V a = �2068 [47]

LFCC
Al,Fe:C = �104000 + 80T + (yAl � yFe)81000 [48]

LFCC
Fe,Mn:C = 34052� 23.46T [47]

LFCC
Al,Fe,Mn:V a = 0 [53]

LFCC
Al,Mn:C,V a = 50000 [53]

LFCC
Al,Fe,Mn:C = �679200 + 400T [53]

� carbide : (Fe,Mn)3Al1(C, V a)1
0G

Fe:Al:C = 30GFCC
Fe +0 GFCC

Al +0 Ggraphite
C � 115000 + 25.2T [53]

0G
Mn:Al:C = 30GFCC

Mn +0 GFCC
Al +0 Ggraphite

C � 150920 + 40T [53]
0G

Fe:Al:V a = 30GFCC
Fe +0 GFCC

Al � 94000 + 17.6T [53]
0G

Mn:Al:V a = 30GFCC
Mn +0 GFCC

Al [53]
L

Fe,Mn:Al:C = 9600 [53]
L

Fe:Al:C,V a = 13752� 24T [53]

Yao et al. demonstarted by an atom probe study that the partitioning behaviour of -

carbide greatly depends on the alloying element [32]. Therefore, the order parameter of

simple cubic sublattices was expressed by the site fraction in each sublattice according

to Landau-Lifshitz’s rule [54, 55, 56]. The order parameters and the concentrations for

Mn, Al, and C were expressed as:90
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In this way, each site fraction y

(s)
i

can be rewritten as function of order parameters

�
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. Eq.5d only holds when Fe atoms are exchanged with Mn atoms. For Fe, we have:

c
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(i = 1, 2, 3), �i

C,V a

(i = 1, 2, 3), and c

Al

, c
Mn

,

c

C,V a

refer to the order parameter and the composition fields of Al, Mn, and (C, Va),

respectively. By combining equation 1 - 6, the molar Gibbs energy of the disordered95

and ordered phases for the quaternary Fe-Mn-Al-C system can be described with the

variables of the order parameter and composition fields for elements. The total free

energy F

quaternary system in the Fe-Mn-Al-C system included the local free energy

density, the interface energy and strain energy, was given by:

F
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Z
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1
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m

G

disord or L12 +
↵

2

3X

i=Mn,Al,(C,V a)

(rc
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+ [
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3X

i=Mn,Al,(C,V a)

(r�
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el

V
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where V

m

is the molar volume which is considered to be constant. ↵ and � are the100
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gradient energy coefficients for the compositions and order parameters, respectively.

Interfacial anisotropy introduced into phase-field model by making interface energy

(�) orientation-dependant by [38]:

�(n̂) =
1.1

d�

�(n̂)2 (8)

The gradient energy coefficient is expressed as:

�(n̂) = �0 + �1(n
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where n
x

, n
y

and n

z

are Cartesian coordinates of the normal to the interface. �0 =105

�0
p
k0, �1 = �0k1

2
p
k0

, �2 = �0k2

2
p
k0

and �3 = �0k3

2
p
k0

� �0k
2
1

8k0
p
k0

, where �0 =
p
3�/1.1.

This expression is different from the expansion based on cubic harmonics [62]. An

example is that the leading anisotropic term is not (n4
x

+n

4
y

+n

4
z

) but (n2
x

+n

2
y

+n

2
z

+

n

2
x

+ n

2
x

+ n

2
y

n

2
z

+ n

2
x

).The values of anisotropy coefficients k
i

are listed in Table. 2.

The interface normal vector in the phase-field model was computed by n̂ = r�

|r�| .110

Table 2: Anisotropy coefficients used in the present work. The united for coefficients are in erg/cm2 [38].

Coefficient k0 k1 k2 k3
Values 2258.53 -3291.47 12959.9 1880.74

The morphology of -carbide is directly related to the coherency between matrix

and precipitates [29]. -carbide and austenite have a strong coherency because of the

similar lattice parameter and crystal structure. Cube to cube orientation relationship be-

tween -carbide and austenite is repeatedly reported [30]. Therefore, precipitation of

fine -carbides is possible in austenite. Besides, -carbide has well-known Nishiyama-

Wasserman relationship ((110)
↵

||(111)
�carbide

, [001]
↵

||[101]
�carbide

) with ferrite

matrix [31]. Experimental observations show that -carbides precipitated in ferrite ma-

trix are coarse and because of the semi-coherency between two phases. In this study,

the contribution of elastic strain energy was, hence, taken into account in order to sim-
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ulate more realistic morphology. Cube to cube and Nishiyama-Wasserman orientation

relationships were considered between -carbide and � and ↵, respectively. In Eq. 7,

G

el

V

represent the elastic energy density. Based on linear elasticity, the elastic strain

energy is expressed as [57]:

G

el

V

=
1

2

Z

V

�

ij

✏

el

ij

dV =
1

2

Z

V

C

ij

✏

el

ji

✏

el

ij

dV (10)

where C

ij

is the tensor of elastic constants. the values of elastic constants are

presented in Table.3. The elastic strain is defined as the difference between the actual

strain, ✏act
ij

(�!r ), and the stress-free strain, ✏0
ij

(�!r ):

✏

el

ij

(�!r ) = ✏

act

ij

(�!r )� ✏

0
ij

(�!r ) = 1

2
(
@u

i

(�!r )
@r

j

+
@u

j

(�!r )
@r

i

)� p(�)✏00
ij

(11)

where ✏00
ij

denotes the eigenstrain corresponding to the precipitate of the -carbide.

Eigenstrain, also known as stress-free transformation strain (SFTS), represents the115

strain that takes place inside the material when the external constraints are absent dur-

ing phase transformations. p(�j

i

) = (�j

i

)3(6(�j

i

)2 � 15(�j

i

) + 10) is the interpolation

function. The physical parameters used for calculations are presented in Table. 4.

Table 3: Bulk modulus and Elastic constants of various forms of -carbide, ↵-iron and �-iron in GPa. Cubic
crystals have only three independent constants, C11, C12 and C44 and tetragonal structures have additional
three constants C13, C33 and C66. The values for -carbide are taken from Ref.[58]. The values for ↵-Fe
are taken from Ref.[59]. The values for �-Fe are taken from Ref.[60].

B0 C11 C22 C44 C13 C33 C66

Fe3Al 168 185 160 124 - - -
Fe3AlC 203 426 91 65 - - -

Fe2MnAlC 202 422 74 92 92 463 92
FeMn2Al 234 465 86 96 138 455 100
Fe3Al 218 454 100 106 - - -
↵-Fe 167 200 135 117 - - -
�-Fe 152 230 129 125 - - -

Table 4: Physical parameters used in this model.

Description Parameter Value

Lattice parameter for � a� 3.54 (Ȧ) [64]
Lattice parameter for ↵ a↵ 2.92 (Ȧ) [64]
Lattice parameter for  a 3.85 (Ȧ) [63]
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The mechanical equilibrium condition can be given by:

@�

ij

(r)

@r

j

= 0 (12)

The evolution equation was linked to the mechanical equilibrium equations to find120

the displacement u
i

:

C

ijkl

[
1

2
(u

k,lj

+ u

l,kj

)� ✏

00
kl

@

@r

j

(p(�))] = 0 (13)

The SFTS was determined by the orientation relationship between  phase and �

and ↵ phases. Small strain tensor e for one -carbide was determined according to

the orientation relationships and the finite-strain approximation ✏

00
i

j � 1
2 (e + e

T +

eTe) was, then, used to determine the SFTS tensor. The temporal evolution of the125

elemental concentrations and order parameters can be determined by calculating the

following non-linear Cahn-Hilliard diffusion equations and time-dependant Ginzburg-

Landau equations:

@c

i

@t

=
X

j

r.(M̃
ij

r �F

�c

j

), i = Mn,Al, (C, V a), j = Mn,Al, (C, V a) (14)

@�

j

i

@t

= �L

�F

��

j

i

, i = Mn,Al, (C, V a), j = 1, 2, 3 (15)

where M̃

ij

and L are the diffusion mobility and the structural relaxation, respec-

tively. The diffusion mobility, M̃
ij

, was expressed by the atomic mobilities of Mn, Al,130

C and Fe using the following equation:

M̃

ij

=
X

n

(�
in

� c

i

)(�
jn

� c

j

)c
n

M

Fe

n

(16)

where �

in

and �

jn

represent the Kronecker delta. From the absolute-reaction rate

theory arguments, the atomic mobility may be divided into a frequency of factor M0
B
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and an activation enthalpy Q

B

and is given by:

M

B

= exp(
RTlnM

0
B

RT

)exp(
�Q

B

RT

)
1

RT

(17)

The composition dependence of �
B

which represents RTlnM

0
B

�Q

B

can be ex-

pressed by the Redlich-Kister expansion in the form of CALPHAD approach [69] and

is given in Table.5. The use of CALPHAD formalism for the expression of mobilities

makes it possible to simulate the evolution of  phase at various temperatures.135

Table 5: Summary of atomic mobilities of Al, Mn and C used in the present work (all in SI units).

Parameter Value Refs.

�Fe
Al RTln(6.5⇥ 10�5) [70]

�Fe
M n -246512.70-104.56T [71]
�Fe

C -148123.29-88.33T [71]

The kinetic parameter L is considered to be related to the diffusional mobility

of carbon M

Fe

C

as following: L = c

C

y

V a

M

Fe

C

where y

V a

is the fraction of va-

cant interstitials, i.e. (1 � c

C

/3) for ↵ and (1 � c

C

) for �. Parameter L for 

was assumed to obey the following relationship M̃

CC

= La0/16 [40] with the lat-

tice parameter a0 = 3.85 ⇥ 10�10 m. Gradient energy coefficient was chosen to140

be ↵ = 1.56 ⇥ 10�14
Jm

2
/mol. This value observed using atom probe analysis

and the cluster variation method for multicomponent systems [61]. In this study the

interface was defined in the region between � = 0.1 and � = 0.9. At the nucle-

ation stage for single particle simulation, a small cube with a side of 3
p
2 nm in the

field were transformed to -carbide phase. For multi-particle simulations, the num-145

ber of nucleus in the field was determined according to experimental observations

reported in Ref.[14, 31]. The mole fractions were set as Al=0.145, Mn=0.198 and

C=0.081. The values of order parameters were also set as Al=o.676, Mn=0.738 and

C=0.305. A semi-Implicit-Fourier-Spectral-Method [66] was employed for numerical

analysis with a periodical boundary condition. The system size for the simulation is150

300�x ⇥ 300�x ⇥ 300�x (grid size: �x = 0.25nm) for 3D single particle sim-

ulations and 1000�x ⇥ 1000�x ⇥ 1000�x for 3D multi-particle simulations. This
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method is programmed in C++ and the output is visualized using an in-house visual-

ization software (ARVisual) developed in our research group.

3. Results and discussion155

It is well-known that the morphological evolution of precipitates is mainly de-

termined by the interaction between the elastic strain energy and interfacial energy.

Thus, these energetic contributions were taken into account in the present phase-field

model,Eq. 7, to quantitatively determine the -carbide morphology evolution in both

� and ↵ phases. The investigation began by simulating a single  precipitate in both160

disordered FCC (�) and BCC (↵) phases.

The interfacial and elastic strain energies have different effects on the morphology

of  precipitates. As reported in the literature, the coherency between -carbide with

� matrix is different from that between -carbide and ↵ matrix [31]. This difference

in coherency, in turn, results in different precipitate morphologies in � and ↵ phases.165

A number of controlled phase-field simulations for a single  precipitate were carried

out to investigate the effects of both energetic contributions. In these simulations, a

cuboidal nucleus with a side of 3
p
2 nm was manually transformed to  in the centre

of the system.

A number of cases were investigated in these simulations to study the effect of each170

contributing energy. In the first scenario, the interfacial energy was only assumed to be

the contributing energy. Secondly, the contribution of elastic energy to the precipitate’s

morphology was studied, with interfacial energy of 10 mJm

�2. Finally, the contribu-

tion of both energies were investigated. To explain each energetic contribution, total

elastic strain energy E

el

and total interfacial energy E

int

throughout the simulation175

domain were determined (Fig. 3). The length of  precipitates along the [100], [010]

and [001] directions were, also, calculated in both diordered phases to compare the

precipitate’s size when formed in different matrix.

The simulation results for a single  precipitate are presented in Fig. 1a - 1b.

As shown in Fig.1, -carbide contain two main morphologies, namely, {001} faceted180

cuboidal in austenite (Fig. 1a) and elongated plate-like aligned the elastically soft
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< 100 >-type directions (Fig. 1b). These series of simulation demonstrated the in-

teraction between interfacial and elastic strain energies as well as their relative val-

ues. As shown in Fig. 2a, assuming the contribution of interfacial energy only (blue),

the L[100]/L[010] aspect ratio for � matrix remained constant as the precipitate has a185

cuboidal shape in this phase, while in ↵ phase, it increased slightly from the starting

value and reached a plateau with a value close to 1.3. In the second scenario where

the elastic strain energy was considered while the evolution of interfacial was ignored

(red), strain energy increased to a critical value close to 1.1 for a -carbide formed in

� and remained unchanged for the rest of simulation time. A continuous increase in190

the L[100]/L[010] aspect ratio was observed when the precipitate formed in ↵. Because

of the high lattice mismatch, the elastic strain energy was the dominant mechanism in

determining the morphology of the precipitates in ↵ phase, as can be seen in Fig 2b.

That is the reason for the elongated plate-like -carbide in ↵ phase.

Fig. 3 shows the ratio of total elastic strain energy (E
el

) to total interfacial energy195

(E
int

) in ↵ matrix. When the contribution of both energies was taken into account, as

it was expected the morphological change of  was controlled by the interfacial energy

at the early stages of precipitation while the elastic strain energy became dominant at

the later stages as indicated by black line in Fig. 3. The minimization of interfacial

energy, thus, dominates the precipitates morphology in both � and ↵ phases at initial200

stages of precipitation. As the precipitate grows, the minimization of elastic strain

energy dominates the precipitate morphology, and the L[100]/L[010]
aspect ratio will

again exceed the critical value close to 1.8, even faster than when elastic energy was

only considered. During the growth process, elastic strain energy exists throughout the

precipitate whereas interfacial energy only contributes to the �/ or ↵/ interfaces.205

The significant change in the morphology of  when formed in ↵ compared to that

when precipitates in � is the direct manifestation of high degree of misfit between 

particle and the ↵ matrix (between � and  this value is about 1.88% and between ↵

and  this value is about 5.8%) [31].

Obviously, the total interfacial energy (E
int

) is larger than the total elastic strain210

energy of the system when the precipitate is small, due to the fact that the area to

volume ratio of the precipitate is high. As  continues to grow, the area to volume ratio

13



reduces and the contribution of elastic energy to the morphology of precipitate becomes

dominant. The morphological evolution of  precipitate can be, hence, elucidated as a

direct effect of the two competing energetic contributions during the growth process.215
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(a)

(b)

Figure 1: The morphology of a single -carbide in a) � phase and b) ↵ phase at t⇤ = 60, 000�t.
15



(a)

(b)

Figure 2: Evolution of L[100]/L[010] aspect ratio of -carbide precipitate under different conditions: a) in
a � grain and b) in an ↵ grain.

The phase-field simulation also shed light on the synergetic effects of both con-

tributing energies on increasing the L[100]/L[010] aspect ratio when the formation of
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-carbide was simulated in ↵ phase. The SFTS ratio along the [100]


and [010]


di-

rections was calculated to be 0.116 implying that the system tends to minimize its

total elastic strain energy by favouring a higher L[100]/L[010] ratio. Moreover, the ratio220

of interfacial energy �(100)/�(010) was determined to be 1.1, indicating that the min-

imization of interfacial energy was taken place on the (010) and (100) plane areas,

which is equivalent to increasing the L[100]/L[010] ratio. Hence, both contributing en-

ergies, namely interfacial and elastic strain energies, tend to increase the aspect ratio of

L[100]/L[010] when -carbide precipitates growing in the ↵ matrix.225

Figure 3: Evolution of ratio of total elastic strain energy to total interfacial energy under different conditions.

Fig. 4 and 5, show the multi-particle simulations of  phase in � (Fig. 4) and in ↵

(Fig. 5). In the � phase,  has a cuboidal morphology with rounded corner which is

in agreement with what reported in Ref. [67], while it consists of elongated plate-like

morphology in the ↵ phase. The simulated particles’ morphology in ferrite agrees with

TEM observations reported in Ref.[31]. Phase-field simulation revealed that the inter-230

particle spacing between cuboids is around 20�x while this value increases to 90�x

in ↵ phase. Due to morphology and interparticle spacing, -carbides form stronger ob-

stacles in � phase than ↵ phase and thus can lead to dislocation-particle pining events

more effective strengthening mechanism in �.

17



Figure 4: Morphology and size of -carbide in � matrix.
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(a)

(b)

(c)

Figure 5: Simulation of -carbide precipitates at two different isothermal holding temperature: a) at 500�C
b) at 600�C, c) the evolution of precipitate’s average width at 500�C (blue) and 600�C (red) for t⇤ =
60, 000�t.
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We carried out two specific phase-field simulations for the growth of  precipitate235

in a ferritic steel with a composition 1.2 C, 3.2 Mn and 10 Al (at .%) for two different

annealing temperatures, namely, 500�C and 600�C in order to investigate the effect

of holding temperature on the morphology of  phase in ↵. The simulation results are

shown in Fig. 5a and Fig.5b for the microstructure evolution at 500�C and 600�C, re-

spectively. Fig. 5c shows the evolution of the precipitate’s average width with computa-240

tion time. The width of -particles increased with a higher annealing temperature. The

average width of  formed at 500�C evolved much more slower than that of -carbides

formed at 600�C. After t⇤ = 60, 000�t, the average widths of -particles at 500 and

600�C are 16.25 and 47.5 nm respectively, as shown in Table.6. During isothermal

holding at 500�C, a larger driving force for the -carbide precipitation exists. The245

morphological evolution of -particles for different isothermal holding temperatures is

due to the fact that during isothermal annealing at 500�C the � decomposition kinetics

into  phase is retarded due to the lower diffusion rate of solutes, especially C, com-

pared to the simulation carried at 600�C. Thus, the -carbides formed at 500�C show

a finer distribution compared to that formed at 600�C. During the growth process, it is250

the diffusion of C during annealing treatment that primarily controls the morphology

of  particles.

Table 6: Comparison between simulation results and experimental values.

Description simulation experiment
Isothermal temperature 500�C 600�C 500�C 600�C

Width (nm) 16.25 47.5 17 45

4. Conclusion

We developed a phase-field method which coupled to CALPHAD in order to simu-

late the evolution of ordered -carbide in both disordered ↵ and � phases. CALPHAD255

formalism was employed in the present work in order to simulate a realistic complex

morphology evolution in a multicomponent Fe-C-Mn-Al system. A three-sublattice

model was used to allow intermixing between Fe and substitutional Mn atoms on the

cube face site and incomplete filling of C atoms in the central octahedral site of the
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ordered structure. This study demonstrated the usefulness of phase-field method cou-260

pled to CALPHAD for predicting the microstructure morphology, showing governing

factors and further providing guidance for material design. The Results demonstrate

that  consists of cuboids with rounded corners in � and elongated plate-like in ↵. The

volumetric E

el

and E

int

are calculated in the present study showing that interfacial

energy dominates the particles’ morphology at initial stages of precipitation, while at265

later stages, it is the elastic strain energy that controls the morphological evolution. The

channels between particles in � is in overall much more narrower than that in ↵. This

means that  can be considered as more effective strengthening mechanism in austen-

ite. Simulations were performed for two different isothermal holding temperature in

order to explore the change in  phase shape in ↵ with alteration of temperature. In270

general, increasing the holding temperature leads to a remarkable increase in the size

of the  carbides.
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