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Frequently, a set of objects has to be evaluated by a panel of
assessors, but not every object is assessed by every assessor.
A problem facing such panels is how to take into account
different standards among panel members and varying levels
of confidence in their scores. Here, a mathematically based
algorithm is developed to calibrate the scores of such assessors,
addressing both of these issues. The algorithm is based on the
connectivity of the graph of assessors and objects evaluated,
incorporating declared confidences as weights on its edges.
If the graph is sufficiently well connected, relative standards
can be inferred by comparing how assessors rate objects
they assess in common, weighted by the levels of confidence
of each assessment. By removing these biases, ‘true’ values
are inferred for all the objects. Reliability estimates for the
resulting values are obtained. The algorithm is tested in two
case studies: one by computer simulation and another based
on realistic evaluation data. The process is compared to the
simple averaging procedure in widespread use, and to Fisher’s
additive incomplete block analysis. It is anticipated that the
algorithm will prove useful in a wide variety of situations such
as evaluation of the quality of research submitted to national
assessment exercises; appraisal of grant proposals submitted
to funding panels; ranking of job applicants; and judgement of
performances on degree courses wherein candidates can choose
from lists of options.

1. Introduction
This paper addresses the widespread problem of how to take
into account differences in standards, confidence and bias in
assessment panels, such as those evaluating research quality or
grant proposals, employment or promotion applications, and
classification of university degree courses, in situations where it
is not feasible for every assessor to evaluate every object to be
assessed.

2017 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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Table 1. Panel Assessment Methods. Thematrix of four approaches according to use of calibration and/or confidences. Simple averaging
(SA) is the base for comparisons. Fisher’s IBA does not deal with varying degrees of confidence and the confidence-weighted averaging
does not achieve calibration. The method proposed herein (CWC) accommodates both calibration and confidences.

without confidences with confidences

without calibration simple averaging (SA) confidence-weighted averaging (CWA)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

with calibration incomplete block analysis (IBA) calibration with confidence (CWC)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A common approach to assessment of a range of objects by such a panel is to assign to each object the
average of the scores awarded by the assessors who evaluate that object. This approach is represented
by the cell labelled ‘simple averaging’ (SA) in the top left of a matrix of approaches listed in table 1, but
it ignores the likely possibility that different assessors have different levels of stringency, expertise and
bias [1]. Some panels shift the scores for each assessor to make the average of each take a normalized
value, but this ignores the possibility that the set of objects assigned to one assessor may be of a
genuinely different standard from that assigned to another. For an experimental scientist, the issue is
obvious: calibration.

One solution is to seek to calibrate the assessors beforehand on a common subset of objects, perhaps
disjoint from the set to be evaluated [2]. This means that they each evaluate all the objects in the subset
and then some rescaling is agreed to bring the assessors into line as far as possible. This would not work
well, however, in a situation where the range of objects is broader than the expertise of a single assessor.
Also, regardless of how well the assessors are trained, differences between individuals’ assessments of
objects remain in such ad hoc approaches [3].

If the expertise of two assessors overlap on some subject, however, any discrepancy between their
evaluations can be used to infer information about their relative standards. Thus, if the graph ΓA on
the set of assessors, formed by linking two whenever they assess a common object, is sufficiently well
connected, one can expect to be able to infer a robust calibration of the assessors and hence robust scores
for the objects. The construction of this graph is illustrated in figure 1, beginning from the graph Γ

showing which objects are assessed by which assessors.
One approach to achieving such calibration was developed by Fisher [4], in the context of trials of crop

treatments. Denoting the score from assessor a for object o by sao, Fisher’s approach is based on fitting
a model of the form sao = vo + ba + εao with εao independent identically distributed random variables of
mean zero. Then ba is the bias inferred for assessor a and vo is the value inferred for object o. Fisher’s
approach is known as additive incomplete block analysis (IBA) and a body of associated literature and
applications has since been developed (e.g. [5]), though its use in panel assessment seems rare. It is
represented as the bottom left entry of table 1.

Another ingredient that is important in many panel assessments, however, is different weights that
may be put on different assessments. We refer to these weights as ‘confidences’. Fisher’s IBA does not
take different levels of confidence into account.

If the assessors express confidences in the assessments, for example, by some pre-determined weights
assigned to types of assessment or by the assessors declaring confidences in each of their scores, then it
is natural to replace SA by confidence-weighted averaging. This is represented as the top right entry of
table 1, but it does not address the calibration issue so we do not consider it further.

In this paper, we present and test a method to calibrate scores taking into account confidences; that is,
we complete the matrix of approaches represented in table 1, where our method is termed calibration with
confidence (CWC). We demonstrate that the method can achieve a greater degree of accuracy with fewer
assessors than either SA or IBA, and we derive robustness estimates taking the confidences into account.

We are aware of two other schemes that incorporate confidences into a calibration process. One is
the abstract-review method for the SIGKDD’09 conference (section 4 of [6]; see also [7]). The other is the
abstract-review method used for the NIPS2013 conference (building on [8] and described in [9]). Our
method has the advantages of simplicity of implementation and a straightforward robustness analysis.
We leave detailed comparison with methods such as these for future publication.

2. The model
Let us suppose that each assessor is assigned a subset of the objects to evaluate. Denote the resulting set
of (assessor, object) pairs by E. Let us further suppose that the score sao that assessor a assigns to object o

 on April 26, 2017http://rsos.royalsocietypublishing.org/Downloaded from 

http://rsos.royalsocietypublishing.org/


3

rsos.royalsocietypublishing.org
R.Soc.opensci.4:160760

................................................

a1

a2

a3

a4

o1

o2

o3

o4

o5

o6

objects assessors

o1

o2

o3

o4

o5

o6

a1

a2

a3

a4

o1

o2

o3

o4

o5

o6

a1

a2

a3

a4

a1 a2

a4 a3

a1
a2

a4 a3

a1 a2

a3
a4

G GA

(a)

(b)

(c)

Figure 1. Three examples of assessment graphsΓ showing which object oj is assessed by which assessor ak , and the resulting graphs
ΓA on the set of assessors where two assessors are linked if they assess an object in common. Case (a) produces a fully connected assessor
graph, (b) a moderately connected graph, whereas case (c) is disconnected.

is a real number related to a ‘true’ value vo for the object by

sao = vo + ba + εao, (2.1)

where ba can be called the bias of assessor a and εao are independent zero-mean random variables. Such
a model forms the basis for additive IBA. This was also proposed in ref. [10] (see eqn (8.2b) therein)
but without a method to estimate the true values. Here we will achieve this and make a significant
improvement, namely the incorporation of varying confidences in the scores.

To take into account the varying expertise of the assessors with respect to the objects, we propose that
in addition to the score sao, each assessor is asked to specify a level of confidence for that evaluation. This
could be in the form of a rating such as ‘high’, ‘medium’, ‘low’, as requested by some funding agencies,
but we propose to allow something more general and akin to experimental science. Confidence can be
estimated by asking assessors to specify an uncertainty σao > 0 for their score and then the confidence
level (or ‘precision’) is taken to be

cao = 1

σ 2
ao

. (2.2)

The instructions to the assessors can be to choose sao and σao so that 2
3 of their probability distribution for

the score lies in [sao − σao, sao + σao], 1
6 above this interval and 1

6 below it. Methods for training assessors
to estimate uncertainties are presented in [11]. There are also methods for training assessors on the
assessment criteria to improve their accuracy [12], which could also be expected to have the beneficial
effect of reducing their uncertainties.
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So let us suppose that

εao = σaoηao, (2.3)

with ηao independent zero-mean, random variables of common variance w. For the moment, we set w = 1;
extensions to other values of w are considered in appendix A, and in particular are necessary if confidence
is expressed only qualitatively. In the case that confidences are reported as only high, medium or low,
they can be converted into quantitative ones by for example choosing λ ≈ 2 and setting cao = λ2, 1, λ−2,
respectively. The interpretation of λ is the ratio of the uncertainty for a low confidence evaluation to that
for a medium one, and for a medium one to a high one. Then w is unspecified but can be fit from the
data, as in appendix A.

Thus, our basic model is

sao = vo + ba + σaoηao. (2.4)

3. Solution of the model
Given the data {(sao, σao) : (a, o) ∈ E} for all assigned assessor–object pairs, we wish to extract the true
values vo and assessor biases ba. The simplest procedure is to minimize the sum of squares∑

(a,o)∈E

η2
ao =

∑
(a,o)∈E

cao(sao − vo − ba)2, (3.1)

where the confidence level cao was defined in equation (2.2). This procedure can be justified if the ηao are
assumed to be normally distributed, because then it gives the maximum-likelihood values for vo and ba.
It can also be viewed as orthogonal projection of the vector s of scores sao to the subspace of the form

sao = vo + ba in the Riemannian metric given by |s| =
√∑

ao caos2
ao.

Now expression (3.1) is minimized with respect to vo iff∑
a:(a,o)∈E

cao(sao − vo − ba) = 0,

and with respect to ba iff ∑
o:(a,o)∈E

cao(sao − vo − ba) = 0.

It is notationally convenient to extend the sums to all assessors (respectively objects) by assigning the
value cao = 0 to any assessor–object pair that is not in E (i.e. for which a score was not returned). Then
these conditions can be written as

Covo +
∑

a
bacao = Vo (3.2)

and ∑
o

caovo + C′
aba = Ba. (3.3)

Here,

Vo =
∑

a
caosao (3.4)

is the confidence-weighted total score for object o and

Ba =
∑

o
caosao (3.5)

is that for assessor a,

Co =
∑

a
cao (3.6)

is the total confidence in the assessment of object o and

C′
a =

∑
o

cao (3.7)

is the total confidence expressed by assessor a.
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Equations (3.2) and (3.3) form a linear system of equations for the vo and ba. It has an obvious

degeneracy in that one could add a constant k to all the vo and subtract k from all the ba and obtain
another solution. One can remove this degeneracy by, for example, imposing the condition∑

a
ba = 0. (3.8)

This is the simplest possibility and corresponds to a translation (shift) that brings the average bias over
assessors to zero. Alternatives are discussed in appendix B.

Define a graph Γ linking assessor a to object o if and only if (a, o) ∈ E, as illustrated in the left column
of figure 1. The edges in the graph are weighted by the confidences cao. Whether the set of equations (3.2)
and (3.3) has a unique solution after breaking the degeneracy depends on the connectivity of Γ . Define a
linear operator L by writing equations (3.2) and (3.3) as

L

[
v

b

]
=
[

V
B

]
, (3.9)

where v, b, V and B denote the column vectors formed by the vo, ba, Vo and Ba, respectively. The operator
L has null space of dimension equal to the number of connected components of Γ (this follows from
Perron–Frobenius theory, e.g. [13]). Thus, if Γ is connected, the null space of L has dimension one, so
corresponds precisely to the null vectors vo = k ∀o, ba = −k ∀a, that we already noticed and dealt with.
Connectedness of Γ ensures that if (3.9) has a solution then there is a unique one satisfying (3.8).

It remains to check that the right-hand side of equation (3.9) lies in the range of L, thus ensuring that
a solution exists. This is true if all null forms of the adjoint operator L† send the right-hand side to zero.
The null space of L† has the same dimension as that of L, because L is square, and an obvious non-zero
null form α is given by

α(v, b) =
∑

o
vo −

∑
a

ba. (3.10)

It follows from the definitions of V and B that α(V, B) = 0. So a solution exists.
Thus, under the assumption that the assessor–object graph Γ is connected, equations (3.2) and (3.3)

have a unique solution (v, b) satisfying equation (3.8). Note that connectedness of Γ is necessary for
uniqueness, otherwise one could follow an analogous procedure, adding and subtracting constants
independently in each connected component of Γ , and thereby produce more solutions.

Equations (3.2) and (3.3) have a special structure, due to the bipartite nature of Γ , that can be worth
exploiting. The first equation (3.2) can be written as

vo = Vo −∑
a bacao

Co
. (3.11)

This can be substituted into the second equation (3.3) to obtain

∑
a′

Caa′ ba′ − C′
aba =

∑
o

caoVo

Co
− Ba, (3.12)

where

Caa′ =
∑

o

caoca′o

Co
(3.13)

can be considered as weights on the edges of the graph ΓA on assessors illustrated in the right column of
figure 1. The dimension of the reduced system (3.12) is the number NA of assessors (rather than the sum
of the numbers of assessors and objects), which gives some computational savings. Replacing one of the
equations in (3.12), say that for the ‘last’ assessor, by equation (3.8) gives a system with a unique solution
that can be solved for b by any method of numerical linear algebra, e.g. LUP decomposition [14]. Then v

can be obtained from equation (3.11).
A slightly more sophisticated approach to incorporating a degeneracy-breaking condition into

equations (3.12) is described in appendix B.
A key question with any black-box solution like the one presented here is how robust is the outcome?

We propose two ways of quantifying the robustness. One is to bound how much the outcome would
change if some of the scores were changed (e.g. representing mistakes or anomalous judgements). We
treat this in appendix C. The other is to evaluate the posterior uncertainty of the outcomes, assuming
normal distribution of the ηao. This is treated in appendix D.
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4. Case studies
We have tested the approach in three contexts. We report in detail on two case studies here. In the first
case study, we use a computer-generated set of data containing true values of assessed items, assessor
biases and confidences for the assessments and resulting scores. This has the advantage of allowing
us to compare the values obtained by the new approach with the true underlying value of each item.
The second case study is an evaluation of grant proposals using realistic data based on a university’s
internal competition. In this test, of course, there is no possibility to access ‘true’ values, so instead we
compare the evidence for the models using a Bayesian approach (appendix E), and we compare their
posterior uncertainties (appendix D). The third context in which we tested our method was assessment
of students; we report briefly on this at the end of the section.

4.1. Case study 1: simulation
In the simulation, NO = 3000 objects are assessed by a panel of NA = 15 assessors. This choice was
motivated by the number of outputs and reviewers in the applied mathematics unit of assessment at the
UK’s 2008 research assessment exercise. The simulation was carried out using Matlab, and the system
of equations was solved using its built-in procedure, which computed the LU decomposition of L (with
the last row replaced by the degeneracy-breaking condition (3.8)). The reduction to (3.12) was not used
because NO = 3000 is easily handled by modern personal computers.

True values of the items vo were assumed to be normally distributed with a mean of 50 and standard
deviation set to 15, but with vo values truncated at 0 and 100. The assessor biases ba were assumed to be
normally distributed with a mean of 0 and a standard deviation of 15. Each assessment was considered
to be done with high, medium or low confidence, and these were modelled using scaled uncertainties
for the awarded scores, of σao = 5, 10 or 15, respectively. The allocated scores follow equation (2.4), but
truncated at 0 and 100.

With r assessors per item (which we took to be the same for each item in this instance), each simulation
generated rNO object scores sao. From these, we generated NO value estimates v̂o and NA estimates
of assessor biases b̂a using the calibration processes. We then took the mean and maximum values of
the errors in the estimates, dvo = |v̂o − vo| and dba = |b̂a − ba|. Simple averaging also delivered a value
estimate v̂o, as well as mean and maximal values of the errors dvo. Finally, we determined the averages
of the errors dvo and dba over 100 simulations. The results for these averaged mean and maximal errors
in the scores are denoted by 〈dv〉 and (dv)max, respectively, and those for the biases (for the calibrated
approaches only) are denoted 〈db〉 and (db)max.

Results for all three methods are presented in figures 2–4. The mean and maximal errors for the SA
approach, the IBA method and the CWC approach are given in figures 2a–d and 3a–d. For demonstration
purposes, we use three confidence levels rather than a continuous distribution. This allows us to clearly
control differences in confidence levels in figures 2 and 3 and we do so by presenting four panels labelled
(a)–(d). These represent different profiles, with the confidence for each assessment randomly allocated
using probabilities for high, medium and low confidences in the ratios: (a) 1 : 1 : 1, (b) 1 : 1 : 2, (c) 1 : 2 : 1
and (d) 2 : 1 : 1. We observe that, for each method, the scores become more accurate (errors decrease) as
the number of assessors per object r increases.

From figure 2a–d, with only two assessors per object, the SA method gives errors averaging about 10
points. Over r = 6 assessors per object are required to bring the mean error down to six points. Fisher’s
IBA, however, achieves this level of improvement with only two or three assessors. The CWC method
delivers a further level of improvement of about one point. One also notes that, for the calibration
approaches, relatively little is gained on average by employing more than four assessors per object. This
result can be compared with [15] which found that five assessors per object was optimal in terms of
accuracy over cost, for a procedure used by the Canadian Institutes of Health Research.

Figure 3 shows that IBA also leads to significant improvements in the maximal error values relative
to those obtained through SA. With two assessors per object, maximal errors are reduced from about
45 to 30–35. The CWC approach does not appear to significantly improve upon this. However, with
six assessors per object the maximal error value of about 25 delivered by the SA process is reduced to
about 20 by IBA and to as low as 16 by CWC when half the assessments are done with a high degree of
confidence in the scores.

Figure 4a gives the improvements achieved by the calibration methods as ratios of the mean
errors coming from Fisher’s IBA approach to the SA approach 〈dv〉IBA/〈dv〉avg and of the mean errors
coming from the CWC approach to the SA approach 〈dv〉CWC/〈dv〉avg. Smaller ratios mean greater
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Figure 2. Mean errors plotted against the number r of assessors per object for the SA approach (upper curves, orange), the incomplete-
block-analysis method (middle curves, green) and the calibration-with-confidence approach (lower curves, blue). The various panels
represent different confidence profiles with probabilities for high, medium and low confidences in the ratios: (a) 1 : 1 : 1, (b) 1 : 1 : 2,
(c) 1 : 2 : 1 and (d) 2 : 1 : 1.

accuracy on the part of the calibrated approaches. Figure 4b gives the analogous accuracy ratios for
the maximal errors, namely (dv)max,IBA/(dv)max,avg and (dv)max,CWC/(dv)max,avg. Figure 4a demonstrates
that IBA delivers mean errors between about 60 and 80% of those coming from the SA approach, the
better improvements being associated with lower assessor numbers. This is also the most desirable
configuration for realistic assessments, as it represents employment of a minimal number of assessors
per object. The CWC approach reduces errors by about a further 10 percentage points irrespective of the
number of assessors.

4.2. Case study 2: grant proposals
To test CWC in a realistic setting, we adapted data from a university’s internal competition for research
funding, in which 43 proposals were evaluated by a panel of 11 assessors. Each proposal was graded
by two assessors, who in addition each specified a confidence level in their grading in the form of
high, medium or low. To respect confidentiality of the competition while making the data available,
we not only anonymized the proposals and assessors but also made sufficient changes to the data (while
preserving the statistical properties) so that attribution would not be possible. The actual panel used SA,
but the assessors were also asked to provide confidences so that CWC could be applied for comparison.
The panel awarded grants to the top 10 proposals. Our goals were firstly to see what differences would
have been made by use of IBA or CWC, secondly to quantify the evidence for the three models from
the data to determine which was most appropriate, and thirdly to compare the posterior uncertainties
they provide.

To apply CWC, we translated the qualitative confidence levels of high, medium and low to values
cao = λ2, 1, λ−2, respectively, with λ = 1.75. We chose λ = 1.75 as a reasonable guess at how the assessors
used the confidence scale. One could include a computation to infer λ from the data, but our preference
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errors are (dv)max,IBA/(dv)max,avg and (dv)max,CWC/(dv)max,avg, respectively. The four line types correspond to relative probabilities of
standard deviations of 5, 10 or 15, respectively, in the ratios 1 : 1 : 1 (solid); 1 : 1 : 2 (long-dashed); 1 : 2 : 1 (short-dashed) and 2 : 1 : 1 (dotted
lines).

is for panel chairs to ask assessors to provide uncertainties rather than qualitative confidence levels, as
indicated in §2, so we did not implement the inference of λ.

Figure 5a–c shows the resulting values inferred by the three methods, projected into the planes of (SA;
IBA), (IBA; CWC) and (CWC; SA), respectively. Figure 5d is a Bland–Altman or Tukey mean-difference
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Figure 5. Correlations between the results coming from the threemethods applied to Case Study 2. The three panels give the correlations
between the outputs of (a) IBA and SA; (b) CWC and IBA and (c) SA and CWC. The coefficients of determination are given, respectively,
by R2 = 0.5701; 0.8807 and 0.3772. Panel (d) is a Bland–Altman or Tukey mean-difference plot of differences between results from pairs
of approaches against their averages. The symbols ‘+’ (red) compare CWC to IBA (VCWC − VIBA versus (VIBA + VCWC)/2); ‘×’ (green)
compare IBA to SA (VIBA − Vavg versus (Vavg + VIBA)/2); ‘◦’ (blue) compare SA to CWC (Vavg − VCWC versus (VCWC + Vavg)/2).

Table 2. The 43 grant proposals are identified as OA, OB, OC, . . .OZ, OA′, OB′, . . . OP′, OQ′. Here they are ranked according to theirVavg,
VIBA andVCWC values, representing the outcomes of SA, the IBA and CWC approaches. Proposals identified by CWC as belonging to the
top 10 but missed by IBA are highlighted in boldface. Proposals identified by IBA or CWC as belonging to the top ten but missed by SA are
highlighted in italics. Proposals which are not in the CWC top 10 are underlined.

rank SAVavg IBAVIBA CWCVCWC

1 OH (87.0) OA (85.3) OA (88.8)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 OP (87.0) OC (84.9) OB (85.2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 OC (86.0) OH (80.6) OC (84.9)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 OS (84.0) OP (79.7) OD (82.8)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 OA (80.5) OD (79.5) OE (82.0)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 OM (80.5) OB (79.4) OF (78.9)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 OZ (80.5) OF (78.6) OG(78.4)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 OF (79.5) OE (76.9) OH (77.3)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 OA′ (78.5) OS (76.7) OI (77.1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 OI (78.0) OJ (76.4) OJ (75.6)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

plot [16]. The correlations are not strong, though as we would expect, the correlation of IBA with CWC
is stronger than those of either with SA. In particular, we note that the set of proposals rated in the top 10
varies substantially with the method used (table 2). The reason for the differences is that IBA and CWC
attribute a significant range of biases to the assessors (table 3).

In the absence of ‘true’ values for the proposals, how can one decide which is the best method to use,
and hence which outcome is preferred?
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Table 3. Assessor statistics: assessors are labelled AA, . . . AK according to increasing CWC-biases (5th column). Here, we give the mean
scores they awarded, standard deviations and IBA-biases too. The mean score awarded over all assessments was 66.9.

assessor mean s.d. bias (IBA) bias (CWC)

AK 84.2 16.6 14.6 17.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AJ 61.0 19.2 8.7 12.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AI 64.6 10.0 0.0 9.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AH 76.6 9.1 10.0 9.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AG 71.9 6.9 8.8 8.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AF 65.9 5.6 5.7 2.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AE 72.3 15.5 2.8 1.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AD 61.0 21.9 −5.0 −3.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AC 62.3 9.6 −12.4 −15.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AB 58.3 6.4 −12.8 −16.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AA 49.1 12.1 −20.7 −25.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4. Residuals (scaled by mean confidence in the case of CWC).

method SA IBA CWC

residual 8602 4388 3156
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5. Bayesian log-evidences.

method SA IBA CWC

log-evidence −385 −389 −387
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A first answer is to compare the ‘residuals’ that the methods leave after the least-squares fit. In the
case of SA, this means the value of equation (3.1) obtained by taking the vo to be the averaged scores and
ba = 0. For IBA, the residual is the value of (3.1) at the least-squares fit, taking all the cao = 1. For CWC,
we take the value of (3.1) at the least-squares fit, divided by the average confidence over all assessments.
The residuals are presented in table 4. From this point of view, we see clear improvement progressively
from SA to IBA to CWC, providing an apparently compelling argument for the use of CWC.

As IBA and CWC have more free parameters (the biases) than SA, however, one should penalize
them appropriately to make a correct comparison. Also although normalizing the residual for CWC by
the average confidence sounds sensible, it is not clear it is the right way to compare CWC with IBA.

A principled answer is provided by Bayesian model comparison. In this procedure, the evidence
provided by the data in favour of each model is quantified, and the best model is the one with the
highest evidence. The procedure to quantify the evidence for the three models is described in appendix E.
It depends on assumptions about the prior probability distribution for the parameters of the models,
but we took ‘ball’ priors on the true values and on the biases (constrained by the degeneracy-breaking
condition) and a truncated Jeffreys’ prior on the variance of the noise. In the notation of appendix E,
the parameters for the prior probability distributions were σO = 22.5, σA = 15, wmax = 900, wmin = 1.
As the evidences come out to be small numbers (around 10−168), we took their (natural) logarithms.
The resulting log-evidences are shown in table 5. Simple averaging wins, but these values are so close
together that we cannot make a strong conclusion about which method is most justified by the data.
Furthermore, adjusting the prior probability distributions and the confidence weights changes which
method has the highest evidence. We suspect that differences between the evidences for the models
would become apparent if each proposal had been evaluated by more than two assessors.

A third approach is to evaluate the posterior uncertainty in the values assigned to the objects for the
three methods, as detailed in appendix D, using (D 1) for IBA and CWC, and (D 2) for SA. The results are
given in table 6. On this basis, the most precise results are given by CWC. None of them are very precise,
however. A posterior uncertainty of eight means that we should consider values for the objects to have a
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Table 6. Confidence-weighted root mean square uncertainties for the values (and biases in the cases of IBA and CWC). For SA, the
weighting is according to the number no of assessors for object o.

method SA IBA CWC

uncertainty 14.1 8.4 8.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

one-third chance of differing by more than eight from the outputted values. This means that for IBA and
CWC, only the top three proposals of table 2 are reasonably assured of being in the top 10.

As the object of the competition was only to choose the best 10 proposals to fund, rather than assign
values to each proposal, it might have been more appropriate to design just a classifier system (with
a tunable parameter to make the right number in the ‘fund’ class) but our goal was to use it as a test
of CWC.

The fact that three different methods with roughly equal evidence lead to drastically different
allocation of the grants, and with large posterior uncertainties, highlights that better design of the panel
assessment was required. Large variability of outcome even when just using SA but with different
assessment graphs was already noted by Graves et al. [17]. A moral of our analysis is that to achieve a
reliable outcome, the assessment procedure needs substantial advance design. We continue a discussion
of design in appendices C and F, but substantial treatment is deferred to a future paper.

4.3. Third context: assessment of students
We also tested the method on undergraduate examination results for a degree with a flexible options
system [18] and on the assessment of a multi-lecturer postgraduate module.

In the former case, as surrogates for the confidences in the marks we took the number of Credit
Accumulation and Transfer Scheme (CATS) points for the module, which indicate the amount of time
a student is expected to devote to the module (for readers used to the European credit transfer and
accumulation system, 2 CATS points are equivalent to 1 ECTS point). The amount of assessment for a
module is proportional to the CATS points. If it can be regarded as consisting of independent assessments
of subcomponents, e.g. one per CATS point, with roughly equal variances, then the variance of the
total score would be proportional to the number of CATS points. As the score is then normalized by
the CATS points, the variance becomes inversely proportional to the CATS points, making confidence
directly proportional to CATS points. The outcome of our analysis indicated significant differences in
standards for the assessment of different modules, but as most modules counted for 15 or 18 CATS, this
was not a strong test of the merits of including confidences in the analysis, so we do not report on it here.

For the postgraduate module, there were four lecturers plus module coordinator, who each assessed
oral and written reports for some but not all of the students, according to availability and expertise
(except the coordinator assessed them all). Each assessor provided a score and an uncertainty for each
assessment. The results were combined using our method and the resulting value for each student was
reported as the final mark. The lecturers agreed that the outcome was fair.

5. Discussion
We have presented and tested a method to calibrate assessors in a panel, taking account of differences in
confidence that they express in their assessments. From a test on simulated data we found that calibration
with confidence (CWC) generated closer estimates of the true values than Additive incomplete block
analysis (IBA) or simple averaging (SA). A test on some real data, however, provided little evidence to
distinguish between the methods, though they produced wildly different rankings, suggesting that the
assessment procedure for that context needed more robust design. Nevertheless, CWC came ahead on
posterior precision. We note that the default of assuming all assessment confidences to be equal results
in IBA, which already represents a useful improvement over SA.

One of the principal conclusions from our analysis is that to achieve reliable outcomes from the
methods we tested, requires good design of the assessment graph (showing which objects are evaluated
by which assessors and with what confidences).

All three methods we compared are based on least-squares fitting. They may therefore be considered
overly sensitive to outliers. An alternative approach which is less sensitive to outliers is based on medians
rather than means. For example, Tukey’s Median Polish [19] is a median-based version of Fisher’s IBA.
It would be good to develop a version of it that takes confidences into account too.
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Some other drawbacks of our CWC method are:

— It requires assessors to give reliable uncertainties; if assessors differ in their confidence estimates
the method gives higher weight to those who give higher confidences. In particular, one needs
to guard against an assessor giving unwarrantedly high confidence for a particular assessment.
There is a case for calibrating confidences too.

— Bias effects may be more subtle than just an additive effect; for example, an assessor may be
more generous (or perhaps tougher) on topics in which they have high confidence, or they may
use a shorter or longer part of the scale than other assessors.

— Some organizations insist on round-number scores; this goes against the spirit of our approach
and is awkward for assessors who may rightly wish to rate an object as between two of the
allowed grades. The requirement is perhaps based on the laudable idea of not wishing to imply
higher accuracy than is warranted, yet in our opinion this is better dealt with by reporting an
uncertainty for each result on a continuous scale.

— Some organizations may insist that scores cannot go beyond certain limits, which is awkward
for an assessor if after evaluating several objects highly they find there are some they wish to
rate even higher.

There are a number of refinements which one could introduce to the core method, addressing some of
these drawbacks. These include how to deal with different types of bias, different scales for confidence,
different ways to remove the degeneracy in the equations, how to deal with the endpoints on a marking
scale, and how to choose the assessment graph. Some suggestions are made in the appendices, along with
mathematical treatment of the robustness of the method and of computation of the Bayesian evidence
for the models.

An advantage of our type of calibration is that it does not produce the artificial discontinuities across
field boundaries that tend to arise if the domain is partitioned into fields and evaluation in each field
carried out separately. In the UK Research Assessment Exercise 2008, for example, there is evidence that
different panels had different standards [20]. Although RAE2008 stated that cross-panel comparisons are
not justified, some universities have used such comparisons to help decide on how much to resource
different departments. Our approach would take advantage of cross-panel referrals (which was part of
RAE2008 for work in the overlaps between panels) to infer relative standards and hence to normalize
the outcomes.

We suggest that a method such as this, which takes into account declared confidences in each
assessment, is well suited to a multitude of situations in which a number of objects is assessed by a panel.
We acknowledge, however, that this approach requires an investment in training assessors to estimate
their uncertainties and in constructing a sufficiently strongly connected assessment graph. Different
panels will deal with the trade-off between investment of effort and accuracy of results in different ways.

Data accessibility. Software implementing the method is free to download from the website http://calibratewithconfi
dence.co.uk. Software and data for the two case studies are available from https://github.com/ralphkenna/CWC.git.
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Appendix A. Scale for confidences
We motivated the model by proposing that the noise terms be of the form σaoηao with the ηao independent
zero-mean random variables with unit variance, so that the σao are standard deviations. Nevertheless,
multiplying all the confidences by the same number does not change the results of the least-squares
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fit, nor our quantifications of robustness (appendices C and D). Thus, the ηao can be taken to have
any variance w, as long as it is the same for all assessments. It is only ratios of confidences that have
significance.

The fitting procedure can be extended to infer a best-fit value for w. Even if the assessors provide
confidences based on assuming w = 1, the best fit for w is not 1 in general. Assuming independent
Gaussian errors, the maximum-likelihood value for w comes out to be

w̄ = R
N

,

where

R =
∑
ao

cao(sao − v̄o − b̄a)2 (A 1)

is the residual from the least-squares fit (v̄, b̄) for (v, b) and N is the total number of assessments. The
posterior distribution for w, given a prior distribution, is obtained in appendix D.

Appendix B. Degeneracy-breaking conditions
We can remove the degeneracy in equations (3.2) and (3.3) in different manners from equation (3.8) used
here. Indeed, use of (3.8) can lead to an average shift from the scores to the true values. This does not
matter if only a ranking is required, but if the actual values are important (e.g. for degree classification),
then a better choice of degeneracy-breaking condition is needed.

A preferable confidence-weighted degeneracy-breaking condition is∑
a

C′
aba = 0, (B 1)

which from (3.3) automatically implies
∑

o Covo =∑
ao caosao, thus avoiding the possibility of such

systematic shifts.
From a theoretical perspective, however, the best choice of degeneracy-breaking condition is to choose

a reference value vref (think of a notional desired mean) and require∑
ao

cao(vo − ba) = Cvref, (B 2)

where

C =
∑
ao

cao. (B 3)

Using the notation in (3.6) and (3.7), this can equivalently be written as∑
o

Covo −
∑

a
C′

aba = Cvref. (B 4)

To reduce the possible average shift from confidence-weighted average scores to true values, the
reference value vref should be chosen near the confidence-weighted average score

s̄ =
∑
ao

caosao

C
. (B 5)

Choosing vref exactly equal to s̄ gives (B 1), which makes the confidence-weighted average bias come out
to 0 and the confidence-weighted average value come out to s̄. We will show in appendix C, however,
that the results are a factor

√
2 more robust to changes in the scores if vref is chosen to be fixed rather than

dependent on the scores.
For any affine choice of degeneracy-breaking condition on the biases,

∑
a βaba = γ , the reduced system

(3.12) can be solved either by replacing one of the equations by the degeneracy-breaking condition as in
§3, or by appending an additional unknown s, adding βas to the left-hand side of each equation (3.12),
and appending the degeneracy-breaking equation as an additional equation. The latter option has the
advantage of preserving the symmetry of the matrix representing the system of equations and hence
twice as efficient algorithms to solve them (symmetric indefinite factorization). The additional unknown
s comes out to be 0 because of the relation α(V, B) = 0 mentioned after (3.10).
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Appendix C. Robustness to changes in the scores
Here, we present our approach to the quantification of the robustness of our method to small changes in
the scores, using norms that take into account the confidences.

For s = (sao)(a,o)∈E, define the operator K by

Ks =
[

V
B

]
, (C 1)

as a shorthand for the definitions in equations (3.4) and (3.5), so that equations (3.2) and (3.3) can be
written as

L

[
v

b

]
= Ks. (C 2)

Thus, if a change 
s is made to the scores, we obtain changes 
v, 
b of magnitude bounded by∥∥∥∥∥
v


b

∥∥∥∥∥≤ ‖L−1K‖‖
s‖, (C 3)

where L−1 is defined by restricting the domain of L to (3.8) and its range to α(V, B) = 0, and appropriate
norms are chosen. In this appendix, we propose that appropriate choices of norms are

‖
s‖scores =
√∑

ao
cao 
s2

ao, (C 4)

‖(
v, 
b)‖results =
√∑

ao
cao(
v2

o + 
b2
a) =

√∑
o

Co 
v2
o +

∑
a

C′
a 
b2

a , (C 5)

and the associated operator norm from scores to results for ‖L−1K‖. With the confidence-weighted
degeneracy-breaking condition

∑
C′

aba = 0, (B 1) instead of (3.8), we obtain

‖L−1K‖ ≤
√

2√
μ2

, (C 6)

where μ2 is the second smallest eigenvalue of a certain matrix M formed from the confidences (see (C 10)).
In particular, this gives

|δvo| ≤ 1√
Co

√
2√
μ2

√∑
ao

cao δs2
ao. (C 7)

The factor of
√

2 can be removed if one switches to an ideal degeneracy-breaking condition as in (B 2) of
appendix B.

As a consequence, to maximize the robustness of the results, the task for the designer of E is to make
none of the Co much smaller than the others and to make μ2 significantly larger than 0. The former is
evident (no object should receive significantly less assessment or less expert assessment than the others).
The latter is the mathematical expression of how well connected is the graph Γ (equivalently ΓA). To
design the graph Γ requires a guess of the confidence levels that assessors are likely to give to their
assessments (based on knowing their areas of expertise and their thoroughness or otherwise) and a
compromise between assigning an object to only the most expert assessors for that object and the need
to achieve a chain of comparisons between any pair of assessors.

We now go into detail, derive the above bounds and describe some computational short cuts.
One can measure the size of a change 
sao to a score sao by comparing it to the declared uncertainty

σao. Thus, we take the size of 
sao to be
√

cao |
sao|. We propose to measure the size of an array 
s of
changes 
sao to the scores by the square root of the sum of squares of the sizes of the changes to each
score, as in (C 4). Supremum or sum-norms could also be considered but we will stick to this choice here.

It is also reasonable to measure the size of a change 
vo to a true value vo by comparing it to the
uncertainty implied by the sum of confidences in the scores for object o. Thus, the size of 
vo is defined
to be

√
Co |
vo|, where Co is the total confidence in the assessment of object o. Similarly, we measure the

size of a change 
ba in bias ba by
√

C′
a |
ba| where C′

a is the total confidence expressed by a given assessor.
Finally, we measure the size of a change (
v, 
b) to the vector of values and biases by the square root of
sum of squares of the individual sizes, as in (C 5).
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The size of the operator L−1K is measured by the operator norm from scores to results, i.e.

‖L−1K‖ = sup

s�=0

‖L−1K
s‖results

‖
s‖scores
. (C 8)

The operator L−1K is equivalent to orthogonal projection with respect to the norm (C 4) from the scores to
the subspace Σ of the form sao = vo + ba with a degeneracy-breaking condition to eliminate the ambiguity
in direction of the vector vo = 1, ba = −1.

The tightest bounds in (C 3) are obtained by choosing the degeneracy-breaking condition to
correspond to a plane perpendicular to this vector with respect to the inner product corresponding to
equation (C 5). Thus, we choose degeneracy-breaking condition (B 2).

Theorem. For a connected graph Γ and with the degeneracy-breaking condition (B 2), the size of the change
(
v, 
b) resulting from a given array of changes 
s in scores is bounded by

‖(
v, 
b)‖results ≤ 1√
μ2

‖
s‖scores, (C 9)

where μ2 is the second smallest eigenvalue of the matrix

M =
[

INO D
DT INA

]
, (C 10)

DT
ao = cao√

CoC′
a

, (C 11)

NA, NO are the numbers of assessors and objects, respectively, and for k ∈ N, Ik is the identity matrix of rank k.

Proof. Firstly, the orthogonal projection in metric (C 4) from s to the subspace Σ never increases length.
Secondly, if 
sao = 
vo + 
ba with

∑
ao cao(
vo − 
ba) = 0 then

‖
s‖2
scores =

∑
ao

cao(
vo + 
ba)2 = gTMg, (C 12)

where g is the vector with components

go = ṽo :=
√

Co 
vo, (C 13)

ga = b̃a :=
√

C′
a 
ba. (C 14)

Then, because we restricted to the subspace orthogonal to the null vector in results-norm, and M is
non-negative and symmetric

gTMg ≥ μ2
∑

i

g2
i = μ2‖(
v, 
b)‖2

results,

where index i ranges over all objects and assessors. Positivity of μ2 holds as soon as the graph Γ is
connected, because M is a transformation of the weighted graph-Laplacian to scaled variables [21], so
dividing by μ2 and taking the square root yields the result. �

The computation of the eigenvalue μ2 of M can be reduced from dimension NA + NO to dimension
NA by

Proposition. If NA ≥ 2, the second smallest eigenvalue μ2 of M is related to the second largest eigenvalue λ2
of DTD by

μ2 = 1 −
√

λ2. (C 15)

If NA = 1 and NO ≥ 2, then μ2 = 1. If both are 1, then μ2 = 2.

Proof. The equations for an eigenvalue–eigenvector pair μ, (ṽ, b̃) of M are

ṽ + Db̃ = μṽ (C 16)

DTṽ + b̃ = μb̃. (C 17)

Applying DT to the first equation, multiplying the second by (1 − μ), and then substituting for
(1 − μ)DTṽ in the second yields

DTDb̃ = (1 − μ)2b̃. (C 18)

Thus, either b̃ = 0 or (1 − μ)2 is an eigenvalue λ of DTD. In the first case, equation (C 16) implies μ = 1, so
if μ �= 1 then (1 − μ)2 is an eigenvalue of DTD.
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Conversely, if (λ, b̃) is an eigenvalue–eigenvector pair for DTD with λ �= 0 then λ > 0 because DTD is

non-negative, so put ṽ = ±Db̃/
√

λ to see that (ṽ, b̃) is an eigenvector of M with eigenvalue μ = 1 ± √
λ. If

λ = 0 and Db̃ = 0 then μ = 1 is an eigenvalue of M with eigenvector (ṽ, b̃) for any ṽ with DTṽ = 0, e.g. ṽ = 0.
Thus, there is a two-to-one correspondence between eigenvalues μ of M not equal to 1 and positive

eigenvalues λ of DTD (counting multiplicity): μ = 1 ± √
λ. Any remaining eigenvalues are 1 for M and

0 for DTD. The degeneracy gives an eigenvector ṽo = √
Co, b̃a = −

√
C′

a of M with eigenvalue 0 and it
corresponds to an eigenvalue 1 of DTD. All other eigenvalues of M are non-negative because M is. All
other eigenvalues of DTD are less than or equal to 1 by the Cauchy–Schwarz inequality. So if the second
largest eigenvalue λ2 of DTD (counting multiplicity) is positive, then the second smallest eigenvalue μ2
of M (counting multiplicity) is 1 − √

λ2. If λ2 = 0, then μ2 = 1 because existence of λ2 implies NA ≥ 2 so
M has dimension at least three and we have only two simple eigenvalues μ = 0 and 2 from the simple
eigenvalue 1 of DTD, so M must have another one but any other value than 1 would give a positive
λ2; so the same formula holds. If there is no second eigenvalue of DTD (because NA = 1), then if NO ≥ 2
the second largest eigenvalue of M must be 1 by the same argument. If both NA and NO are 1, then the
second largest eigenvalue of M is the other one associated with the eigenvalue 1 of DTD, namely 2. �

Note that

(DTD)aa′ = Caa′√
C′

aC′
a′

is a similarity transformation of (3.13). As examples of second eigenvalues, putting unit confidences on
the graphs in the left column of figure 1 we calculate λ2 = 1

3 , 2
3 , 1 for cases (a), (b), (c) in the right column,

giving μ2 = 1 −
√

1
3 , 1 −

√
2
3 , 0, respectively.

Finally, a user may prefer to use the degeneracy-breaking condition (B 1) rather than (B 2), perhaps
out of uncertainty about what value of vref to use. Or a user may be happy to use (B 2) with vref equal to
the confidence-weighted average score, but wants vref to follow this average score if changes are made
to the scores. That comes out equivalent to using (B 1). So we extend our discussion of robustness to treat
this case. We find it makes the bounds increase by a factor of only

√
2.

Proposition. For Γ connected and using degeneracy-breaking condition (B 1), the size of (
v, 
b) resulting
from changes 
s to the scores is at most (

√
2/

√
μ2)‖
s‖scores.

Proof. If the degeneracy-breaking condition (B 2) gives a change (
v, 
b) for a change 
s to the scores,
then switching to degeneracy-breaking condition (B 1) just adds an amount k of the null vector n = (1, −1)
to achieve

∑
a C′

a(
ba − k) = 0, i.e.

k =
∑

a C′
a
ba

C
. (C 19)

In the results metric, the null vector has length
√∑

o Co +∑
a C′

a = √
2C. Thus, the correction has

length |k|√2C = √
2/C |∑C′

a
ba|. Using the condition (B 2), we can write
∑

a C′
a
ba = 1

2 (
∑

a C′
a
ba +∑

o Co
vo), which one can recognize as one half of the inner product of (1, 1) with (
v, 
b) in results-
norm, so it is bounded by

√
C/2 ‖(
v, 
b)‖. Thus, the length of the correction vector is at most

that of (
v, 
b). The correction is perpendicular to (
v, 
b), thus the vector sum has length at most√
2 ‖(
v, 
b)‖. �

One may also ask about robustness with respect to changes in the confidences cao. If an assessor
declares extra high confidence for an evaluation, for example, that can significantly skew the resulting v

and b. The analysis is more subtle, however, because of how the cao appear in the equations and we do
not treat it here.

Appendix D. Posterior probability distribution
Another point of view on robustness is the Bayesian one. From a prior probability on (v, b) and a model
for the ηao, one can infer a posterior probability for (v, b), whose inverse width tells one how robust is
the inference.

In the case of flat prior on (v, b), prescribed w, Gaussian noise, and an affine degeneracy-breaking
condition, the posterior is Gaussian with mean at the value solving equations (3.2) and (3.3) and the
degeneracy-breaking condition, and with covariance matrix related to L−1. Specifically, the posterior
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probability density for (v, b) is proportional to

exp − S
2w

,

constrained to the degeneracy-breaking hyperplane, where

S =
∑
ao

cao(sao − vo − ba)2.

Using (C 12) and (A 1), this can be written as

exp − 1
2w

(gTMg + R),

with (
v, 
b) being the deviations of (v, b) from the least-squares fit. Thus, the covariance matrix in
these scaled variables is wM−1, where for degeneracy-breaking condition γ Tg = K, M−1 is interpreted
as the limit as t → ∞ of (M + tγ γ T)−1. Using the degeneracy-breaking condition (B 2) or equivalently
(B 4) for which γ is in the null direction of M and diagonalizing the matrix, we obtain widths

√
w/μj

for the posterior on g in the eigendirections of M, where μj are the positive eigenvalues of M. Thus, the
robustness of the inference is again determined by μ2, but scaled by

√
w.

A slightly more sophisticated approach is to consider w to be unknown also. Given a prior density
ρ for w (which could be peaked around 1 if the assessors are assigning confidences via uncertainties,
but following Jeffreys would be better chosen to be 1/w if there is no information about the scale for the
confidences), the posterior density for (w, v, b) is proportional to

ρ(w)w−N/2 exp − S
2w

,

where again N is the number of assessments. The maximum of the posterior probability density is
determined by the least-squares fit for (v, b) (which is independent of w) and the following equation
for w:

ρ′(w)
ρ(w)

− N
2w

+ S
2w2 = 0.

For N large, the peak of the posterior has w near the previously determined maximum-likelihood value
w̄ = R/N. For example, taking Jeffreys’ prior, the peak is at w = R/(N − 2). Integrating over w (with
Jeffreys’ prior) one finds the marginal posterior for (v, b) to be proportional to

(gTMg + R)−N/2.

Incorporating an affine degeneracy-breaking condition, this is a (NO + NA − 1)-variate Student
distribution with ν = N − NO − NA + 1 degrees of freedom. Its covariance matrix is w∗M−1 with

w∗ = R
ν − 2

and M−1 interpreted by imposing the chosen degeneracy-breaking condition as above.
So for the degeneracy-breaking condition (B 2), the robustness of the inference is given by widths√

w∗/μj for j ≥ 2, in the eigendirections of M on g. In particular, the confidence-weighted root mean
square uncertainty σ for the components of the vector (v, b) is

σ =
√√√√w∗

2C

∑
j≥2

1
μj

=
√

R Tr M−1

2(ν − 2)C
, (D 1)

where Tr denotes the trace and, again, M−1 is interpreted by restricting to the degeneracy-breaking plane.
Marginal posteriors for each vo and ba can be extracted, but it must be understood that in general they are
significantly correlated. One way to do this in the case of degeneracy-breaking condition (B 2) is to find
the orthogonal matrix O to diagonalize M as OTDO with D = diag(μj), and then the posterior variance
of gi is w∗∑

j>1 O2
ji/μj, but there may be ways to evaluate it without diagonalizing M.

For the case of SA, the root mean square posterior uncertainty in the values, weighted by the numbers
no of assessors for object o, is

σ =
√

R
N − NO

, (D 2)

where R is defined in (E 3) of appendix E. This can be derived in an analogous fashion to (D 1) via a
Student distribution again, but with M = INO .
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Appendix E. Model comparison
Here we describe the method used in case study 2 to compare the three models.

Bayesian model comparison is based on computing how much evidence there is for each proposed
model (e.g. ch. 28 of [22]). The evidence for a model M given data D is P(D | M). Given strength of belief
P(M) in model M prior to the data (relative to other models), one can multiply it by the evidence to obtain
the posterior strength of belief in model M. It is convenient to replace multiplication by addition, thus
we define the log-evidence

LE(M | D) = log P(D | M).

If the model M has free parameters μ, then

P(D | M) =
∫

P(D | M, μ)PM(μ) dμ,

where PM(μ) is a prior probability density on μ.
Let there be NO objects, NA assessors, let sao be the score returned by assessor a for object o, cao the

confidence in this score in the case of calibration with confidence, s be the collection of scores and N be
their number.

First, we compute the evidence for SA. Then we treat calibrate with confidence (CWC) and lastly IBA
because it is a special case of CWC.

E.1. Simple averaging
For SA, the model is that

sao = vo + εao

for some unknown vector v of ‘true’ values vo, with εao iid normal N(0, w) for some unknown variance
w. Then the probability density for the scores s is

P(s | v, w) =
∏ e−(sao−vo)2/2w

√
2πw

= (2πw)−N/2e−(1/2w)
∑

(sao−vo)2
,

with the product and sum being over the assessments that were carried out.
To work out the evidence for SA the model must include a prior probability density for v and w. The

simplest proposal would be 
−NO L−1w−1 on vo ∈ [vmin, vmax], w ∈ [wmin, wmax], where 
 = vmax − vmin
and L = log(wmax/wmin). This is the product of a ‘box’ prior on v and Jeffreys’ prior on w (truncated to an
interval and normalized). For comparison with the other models, however, it is easier to replace the box
prior on v by a ‘ball’ prior, giving

PSA(v, w) = 1
ZOLw

on ∑
o

(vo − vref)
2 ≤ NOσ 2

O, (E 1)

for some anticipated average score vref and upper estimate of the width σO of the distribution of values
vo. The normalization is

ZO = (πNOσ 2
O)NO/2

Γ (NO/2 + 1)
,

where Γ is the Gamma function. For wmin is it reasonable to choose u2 where u is the smallest change
any assessor could contemplate. For wmax it is reasonable to choose σ 2

O.
For each object o, ∑

a
(sao − vo)2 = no(vo − s̄o)2 + Ro,

where no is the number of assessors for object o, s̄o is the mean of their scores, and the residual

Ro =
∑

a
(sao − s̄o)2. (E 2)

Thus

P(s | v, w)PSA(v, w) = 1
ZOLw

(2πw)−N/2e−(1/2w)
∑

o no(vo−s̄o)2
e−R/2w,
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where

R =
∑

o
Ro. (E 3)

To integrate this over v and w, we assume the bulk of the probability distribution lies in the product
of the ball and the interval, and so approximate by extending the range of integration to R

NO × (0, ∞).
Integrating the exponential over vo produces a factor

√
2πw
no

.

Thus, integrating over all components of v yields

1
ZOLw

(2πw)−(N−NO)/2e−R/2w
∏

n−1/2
o .

Integrating this over w, we obtain the evidence

P(SA | s) = 1
ZOL

(πR)−(N−NO)/2Γ

(
N − NO

2

)∏
n−1/2

o

and the log-evidence

LE(SA | s) = log Γ

(
N − NO

2

)
− N − NO

2
log πR − 1

2

∑
o

log no − log ZO − log L.

E.2. Calibration with confidence
For calibrate with confidence (CWC), the model is

sao = vo + ba + σaoηao,

for some unknown vectors v of true values vo, and b of assessor biases ba, with ηao iid normal N(0, w) for
some unknown variance w. The uncertainties σao correspond to confidences cao by σao = 1/

√
cao, which

are considered as given (one could propose a generative model for them too, but that would require
further analysis). Then the probability density for s is

P(s | v, b, w) =
∏ e−cao(sao−vo−ba)2/2w

√
2πw/cao

= (2πw)−N/2e−(1/2w)
∑

cao(sao−vo−ba)2 ∏
c1/2

ao .

For prior probability density over the parameters v, b, w, we want to build in a degeneracy-breaking
condition. We used

∑
a ba = 0 in our calculation, thus we take prior ‘density’

PCWC(v, b, w) = 1
ZOZALw

δ

(∑
a

ba

)

on the product of the balls (E 1) and
∑

a b2
a ≤ NAσ 2

A and interval [wmin, wmax], where δ is the delta
function. Here, σA is an estimated upper bound for the standard deviation of the biases, and the
normalization is

ZA = 1√
NA

(πNAσ 2
A)(NA−1)/2

Γ ((NA + 1)/2)
.

Note that the interpretation of w is not the same as for SA, so one might choose a different prior for it.
For example, if the σao are fairly accurate values for the uncertainties in the scores then the prior for w
should be peaked around w = 1, but if they are on an undetermined scale a truncated Jeffreys prior is
sensible. The only thing is that one might want to choose a different interval for it, but for application
to IBA where the cao = 1 or to CWC if the cao are on a scale centred around 1, such as we have used to
translate the quantitative high/medium/low confidence ratings, the same interval should be reasonable.
Similarly, one might want to use a different value for σO if one believes that the spread in values is more
due to variation in assessor bias than true value, but in our case we think it reasonable to use the same σO.
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Thus,

P(s | v, b, w)PCWC(v, b, w)

= 1
ZOZALw

(2πw)−N/2e−(1/2w)
∑

cao(vo+ba−sao)2
δ

(∑
a

ba

)∏√
cao.

Again we assume the bulk of this lies in the product of balls and interval, so we approximate its integral
by extending the domains to infinity. Now∑

cao(sao − vo − ba)2 = hTAh + R,

where h is the vector with NO + NA components, ho = (vo − v̄o), ha = (ba − b̄a), (v̄, b̄) is any least-squares
fit to this model (without loss of generality satisfying the degeneracy-breaking condition), the residual R
is now

∑
cao(sao − v̄o − b̄a)2 (as in (A 1)) and A is the matrix with block form[

diag(Co) cT

c diag(C′
a)

]
.

Choose one assessor, say n, and integrate over bn. This yields

1
ZOZALw

(2πw)−N/2e−(1/2w)(h̃TÃh̃+R)
∏√

cao,

with h̃ being the remaining components of h and

Ã =
[

diag(Co) c̃T

c̃ diag(C′
a) + C′

nE

]
,

where c̃ao = cao − cno and Eaa′ = 1, restricted to a, a′ �= n, which takes into account that bn = −∑a�=n ba.

Thus, the integral over h̃ is
1

ZOZALw
(2πw)−ν/2e−R/2w

∏√
cao√

det Ã
,

where ν = N − NO − NA + 1.
Finally, we integrate over w to obtain

P(CWC | s) = 1
ZOZAL

(πR)−ν/2Γ
(ν

2

) ∏√
cao√

det Ã
,

and the log-evidence is

LE(CWC | s) = log Γ
(ν

2

)
− ν

2
log πR + 1

2

∑
log cao

− 1
2

log det Ã − log ZO − log ZA − log L.

E.3. Incomplete block analysis
The model for IBA is the same as for CWC but taking the confidences cao = 1 for all the assessments.
Thus, the log-evidence for IBA given the scores s is

LE(IBA | s) = log Γ
(ν

2

)
− ν

2
log πR − 1

2
log det Ã − log ZO − log ZA − log L,

with the appropriate changes to R and Ã.

Appendix F. Potential refinements to the method
One could develop refinements to the basic model (2.4). For example, assessors might have not only an
additive bias but also different scales, so, for example,

sao = λavo + ba + σaoηao. (F 1)

Fitting λ, v, b is more complicated, however, than just v, b.
An assessor may have a bias correlated with their confidence [23] or with some other feature like

familiarity [24]. Assessors may like to give round-number scores or the organizers of the panel may insist
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on them. Assessors may have different scales for confidence, so their confidences may need calibrating
as well as their scores.

Another problem is that often assessors are asked to assign scores in a fixed range [A, B], e.g. 1–10.
Then any model for bias really ought to be nonlinear to respect the endpoints. One way to treat this is to
apply a nonlinear transformation to map a slightly larger interval (a, b) onto R, e.g.

x �→ s = x − (a + b)/2
(b − x)(x − a)

(F 2)

or

x �→ s = log
b − x
x − a

, (F 3)

apply our method to the transformed scores, scaling the confidences by the inverse square of the
derivative of the transformation, and then apply the inverse transformation to the ‘true’ values. On
the other hand, it may be inadvisable to specify a fixed range because it requires an assessor to have
knowledge of the range of the objects before starting scoring. Thus, one could propose asking assessors
to use any real numbers and then use equation (F 1) to extract true values v. A simpler strategy that might
work nearly as well is to allow assessors to use any positive numbers but then to take logarithms and fit
equation (2.4) to the log-scores. The assessor biases would then be like logarithms of exchange rates. The
confidences would need translating appropriately too.

One issue with our method is that the effect of an assessor who assesses only one object is only to
determine their own bias, apart from an overall shift along the null vector (v, b) = (1, −1) for the rest. To
rectify this, one could incorporate a prior probability distribution for the biases (indeed, this was done
by Platt & Burges [8] in the form of a regularizer).

An interesting future project is to design the graph Γ optimally, given advance guesses of confidences
and constraints (like conflicts of interest) or costs for the number of assessments per assessor. ‘Optimality’
would mean to achieve maximum precision or robustness of the resulting values. For instance, in
each case of figure 1, each assessor has the same amount of work and each object receives the same

amount of attention, but (a) achieves full connectivity with a resulting value for μ2 of 1 −
√

1
3 ≈ 0.42,

whereas (b) achieves moderate connectivity and a smaller value of μ2 = 1 −
√

2
3 ≈ 0.18 and (a) is not even

connected and has μ2 = 0.

References
1. Meadows M. 2006 Can we predict who will be a

reliable marker? Manchester, UK: AQA Centre for
Education Research and Policy.

2. Paul SR. 1981 Bayesian methods for calibration of
examiners. Br. J. Math. Stat. Psychol. 34, 213–223.
(doi:10.1111/j.2044-8317.1981.tb00630.x)

3. Næs T, Brockhoff P, Tomic O. 2010 Statistics for
sensory and consumer science. Chicester, UK: Wiley.

4. Fisher RA. 1940 An examination of the different
possible solutions of a problem in incomplete
blocks. Ann. Eugenics 10, 52–75. (doi:10.1111/
j.1469-1809.1940.tb02237.x)

5. Giesbrecht FG. 1986 Analysis of data from
incomplete block designs. Biometrics 42, 437–448.
(doi:10.2307/2531064)

6. Flach PA, Spiegler S, Golenia B, Price S, Guiver J,
Harbrich R, Graepel T, Zaki MJ. 2009 Novel tools to
streamline the conference review process;
experiences from SIGKDD’09. See http://research.
microsoft.com/pubs/122784/ReviewerCalibration.
pdf.

7. Guiver J. 2010 Calibrating reviews of conference
submissions. See http://blogs.msdn.com/b/
infernet_team_blog/archive2011/09/30/calibra
ting-reviews-of-conference-submissions.aspx.

8. Platt J, Burges C. 2012 Regularised least squares to
remove reviewer bias. See

http://research.microsoft.
com/en-us/um/people/cburges/papers/Reviewer
Bias.pdf.

9. Ge H, Welling M, Ghahramani Z. 2013 A Bayesian
model for calibrating conference review scores. See
http://mlg.eng.cam.ac.uk/hong/nipsrevcal.pdf.

10. Thorngate W, Dawes RM, Foddy M. 2008 Judging
merit. New York, NY: Psychology Press.

11. Hubbard DW. 2014 How to measure anything, 3rd
edn. New York, NY: Wiley.

12. Sattler DN, McKnight PE, Naney L, Mathis R. 2015
Grant peer review: improving inter-rater reliability
with training. PLoS ONE 10, e0130450. (doi:10.1371/
journal.pone.0130450)

13. Meyer CD. 2001Matrix analysis and applied linear
algebra. Philadelphia, PA: SIAM.

14. Golub GH, van Loan CF. 1996Matrix computations.
Baltimore, MD: Johns Hopkins University Press.

15. Snell RR. 2015 Menage a Quoi? Optimal number of
peer reviewers. PLoS ONE 10, e0120838. (doi:10.1371/
journal.pone.0120838)

16. Bland JM, Altman DG. 1986 Statistical methods for
assessing agreement between two methods of
clinical measurement. Lancet 327, 307–310.
(doi:10.1016/S0140-6736(86)90837-8)

17. Graves N, Barnett AG, Clarke P. 2011 Funding grant
proposals for scientific research: retrospective

analysis of scores by members of grant review
panel. Br. Med. J. 343, d4797. (doi:10.1136/bmj.
d4797)

18. Parker S. 2014 A test of a method for calibration of
assessors. Final year undergraduate project report,
University of Warwick.

19. Tukey JW. 1977 Exploratory data analysis. Reading,
MA: Addison Wesley.

20. Kenna R, Berche B. 2011 Normalisation of research
evaluation results across academic disciplines. Res.
Eval. 20, 107–116. (doi:10.3152/095820211X1294137
1876625)

21. Chung FRK. 1996 Spectral graph theory. Providence,
RI: American Mathematical Society.

22. MacKay DJC. 2003 Information theory, inference and
learning algorithms. Cambridge, UK: Cambridge
University Press.

23. Song T, Wolfe EW, Hahn L, Less-Petersen M,
Sanders R, Vickers D. 2014 Relationship between
Rater Background and Rater Performance. See
https://www.pearson.com/content/dam/one-dot-com/
one-dot-com/global/Files/efficacy-and-research/schools/
022_Song_RaterBackground_04_21_2014.pdf.

24. Fuchs D, Fuchs LS. 1986 Test procedure bias: a
meta-analysis of examiner familiarity effects. Rev.
Educ. Res. 56, 243–262. (doi:10.3102/003465430
56002243)

 on April 26, 2017http://rsos.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1111/j.2044-8317.1981.tb00630.x
http://dx.doi.org/doi:10.1111/j.1469-1809.1940.tb02237.x
http://dx.doi.org/doi:10.1111/j.1469-1809.1940.tb02237.x
http://dx.doi.org/doi:10.2307/2531064
http://research.microsoft.com/pubs/122784/ReviewerCalibration.pdf
http://research.microsoft.com/pubs/122784/ReviewerCalibration.pdf
http://research.microsoft.com/pubs/122784/ReviewerCalibration.pdf
http://blogs.msdn.com/b/infernet_team_blog/archive2011/09/30/calibrating-reviews-of-conference-submissions.aspx
http://blogs.msdn.com/b/infernet_team_blog/archive2011/09/30/calibrating-reviews-of-conference-submissions.aspx
http://blogs.msdn.com/b/infernet_team_blog/archive2011/09/30/calibrating-reviews-of-conference-submissions.aspx
http://research.microsoft.com/en-us/um/people/cburges/papers/ReviewerBias.pdf
http://research.microsoft.com/en-us/um/people/cburges/papers/ReviewerBias.pdf
http://research.microsoft.com/en-us/um/people/cburges/papers/ReviewerBias.pdf
http://mlg.eng.cam.ac.uk/hong/nipsrevcal.pdf
http://dx.doi.org/doi:10.1371/journal.pone.0130450
http://dx.doi.org/doi:10.1371/journal.pone.0130450
http://dx.doi.org/doi:10.1371/journal.pone.0120838
http://dx.doi.org/doi:10.1371/journal.pone.0120838
http://dx.doi.org/doi:10.1016/S0140-6736(86)90837-8
http://dx.doi.org/doi:10.1136/bmj.d4797
http://dx.doi.org/doi:10.1136/bmj.d4797
http://dx.doi.org/doi:10.3152/095820211X12941371876625
http://dx.doi.org/doi:10.3152/095820211X12941371876625
https://www.pearson.com/content/dam/one-dot-com/one-dot-com/global/Files/efficacy-and-research/schools/022_Song_RaterBackground_04_21_2014.pdf
https://www.pearson.com/content/dam/one-dot-com/one-dot-com/global/Files/efficacy-and-research/schools/022_Song_RaterBackground_04_21_2014.pdf
https://www.pearson.com/content/dam/one-dot-com/one-dot-com/global/Files/efficacy-and-research/schools/022_Song_RaterBackground_04_21_2014.pdf
http://dx.doi.org/doi:10.3102/00346543056002243
http://dx.doi.org/doi:10.3102/00346543056002243
http://rsos.royalsocietypublishing.org/

	kennacover
	kenna
	Introduction
	The model
	Solution of the model
	Case studies
	Case study 1: simulation
	Case study 2: grant proposals
	Third context: assessment of students

	Discussion
	Simple averaging
	Calibration with confidence
	Incomplete block analysis

	References


