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a b s t r a c t 

Under normality and homoscedasticity assumptions, Linear Discriminant Analysis (LDA) is known to be 

optimal in terms of minimising the Bayes error for binary classification. In the heteroscedastic case, LDA 

is not guaranteed to minimise this error. Assuming heteroscedasticity, we derive a linear classifier, the 

Gaussian Linear Discriminant (GLD), that directly minimises the Bayes error for binary classification. In 

addition, we also propose a local neighbourhood search (LNS) algorithm to obtain a more robust clas- 

sifier if the data is known to have a non-normal distribution. We evaluate the proposed classifiers on 

two artificial and ten real-world datasets that cut across a wide range of application areas including 

handwriting recognition, medical diagnosis and remote sensing, and then compare our algorithm against 

existing LDA approaches and other linear classifiers. The GLD is shown to outperform the original LDA 

procedure in terms of the classification accuracy under heteroscedasticity. While it compares favourably 

with other existing heteroscedastic LDA approaches, the GLD requires as much as 60 times lower train- 

ing time on some datasets. Our comparison with the support vector machine (SVM) also shows that, the 

GLD, together with the LNS, requires as much as 150 times lower training time to achieve an equivalent 

classification accuracy on some of the datasets. Thus, our algorithms can provide a cheap and reliable 

option for classification in a lot of expert systems. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In many applications one encounters the need to classify a

given object under one of a number of distinct groups or classes

based on a set of features known as the feature vector. A typical

example is the task of classifying a machine part under one of a

number of health states. Other applications that involve classifica-

tion include face detection, object recognition, medical diagnosis,

credit card fraud prediction and machine fault diagnosis. 

A common treatment of such classification problems is to

model the conditional density functions of the feature vector ( Ng &

Jordan, 2002 ). Then, the most likely class to which a feature vector

belongs can be chosen as the class that maximises the a posteriori

probability of the feature vector. This is known as the maximum a

posteriori (MAP) decision rule. 

Let K be the number of classes, C k be the k th class, x be a fea-

ture vector and D k be training samples belonging to the k th class

(k ∈ { 1 , 2 , . . . , K} ) . The MAP decision rule for the classification task
∗ Corresponding author. 
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s then to choose the most likely class of x , C ∗( x ) given as: 

 

∗( x ) = arg max 
C k 

p(C k | x ) , k ∈ { 1 , 2 , . . . , K} (1)

We assume for the moment that there are only K = 2 classes,

.e. binary classification (we consider multi-class classification in a

ater section). Then, using Bayes’ rule, the two posterior probabili-

ies can be expressed as: 

p(C k | x ) = 

p( x |C k ) × p(C k ) 
p ( x ) 

, k ∈ { 1 , 2 } (2)

It is often the case that the prior probabilities p(C 1 ) and p(C 2 )
re known, or else they may be estimable from the relative fre-

uencies of D 1 and D 2 in D where D = D 1 ∪ D 2 . Let these priors

e given by π1 and π2 respectively for class C 1 and C 2 . Then, the

ikelihood ratio defined as: 

( x ) = 

p( x |C 1 ) 
p( x |C 2 ) (3)

s compared against a threshold defined as τ = π2 /π1 so that one

ecides on class C 1 if λ( x ) ≥ τ and class C 2 otherwise. 

Linear Discriminant Analysis (LDA) proceeds from here with

wo basic assumptions ( Izenman, 2009 , Chapter 8): 

1. The conditional probabilities p( x |C 1 ) and p( x |C 2 ) have multi-

variate normal distributions. 

http://dx.doi.org/10.1016/j.eswa.2017.02.039
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2017.02.039&domain=pdf
mailto:gyamfik@uni.coventry.ac.uk
mailto:j.brusey@coventry.ac.uk
mailto:ab8187@coventry.ac.uk
mailto:csx216@coventry.ac.uk
http://dx.doi.org/10.1016/j.eswa.2017.02.039
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2. The two classes have equal covariance matrices, an assumption

known as homoscedasticity. 

Let x̄ 1 , �1 be the mean and covariance matrix of D 1 and x̄ 2 ,

2 be the mean and covariance of D 2 respectively. Then, for k ∈
1, 2}, 

p( x |C k ) = 

1 √ 

(2 π) d det (�k ) 
exp 

[ 
− 1 

2 

( x − x̄ k ) 
T �−1 

k 
( x − x̄ k ) 

] 

(4) 

here d is the dimensionality of X , which is the feature space of

 . Given the above definitions of the conditional probabilities, one

ay obtain a log-likelihood ratio given as: 

n λ( x ) 

= 

1 

2 

ln 

det �2 

det �1 

+ 

1 

2 

[ 
( x −x̄ 2 ) 

T �−1 
2 ( x −x̄ 2 ) −( x −x̄ 1 ) 

T �−1 
1 ( x − x̄ 1 ) 

] 
(5) 

hich is then compared against ln τ so that C 1 is chosen if

n λ( x ) ≥ ln τ, and C 2 otherwise. Thus, the decision rule for clas-

ifying a vector x under class C 1 can be rewritten as: 

( x − x̄ 2 ) 
T �−1 

2 ( x − x̄ 2 ) − ( x − x̄ 1 ) 
T �−1 

1 ( x − x̄ 1 ) ≥ ln 

τ 2 det �1 

det �2 

(6) 

n general, this result is a quadratic discriminant. However, a linear

lassifier is often desired for the following reasons: 

1. A linear classifier is robust against noise since it tends not to

overfit ( Mika, Ratsch, Weston, Scholkopf, & Mullers, 1999 ). 

2. A linear classifier has relatively shorter training and testing

times ( Yuan, Ho, & Lin, 2012 ). 

3. Many linear classifiers allow for a transformation of the original

feature space into a higher dimensional feature space using the

kernel trick for better classification in the case of a non-linear

decision boundary ( Bishop, 2006 , Chapter 6). 

By calling on the assumption of homoscedasticity, i.e. �1 =
2 = �x , the original quadratic discriminant given by (6) for clas-

ifying a given vector x decomposes into the following linear deci-

ion rule: 

 

T �−1 
x ( ̄x 1 − x̄ 2 ) 

C 1 
� 

C 2 
ln τ + 

1 

2 

( ̄x 

T 
1 �

−1 
x x̄ 1 − x̄ 

T 
2 �

−1 
x x̄ 2 ) (7)

ere, �−1 
x ( ̄x 1 − x̄ 2 ) is a vector of weights denoted by w and ln τ +

1 
2 ( ̄x 

T 
1 �

−1 
x x̄ 1 − x̄ T 2 �

−1 
x x̄ 2 ) is a threshold denoted by w 0 . This linear

lassifier is also known as Fishers Linear Discriminant. If only the

eight vector w is required for dimensionality reduction, w may

e obtained by maximising Fishers criterion ( Fisher, 1936 ), given

y: 

 = 

w 

T ( ̄x 1 − x̄ 2 )( ̄x 1 − x̄ 2 ) 
T w 

w 

T �x w 

(8) 

here �x = n 1 �1 + n 2 �2 and n 1 , n 2 are the cardinalities of D 1 and

 2 respectively. 

LDA is the optimal Bayes’ classifier for binary classification if

he normality and homoscedasticity assumptions hold ( Hamsici &

artinez, 2008 ) ( Izenman, 2009 , Chapter 8). It demands only the

omputation of the dot product between w and x , which is a rela-

ively computationally inexpensive operation. 

As a supervised learning algorithm, LDA is performed either

or dimensionality reduction (usually followed by classification)

 Barber, 2012 , Chapter 16; Buturovic, 1994; Duin & Loog, 2004;

engur, 2008 ), or directly for the purpose of statistical classification
 Fukunaga, 2013 , Chapter 4; Izenman, 2009; Mika et al., 1999 ). LDA

as been applied to several problems such as medical diagnosis

.g. Coomans, Jonckheer, Massart, Broeckaert, and Blockx (1978) ;

olat, Güne ̧s , and Arslan (20 08) ; Sengur (20 08) ; Sharma and Pali-

al (2008) , face and object recognition e.g. Chen, Liao, Ko, Lin, and

u (20 0 0) ; Liu, Chen, Tan, and Zhang (2007) ; Song, Zhang, Wang,

iu, and Tao (2007) ; Yu and Yang (2001) and credit card fraud pre-

iction e.g. Mahmoudi and Duman (2015) . The widespread use of

DA in these areas is not because the datasets necessarily satisfy

he normality and homoscedasticity assumptions, but mainly due

o the robustness of LDA against noise, being a linear model ( Mika

t al., 1999 ). Since the linear Support Vector Machine (SVM) can

e quite expensive to train, especially for large values of K or n

 n = n 1 + n 2 ), LDA is often relied upon ( Hariharan, Malik, & Ra-

anan, 2012 ). 

Yet, practical implementation of LDA is not without problems.

f note is the small sample size (SSS) problem that LDA faces with

igh-dimensional data and much smaller training data ( Lu, Platan-

otis, & Venetsanopoulos, 2003; Sharma & Paliwal, 2015 ). When d

n , the scatter matrix �x is not invertible, as it is not full-rank.

ince the decision rule as given by (7) requires the computation

f the inverse of �x , the singularity of �x makes the solution in-

easible. In works by, for example, Liu et al. (2007) ; Paliwal and

harma (2012) , this problem is overcome by taking the Moore–

enrose pseudo-inverse of the scatter matrix, rather than the ordi-

ary matrix inverse. Sharma and Paliwal (2008) use a gradient de-

cent approach where one starts from an initial solution of w and

oves in the negative direction of the gradient of Fisher’s criterion

8) . This method avoids the computation of an inverse altogether.

nother approach to solving the SSS problem involves adding a

calar multiple of the identity matrix to the scatter matrix to make

he resulting matrix non-singular, a method known as regularised

iscriminant analysis ( Friedman, 1989; Lu et al., 2003 ). 

However, for a given dataset that does not satisfy the ho-

oscedasticity or normality assumption, one would expect that

odifications to the original LDA procedure accounting for these

iolations would yield an improved performance. One such mod-

fication, in the case of a non-normal distribution, is the mixture

iscriminant analysis ( Hastie & Tibshirani, 1996; Ju, Kolaczyk, &

opal, 2003; McLachlan, 2004 ) in which a non-normal distribu-

ion is modelled as a mixture of Gaussians. However, the param-

ters of the mixture components or even the number of mixture

omponents, are usually not known a priori. Other non-parametric

pproaches to LDA that remove the normality assumption involve

sing local neighbourhood structures ( Cai, He, Zhou, Han, & Bao,

007; Fukunaga & Mantock, 1983; Li, Lin, & Tang, 2009 ) to con-

truct a similarity matrix instead of the scatter matrix �x used in

DA. However, these approaches aim at linear dimensionality re-

uction, rather than linear classification. Another modification, in

he case of a non-linear decision boundary between D 1 and D 2 , is

he Kernel Fisher Discriminant (KFD) ( Mika et al., 1999; Polat et al.,

008; Zhao, Sun, Yu, Liu, & Ye, 2009 ). KFD maps the original fea-

ure space X into some other space Y (usually higher dimensional)

ia the kernel trick ( Mika et al., 1999 ). While the main utility of

he kernel is to guarantee linear separability in the transformed

pace, the kernel may also be employed to transform non-normal

ata into one that is near-normal. 

Our proposed method differs from the above approaches in that

e primarily consider violation of the homoscedasticity assump-

ion, and do not address the SSS problem. We seek to provide a

inear approximation to the quadratic boundary given by (6) un-

er heteroscedasticity without any kernel transformation; we note

hat several heteroscedastic LDA approaches have been proposed

o this effect. Nevertheless, for reasons which we highlight in the

ext section, our contributions in this paper are stated explicitly as
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follows: 

1. We propose a novel linear classifier, which we term the Gaus-

sian Linear Discriminant (GLD), that directly minimises the

Bayes error under heteroscedasticity via an efficient optimisa-

tion procedure. This is presented in Section 3 . 

2. We propose a local neighbourhood search method to provide a

more robust classifier if the data has a non-normal distribution

( Section 4 ). 

2. Related work 

Under the heteroscedasticity assumption, many LDA approaches

have been proposed among which we mention ( Fukunaga, 2013 ,

Chapter 4; Decell & Mayekar, 1977; Decell Jr & Marani, 1976; Duin

& Loog, 2004; Loog & Duin, 20 02; Malina, 1981; McLachlan, 20 04;

Zhang & Liu, 2008 ). As it is known that Fisher’s criterion (whose

maximisation is equivalent to the LDA derivation described in the

Introduction section) only takes into account the difference in the

projected class means, existing heteroscedastic LDA approaches

tend to obtain a generalisation on Fisher’s criterion. In the work

of Loog and Duin (2002) , for instance, a directed distance matrix

(DDM) known as the Chernoff distance, which takes into account

the difference in covariance matrices between the two classes as

well as the projected class means, is maximised instead of Fisher’s

criterion (8). The same idea employing the Chernoff criterion is

used by Duin and Loog (2004) . A wider class of Bregman diver-

gences including the Bhattacharya distance ( Decell Jr & Marani,

1976 ) and the Kullback-Leibler divergence ( Decell & Mayekar, 1977 )

have also been used for heteroscedastic LDA, as Fisher’s criterion

can be considered a special case of these measures when the co-

variance matrices of the classes are equal. 

However, most of these approaches aim at linear dimensional-

ity reduction, which involves finding a linear transformation that

transforms the original data into one of reduced dimensionality,

while at the same time maximising the discriminatory informa-

tion between the classes. Our focus with this paper, however, is

not on dimensionality reduction, but on obtaining a Bayes optimal

linear classifier for binary classification assuming that the covari-

ance matrices are not equal. As far as we know, the closest work to

ours in this regard are the works by Anderson and Bahadur (1962) ;

Fukunaga (2013) ; Marks and Dunn (1974) ; Peterson and Mattson

(1966) 

Obtaining the Bayes optimal linear classifier involves minimis-

ing the probability of misclassification p e as given by: 

p e = π1 p(y < w 0 |C 1 ) + π2 p(y ≥ w 0 |C 2 ) (9)

where y = w 

T x . Unfortunately, there is no closed-form solution to

the minimisation of (9) ( Anderson & Bahadur, 1962 ). Thus, an iter-

ative procedure is inevitable in order to obtain the Bayes optimal

linear classifier. 

In the work of Marks and Dunn (1974) , for example, the itera-

tive procedure described is to solve for w and w 0 as given by 

w = 

[
s 1 �1 + s 2 �2 

]−1 
( ̄x 1 − x̄ 2 ) 

w 0 = μ1 − s 1 σ
2 
1 = μ2 + s 2 σ

2 
2 (10)

by obtaining the optimal values of s 1 and s 2 via systematic trial

and error. We denote this heteroscedastic LDA procedure by R-

HLD-2, for the reason that the two parameters s 1 and s 2 are chosen

at random. 

Anderson and Bahadur (1962) make the observation that if the

weight vector w and the threshold w 0 are both multiplied by the

same positive scalar, the decision boundary remains unchanged.

Therefore, by multiplying (10) through by the scalar s 1 + s 2 , w and

w 0 can be put in the form of: 

w = 

[
s �2 + (1 − s ) �1 

]−1 
( ̄x 1 − x̄ 2 ) 
 0 = μ1 − (1 − s ) σ 2 
1 = μ2 + sσ 2 

2 (11)

till, the optimal value of s has to be chosen by systematic trial

nd error. We denote this heteroscedastic LDA approach by R-HLD-

, for the reason that only one parameter s is chosen at random.

s we show in the next section, s is unbounded. Therefore, the

ifficulty faced by this approach is that s has to be chosen from the

nterval (−∞ , ∞ ) , so that the probability of finding the optimal s

or a given dataset is low, without extensive trial and error to limit

he choice of s to some finite interval [ a, b ]. 

To avoid the unguided trial and error procedure in Anderson

nd Bahadur (1962) ; Marks and Dunn (1974) , ( Peterson & Matt-

on, 1966 ) and Fukunaga (2013 , Chapter 4) propose a theoretical

pproach described below: 

1. Change s from 0 to 1 with small step increments �s . 

2. Evaluate w as given by: 

w = 

[
s �1 + (1 − s ) �2 

]−1 
( ̄x 1 − x̄ 2 ) (12)

3. Evaluate w 0 as given by: 

w 0 = 

sμ2 σ
2 
1 + (1 − s ) μ1 σ

2 
2 

sσ 2 
1 

+ (1 − s ) σ 2 
2 

(13)

4. Compute the probability of misclassification p e . 

5. Choose w and w 0 that minimise p e . 

We refer to this procedure as C-HLD, for the reason that the

ptimal s is constrained in the interval [0, 1]. 

However, we highlight two main problems with the above C-

LD procedure: 

1. There is no obvious choice of the step rate �s . Too small a

value of �s will demand too many matrix inversions in Step

2, as there will be too many s values. On the other hand, if �s

is too large, the optimal s may not be refined enough, and the

w obtained may not be optimal. Specifically, the change in w

that results from a small change in s is given as: 

d w = 

(
s �2 + (1 − s ) �1 

)−1 
(�1 − �2 ) 

×
(
s �2 + (1 − s ) �1 

)−1 
( ̄x 1 − x̄ 2 )d s (14)

which can affect the classification accuracy. 

2. The solution obtained this way is only locally optimal as s is

bounded in the interval [0, 1]. As we show in the next section,

s is actually unbounded. When there is a class imbalance ( Xue

& Titterington, 2008 ), the optimal s may be found outside the

interval [0, 1] which can lead to poor classification accuracy. 

Our proposed algorithm, which is described in the next sec-

ion, unlike the trial and error approach by Anderson and Ba-

adur (1962) ; Marks and Dunn (1974) , has a principled optimisa-

ion procedure, and unlike Fukunaga (2013) ; Peterson and Mattson

1966) do not encounter the problem of choosing an inappropri-

te �s , nor restricts s to the interval [0, 1]. Consequently, our pro-

osed algorithm achieves a far lower training time than the C-HLD,

-HLD-1 and R-HLD-2, for roughly the same classification accuracy.

. Gaussian linear discriminant 

Let w ∈ R 

d be a vector of weights, and w 0 ∈ R , a threshold such

hat: 

 

∗( x ) = 

{
C 1 if y = w 

T x ≥ w 0 

C 2 if y = w 

T x < w 0 
(15)

ince x is assumed to have a multivariate normal distribution in

lasses C 1 and C 2 , y has a mean of μ1 and a variance of σ 2 for
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c 0 
lass C 1 and a mean of μ2 and a variance of σ 2 
2 

for class C 2 given

s: 

1 = w 

T x̄ 1 μ2 = w 

T x̄ 2 σ 2 
1 = w 

T �1 w σ 2 
2 = w 

T �2 w (16) 

With reference to the Bayes error of (9) , the individual misclas-

ification probabilities can be expressed as: 

p(y < w 0 |C 1 ) 
= 

∫ w 0 

−∞ 

1 √ 

2 πσ1 

exp 

[ 
− (ζ −μ1 ) 

2 

2 σ 2 
1 

] 
dζ = 1 − Q 

(
w 0 − μ1 

σ1 

)
(17) 

nd 

p(y ≥ w 0 |C 2 ) = 

∫ ∞ 

w 0 

1 √ 

2 πσ2 

exp 

[ 
− (ζ − μ2 ) 

2 

2 σ 2 
2 

] 
dζ

= Q 

(
w 0 − μ2 

σ2 

)
(18) 

here Q (.) is the Q-function. Therefore, the Bayes error to be min-

mised may be rewritten as: 

p e = π1 

[
1 − Q(z 1 ) 

]
+ π2 

[
Q(z 2 ) 

]
(19)

here 

 1 = 

w 0 − μ1 

σ1 

and z 2 = 

w 0 − μ2 

σ2 

(20) 

Our aim is to find a local minimum of p e . A necessary condition

s for the gradient of p e to be zero, i.e., 

p e ( w , w 0 ) = 

[ 
∂ p e 

∂ w 

T 
, 
∂ p e 

∂w 0 

] T 
= 0 (21)

rom (9) , it can be shown that: 

∂ p e 

∂ w 

= π1 

(
1 √ 

2 π
e −z 2 1 / 2 

∂z 1 
∂ w 

)
− π2 

(
1 √ 

2 π
e −z 2 2 / 2 

∂z 2 
∂ w 

)
(22) 

rom (20) , however, we obtain the following: 

∂z 1 
∂ w 

= 

−σ1 ̄x 1 − z 1 �1 w 

σ 2 
1 

and 

∂z 2 
∂ w 

= 

−σ2 ̄x 2 − z 2 �2 w 

σ 2 
2 

(23) 

herefore, 

∂ p e 

∂ w 

= 

1 √ 

2 π

[ 
− π1 e 

−z 2 1 / 2 
(
σ1 ̄x 1 + z 1 �1 w 

σ 2 
1 

)

+ π2 e 
−z 2 2 / 2 

(
σ2 ̄x 2 + z 2 �2 w 

σ 2 
2 

)] 
(24) 

t can similarly be shown from (9) that, 

∂ p e 

∂w 0 

= π1 

(
1 √ 

2 π
e −z 2 1 / 2 

∂z 1 
∂w 0 

)
− π2 

(
1 √ 

2 π
e −z 2 2 / 2 

∂z 2 
∂w 0 

)
(25) 

gain, from (20) , 

∂z 1 
∂w 0 

= 

1 

σ1 

and 

∂z 2 
∂w 0 

= 

1 

σ2 

(26) 

herefore, 

∂ p e 

∂w 0 

= 

π1 √ 

2 π

(
1 

σ1 

e −z 2 1 / 2 
)

− π2 √ 

2 π

(
1 

σ2 

e −z 2 2 / 2 
)

(27) 

Now, equating the gradient ∇p e ( w , w 0 ) to zero, the following

et of equations are obtained: 

π2 z 2 

σ 2 
2 

e −z 2 2 / 2 �2 − π1 z 1 

σ 2 
1 

e −z 2 1 / 2 �1 

)
w 

= 

(
π1 

σ1 

e −z 2 1 / 2 
)

x̄ 1 −
(
π2 

σ2 

e −z 2 2 / 2 
)

x̄ 2 (28) 

π1 

σ1 

e −z 2 1 / 2 = 

π2 

σ2 

e −z 2 2 / 2 (29) 
ubstituting (29) into (28) yields: 

z 2 
σ2 

�2 − z 1 
σ1 

�1 

)
w = ( ̄x 1 − x̄ 2 ) (30) 

hen the vector w can be given by: 

 = 

(
z 2 
σ2 

�2 − z 1 
σ1 

�1 

)−1 

( ̄x 1 − x̄ 2 ) (31) 

It will be noted however that (31) is still in terms of w 0 , so

hat an explicit representation of w 0 in terms of w is needed from

29) to substitute in z 1 and z 2 in (31) . This is where our approach

ost significantly differs from Fukunaga (2013) . Solving for w 0 

rom (29) results in the following quadratic: 

z 2 2 

2 

− z 2 1 

2 

− ln 

(
τσ1 

σ2 

)
= 0 (32) 

hich can be simplified to: 

w 0 − μ2 

σ2 

)2 

−
(

w 0 − μ1 

σ1 

)2 

− 2 ln 

τσ1 

σ2 

= 0 , (33) 

here τ is given as before as τ = π2 /π1 . If τ is defined and

ot equal to zero, and σ 2 
1 
 = σ 2 

2 (since �1 
 = �2 for heteroscedas-

ic LDA), (33) can be shown to have the following solutions: 

 0 = 

μ2 σ
2 
1 − μ1 σ

2 
2 ± σ1 σ2 

√ 

(μ1 − μ2 ) 2 + 2(σ 2 
1 

− σ 2 
2 
) ln 

(
τσ1 

σ2 

)
σ 2 

1 
− σ 2 

2 

(34) 

Nevertheless, since there are two solutions to w 0 in (34) , a

hoice has to be made as to which of them is substituted into (31) .

o eliminate one of the solutions, we consider the second-order

artial derivative of p e with respect to w 0 evaluated at w 0 as given

y (34) , and determine under what condition it is greater than or

qual to zero. This is a second-order necessary condition for p e to

e a local minimum. From (27) , it can be shown that: 

∂ 2 p e 
∂w 

2 
0 

= 

π1 √ 

2 π

(
− z 1 

σ 2 
1 

e −z 2 1 / 2 
)

+ 

π2 √ 

2 π

(
z 2 

σ 2 
2 

e −z 2 2 / 2 
)

(35) 

e denote this second-order derivative by h . We then consider all

ossibilities of z 1 and z 2 (which are the variables in (35) that de-

end on w 0 ) under three cases, and analyse the sign of h in each. 

ase 1 

z 2 ≤ 0 and z 1 ≥ 0: then h is trivially non-positive. 

ase 2 

z 2 ≥ 0 and z 1 ≤ 0: then h is trivially non-negative. 

ase 3 

z 2 > 0 and z 1 > 0 or z 2 < 0 and z 1 < 0: then h is non-negative

f and only if 

n 

(
π2 z 2 

σ 2 
2 

)
− z 2 2 

2 

≥ ln 

(
π1 z 1 

σ 2 
1 

)
− z 2 1 

2 

(36) 

.e., 

n 

(
z 2 
σ2 

/ 

z 1 
σ1 

)
≥ z 2 2 

2 

− z 2 1 

2 

− ln 

(
τσ1 

σ2 

)
(37) 

t will be noted that the right-hand side of the inequality (37) is

dentically zero, as can be seen from (32) . Therefore, the condition

nder which h is greater than or equal to zero is when: 

z 2 
σ2 

≥ z 1 
σ1 

(38) 

ote also that Case 2 necessarily satisfies (38) so that we consider

38) as the general inequality for the non-negativity of h for all

ases, and thus for w to be a local minimum. 
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Now, when one considers the two solutions of w 0 in (35) , only

the solution given by: 

w 0 = 

μ2 σ
2 
1 − μ1 σ

2 
2 + σ1 σ2 

√ 

(μ1 − μ2 ) 2 + 2(σ 2 
1 

− σ 2 
2 
) ln 

(
τσ1 

σ2 

)
σ 2 

1 
− σ 2 

2 

(39)

satisfies the inequality of (38) , i.e., only this choice of w 0 corre-

sponds to a local minimum. The proof of this is given in the ap-

pendix. 

We may then substitute this expression of w 0 into (31) so that

(31) is in terms of w only. Even so, w has to be solved for itera-

tively. This is because (31) has no closed-form solution since μ1 ,

μ2 , σ 1 , σ 2 are themselves functions of w . As the iterative proce-

dure requires an initial choice of w , we use Fisher’s choice of the

weight vector as given by: 

w = (n 1 �1 + n 2 �2 ) 
−1 ( ̄x 1 − x̄ 2 ) (40)

as our initial solution. Again, we mention that n 1 and n 2 are the

cardinalities of D 1 and D 2 . After a number of such iterative up-

dates, the optimal w 0 is then solved for from (39) . This algorithm,

known as the Gaussian Linear Discriminant (GLD), is described in

detail in Algorithm 1 . 

Algorithm 1 GLD. 

1: Input: D 1 and D 2 

2: Evaluate x̄ 1 , ̄x 2 , �1 , �2 

3: Initialise w : w = (n 1 �1 + n 2 �2 ) 
−1 ( ̄x 1 − x̄ 2 ) 

4: Evaluate μ1 , μ2 , σ
2 
1 , σ

2 
2 , z 1 , z 2 . 

5: while Stopping criteria are not satisfied do 

6: Solve for w 0 from (39) 

7: Evaluate z 1 , z 2 
8: Evaluate the Bayes error p e 

9: Update w as w = 

(
z 2 
σ2 

�2 − z 1 
σ1 

�1 

)−1 

( ̄x 1 − x̄ 2 ) 

10: Evaluate μ1 , μ2 , σ1 , σ2 . 

11: end while 

Note that by multiplying both w of (31) and w 0 proportion-

ally by c = (σ1 z 2 − σ2 z 1 ) /σ1 σ2 (due to (38) , c is non-negative and

hence the discrimination criterion given by (15) is not changed),

the GLD may be viewed in terms of the optimal solution of (11) ,

where 

s = −σ2 z 1 / (σ1 z 2 − σ2 z 1 ) . (41)

which is unbounded given the inequality of (38) . However, unlike

Anderson and Bahadur (1962) ; Marks and Dunn (1974) , s is not

chosen by systematic trial and error, and unlike Fukunaga (2013) , s

is not varied between 0 and 1 at small step increments. Instead,

since s is a function of w and w 0 , our algorithm may be inter-

preted as obtaining increasingly refined values of s by improving

upon w and w 0 starting from Fisher’s solution, as is described in

Algorithm 1 . 

3.1. Stopping criteria 

The GLD algorithm may be terminated under any of the follow-

ing conditions: 

1. When the change in the objective function p e remains within a

certain tolerance ε1 for a number of consecutive iterations. 

2. When the change in the norm of w remains within a certain

tolerance ε2 for a number of consecutive iterations. 

3. When the gradient of p e as given by (21) remains within a cer-

tain tolerance ε for a number of consecutive iterations. 
3 
4. After a fixed number of iterations I , if convergence is slow. 

At the end of the algorithm, the final solution may be chosen

ither as the solution to which the iterations converge, or the so-

ution corresponding to the minimum p e found in the iterative up-

ates. 

.2. Multiclass classification 

Suppose now that there are K > 2 classes in the dataset D,

hen the classification problem may be reduced to a number of

inary classification problems. The two main approaches usually

aken for this reduction are the One-vs-All (OvA) and One-vs-One

OvO) strategies ( Bishop, 2006; Hsu & Lin, 2002 ). 

.2.1. One-vs-All (OvA) 

In OvA, one trains a classifier to discriminate between one class

nd all other classes. Thus, there are K different classifiers. An un-

nown vector x is then tested on all K classifiers so that the class

orresponding to the classifier with the highest discriminant score

s chosen. However, with respect to the proposed GLD algorithm,

his is an ill-suited approach. This is because the collection of all

ther classes on one side of the discriminant will not necessar-

ly have a normal distribution, and could in fact be multimodal,

f the means are well-separated. Since our algorithm is built on

trong normality assumptions of the data on each side of the dis-

riminant, the GLD, as has been formulated, is expected to perform

oorly. 

.2.2. One-vs-One 

In OvO, a classifier is trained to discriminate between every pair

f classes in the dataset, ignoring the other K − 2 classes. Thus,

here are K(K − 1) / 2 unique classifiers that may be constructed.

gain, an unknown vector x is tested on all K(K − 1) / 2 classifiers.

he predicted classes for all the classifiers are then tallied so that

he class that occurs most frequently is chosen. This is equivalent

o a majority vote decision. In a lot of cases, however, there is

o clear-cut winner, as more than one class may have the high-

st number of votes. In such a case, the most likely class is often

hosen randomly between those most frequently occurring classes.

he GLD provides a more appropriate means for breaking such ties,

y making use of the minimised Bayes error p e for each classi-

er. Specifically, one may instead use a weighted voting system,

here the count of every predicted class is weighted by 1 − p e ,

ince p e provides an appropriate measure of uncertainty associated

ith each classifier output. Thus, the decision rule is reduced to

hoosing the maximum weighted vote among the K classes. 

Note that even though the GLD minimises the Bayes error for

ach classifier, the overall Bayes error for a multiclass problem may

ot be minimised by using multiple binary classifiers. 

. Non-normal distributions 

So far, the fundamental assumption that has been used to de-

ive the GLD is that the data in each class has a normal distri-

ution. Thus, for an unknown non-normal distribution, the linear

lassifier we have obtained does not minimise the Bayes error for

hat unknown distribution. We argue, however, that if this un-

nown distribution is nearly-normal ( Mudholkar & Hutson, 20 0 0 ),

hen a more robust linear classifier may be found in some neigh-

ourhood of the GLD. For this reason, we use a local neighbour-

ood search algorithm to explore the region in R 

d+1 around the

LD to obtain the classifier that minimises the number of misclas-

ifications on the training dataset. We do this by perturbing each

f the d + 1 vector elements in the optimal ˜ w = [ w 0 , w 

T ] T obtained

rom the GLD procedure by a small amount δ ˜ w i . After every per-

urbation, the resulting classifier is evaluated on the test dataset.
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Table 1 

List and characteristics of datasets. 

Dataset Label n d K 

D1 (a) 20 0 0 8 2 

D2 (b) 20 0 0 4 2 

Liver (c) 345 6 2 

Shuttle (d) 58 , 0 0 0 9 7 

Vowels (e) 990 10 11 

Zernike Moments (f) 20 0 0 47 10 

Image Segmentation (Statlog) (g) 2310 19 7 

Spambase (h) 4601 37 2 

Wine Quality (White) (i) 4898 11 7 

Pen Digits (j) 5620 64 10 

Satellite (Statlog) (k) 6435 36 6 

Letters (l) 20 , 0 0 0 16 26 

This table lists the datasets used in the experimental section. K is 

the number of classes, d is the dimensionality of the dataset, and 

n is the number of data points in the dataset. 
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Table 2 

Average Bayes error (%). 

Dataset LDA C-HLD R-HLD-1 R-HLD-2 GLD 

(a) 0 .0397 0 .0382 0 .0383 0 .0361 0.0360 

(b) 0 .0774 0 .0749 0 .0749 0 .0740 0.0739 

(c) 0 .9981 0.9838 0.9838 0.9838 0.9838 

(d) 0.0 0 01 0.0 0 01 0.0 0 01 0.0 0 01 0.0 0 01 

(e) 0 .0339 0.0326 0.0326 0.0326 0.0326 

(f) 0 .0054 0 .0051 0.0048 0.0048 0 .0050 

(g) 0 .0037 0.0029 0.0029 0.0029 0.0029 

(h) 0 .0253 0.0228 0.0228 0.0228 0.0228 

(i) 0 .0162 0 .0201 0 .0156 0 .0155 0.0154 

(j) 0.0 0 02 0.0 0 02 0.0 0 02 0.0 0 02 0.0 0 02 

(k) 0 .0046 0.0039 0.0039 0.0039 0.0039 

(l) 0.0 0 07 0.0 0 07 0.0 0 07 0.0 0 07 0.0 0 07 

This table shows the average Bayes error per discriminant as a per- 

centage for each dataset for LDA, GLD, C-HLD, R-HLD-1 and R-HLD-2. 

Best values are in bold. 

Table 3 

Average classification accuracy (%). 

Dataset LDA C-HLD R-HLD-1 R-HLD-2 GLD LNS SVM 

(a) 76 .00 77 .18 77 .00 78 .48 78.65 78 .57 77 .47 

(b) 76 .87 77 .93 77 .93 78 .17 78.37 78 .00 77 .70 

(c) 67 .83 63 .19 62 .32 62 .03 63 .77 68 .12 68.70 

(d) 94 .10 96 .60 96 .74 96 .73 96 .59 97.91 84 .39 

(e) 73 .64 74 .14 74 .44 74 .44 74 .14 75 .66 76.77 

(f) 84 .00 83 .90 84 .10 84 .15 84.80 84 .00 81 .90 

(g) 94 .33 94 .59 94 .59 94 .63 94 .59 94 .89 96.15 

(h) 88 .76 88 .29 88 .26 88 .15 88 .26 90.28 85 .68 

(i) 53 .41 46 .59 53 .37 53 .33 53 .55 54.14 51 .88 

(j) 96 .74 96 .99 96 .97 96 .98 97 .01 97 .41 97.84 

(k) 85 .69 86 .06 86 .06 86 .03 86 .08 86 .65 86.85 

(l) 81 .67 81 .87 81 .83 81 .78 81 .88 82 .25 85.39 

This table shows the average classification accuracy (%) on the test datasets for LDA, 

C-HLD, R-HLD-1, R-HLD-2, GLD, GLD+LNS and SVM. Best values are in bold. 
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his procedure is repeated as described in Algorithm 2 until the

lgorithm 2 Local neighbourhood search (LNS). 

1: Input: Optimal ˜ w = [ w 0 , w 

T ] T obtained from the GLD. 

2: while Stopping criterion is not satisfied do 

3: Let ˜ w be the current solution. 

4: for i ← 1 to d do 

5: v + ← ˜ w , v − ← ˜ w . 

6: v + ← v + 
i 

+ δv + 
i 

7: Evaluate the misclassifications on the training set using

v + 

8: v − ← v −
i 

− δv −
i 

9: Evaluate the misclassifications on the training set using

v −

10: end for 

11: Set the classifier with the minimum number of misclassifi-

cations as the current solution ˜ w . 

12: end while 

13: Choose the classifier with the smallest number of misclassifi-

cations. 

topping criterion is satisfied. 

The algorithm is terminated after a certain maximum number

f iterations R is reached. Additionally, one may perform an early

ermination if after a predefined number of iterations r max , there

s no improvement in the minimum number of misclassifications

n the training dataset that has been found in the search. 

. Experimental validation 

We validate our proposed algorithm on two artificial datasets

enoted by D1 and D2, as well as on ten real-world datasets taken

rom the University of California, Irvine (UCI) Machine Learning

epository. These datasets are shown in Table 1 , and cut across

 wide range of applications including handwriting recognition,

edical diagnosis, remote sensing and spam filtering. D1 and D2

re normally distributed with different covariance matrices. For D1,

e generate 10 0 0 samples for class C 1 and 20 0 0 samples for class

 2 using the following Gaussian parameters: 

x̄ 2 = [3 . 86 , 3 . 10 , 0 . 84 , 0 . 84 , 1 . 64 , 1 . 08 , 0 . 26 , 0 . 01] T , 

2 = diag (8 . 41 , 12 . 06 , 0 . 12 , 0 . 22 , 1 . 49 , 1 . 77 , 0 . 35 , 2 . 73) 

x̄ 1 = x̄ 2 − 0 . 3 , �1 = I (42) 

or D2, we generate 20 0 0 samples for class C 1 and 40 0 0 samples

or class C 2 using the following Gaussian parameters: 

¯  2 = [ −1 . 5 , −0 . 75 , 0 . 75 , 1 . 5] T , 
2 = diag (0 . 25 , 0 . 75 , 1 . 25 , 1 . 75) 

¯  1 = x̄ 2 − 0 . 75 , �1 = I (43) 

he above Gaussian parameters are slightly modified from the

wo class data used by Fukunaga (2013) and Xue and Titterington

2008) in order to make the sample means less separated. 

For each dataset in Table 1 , we perform 10-fold cross valida-

ion. We run 20 different trials. On each training dataset, we eval-

ate the minimum Bayes error achievable by our proposed algo-

ithm averaged over all 10 folds and 20 trials. If there are more

han two classes, we use OvO, and calculate the mean Bayes er-

or over all K(K − 1) / 2 discriminants. As we are interested only

n linear classification, we compare the performance of the GLD

ith the original LDA as well as the heteroscedastic LDA proce-

ures by Fukunaga (2013) , Anderson and Bahadur (1962) and Marks

nd Dunn (1974) as described in Section 2 in terms of the Bayes

rror (9) . For the sake of brevity, we denote these three het-

roscedastic LDA algorithms by the annotations earlier introduced:

-HLD, R-HLD-1 and R-HLD-2 respectively. These results are shown

n Table 2 . 

Moreover, for each of the test datasets, we evaluate the aver-

ge classification accuracy for each of LDA, C-HLD, R-HLD-1, R-HLD-

, GLD and GLD with local neighbourhood search (LNS). We also

ompare the performance of these LDA approaches to the SVM.

hese results are shown in Table 3 , while the average training

imes of the algorithms are shown in Table 4 . 

We estimate the prior probabilities based on the relative fre-

uencies of the data in each class in the dataset, and the stopping

riterion for the GLD is thus: we stop if the gradient of w change is

ess than or equal to ε3 = 10 −6 , or else we terminate our algorithm

fter I = 20 iterations and choose the solution corresponding to the

inimum p e . Also, for the LNS procedure, we perturb each vector



50 K.S. Gyamfi et al. / Expert Systems With Applications 79 (2017) 44–52 

Table 4 

Average training time (s). 

Dataset LDA C-HLD R-HLD-1 R-HLD-2 GLD LNS SVM 

(a) 0.001 0 .161 0 .140 0 .139 0 .002 0 .181 23 .192 

(b) 0.001 0 .142 0 .121 0 .121 0 .002 0 .060 0 .721 

(c) 0.001 0 .155 0 .1415 0 .1337 0 .003 0 .028 2 .673 

(d) 0.037 3 .531 3 .023 3 .012 0 .089 43 .32 4623 .138 

(e) 0.036 11 .099 9 .409 9 .751 0 .167 2 .075 1 .173 

(f) 0.387 123 .662 123 .649 121 .906 1 .955 110 .694 23 .126 

(g) 0.128 37 .320 30 .876 37 .875 0 .488 2 .143 21 .775 

(h) 0.101 10 .437 7 .729 7 .474 0 .753 36 .83 804 .574 

(i) 0.017 4 .257 3 .691 3 .750 0 .080 5 .928 914 .257 

(j) 0.638 10 .099 9 .358 9 .171 0 .915 168 .19 409 .38 

(k) 0.304 18 .067 17 .842 17 .912 0 .858 13 .919 311 .202 

(l) 0.835 73 .050 64 .022 65 .414 3 .245 37 .202 109 .232 

This table shows the average training times on the test datasets for LDA, C-HLD, R-HLD-1, 

R-HLD-2, GLD, GLD+LNS and SVM. Best values are in bold. 
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element by 10% of its absolute value, i.e. δ ˜ w i = 0 . 1 | ̃  w i | , and we run

for R = 10 0 0 iterations, terminating prematurely if r max = 0 . 1 R . We

use a step size of �s = 0 . 001 for the C-HLD algorithm, and run

10 0 0 trials for R-HLD-1 and R-HLD-2. All the parameters used in

the experiments are optimised via cross-validation. Note that if the

sample covariance matrix is singular, we use the Moore–Penrose

pseudo-inverse. 

6. Results and discussion 

For real-world datasets, the covariance matrices of the classes

are rarely equal, therefore the homoscedasticity assumption in LDA

does not hold. Our results in Table 2 confirm that LDA does not

minimise the Bayes error under heteroscedasticity, as none of the

datasets used has equal covariance matrices. With the exception of

datasets (d), (j) and (l), where LDA achieves an equal Bayes error

as the other heteroscedastic LDA approaches, LDA is outperformed

by the GLD on all remaining datasets in terms of minimising the

Bayes error. It will be noted that the other three heteroscedastic

LDA approaches algorithms achieve a performance comparable to

the GLD on all the datasets in terms of the Bayes error. However,

R-HLD-1 and R-HLD-2 require a lot of trials (10 0 0 in our experi-

ments) in order to obtain the optimal parameters s and s 1 , s 2 re-

spectively, while C-HLD requires a step size of �s = 0 . 001 which

translates to 1001 trials. Consequently, the training time for these

algorithms far exceed that of the GLD, as can be seen in Table 4 .

For example, the gain in training time of the GLD over C-HLD, R-

HLD-1 and R-HLD-2 is over 62 folds for dataset (g), and about 20

folds for dataset (l). Moreover, since C-HLD, R-HLD-1 and R-HLD-

2 all require matrix inversions, performing a matrix inversion for

each of the 10 0 0 trials can be a computationally demanding task

especially for high-dimensional data, which have large covariance

matrices. Instead, since the GLD follows a principled optimisation

procedure, the number of matrix inversions required is far lower.

For example, on dataset (f), which has a dimensionality of 47, the

GLD requires over 60 times less time to train than the other het-

eroscedastic LDA approaches. 

It is conceivable that the minimisation of the Bayes error would

translate into a good performance in terms of the classification ac-

curacy, if the normality assumption of LDA holds. For this reason,

it can be seen in Table 3 that the GLD achieves the best classifi-

cation accuracy on datasets (a) and (b), which are generated from

known normal distributions. Thus, the proposed GLD algorithm is

particularly suited for applications with datasets that tend to be

normally distributed in each class e.g. in machine fault diagnosis,

or accelerometer-based human activity recognition ( Ojetola, Gaura,

& Brusey, 2015 ), as it also requires far less training time than the

existing heteroscedastic LDA approaches. 
However, for datasets (c) through to (l), the classes do not have

ny known normal distribution. Therefore, minimising the Bayes

rror under the normality assumption would not necessarily re-

ult in a classifier that has the best classification accuracy, even if

he difference in covariance matrices has been accounted for. For

his reason, it is not surprising that LDA achieves a superior clas-

ification accuracy than C-HLD, R-HLD-1, R-HLD-2 and the GLD on

atasets (c) and (h) as can be seen in Table 3 . However, by search-

ng around the neighbourhood of the GLD, the local neighbourhood

earch (LNS) algorithm is able to account for the non-normality

nd obtain a more robust classifier. Thus, the GLD, together with

he LNS procedure, achieves a higher classification accuracy than

ll the LDA approaches on all the real-world datasets (i.e. (c)–(l))

ith the exception of dataset (f) which has the GLD showing su-

erior classification accuracy. 

While the SVM outperforms the LDA approaches on half of the

atasets, its training time can be rather long for large datasets. For

nstance, for dataset (d) which has 580 0 0 elements, the SVM takes

bout 1.3 h to train whereas the GLD with LNS, which achieves

he best classification accuracy on this dataset, takes 43 s to train,

epresenting over 100 fold savings in computational time over the

VM. Similar patterns can be seen in other datasets like (i), where

he GLD with LNS achieves a superior classification accuracy with

ver 150 times shorter training time than the SVM. This suggests

hat for such large datasets, the GLD with local neighbourhood

earch is a low-complexity alternative to the SVM, as it requires

ar less computational time than the SVM. 

We, however, make note of two weaknesses our proposed

lgorithms have. For the GLD, the procedure as described in

lgorithm 1 , may converge to a saddle point, instead of a local

inimum. Even if it were to converge to a local minimum, there

s no guarantee that is the global optimum solution due to the

act that the objective function p e is known to be non-convex

 Anderson & Bahadur, 1962 ). Also, since the local neighbourhood

earch involves evaluating the misclassification rate on the training

et for every perturbation, the procedure does not scale well with

arge amounts of training data. Because of this, it is important to

ave a good initial solution like the GLD, so that an early termi-

ation may be performed if there is no improvement after some

umber of iterations. 

. Conclusion 

In this paper, we have presented the Gaussian Linear Discrim-

nant (GLD), a novel and computationally efficient method for ob-

aining a linear discriminant for heteroscedastic Linear Discrimi-

ant Analysis (LDA) for the purpose of binary classification. Our

lgorithm minimises the Bayes error via an iterative optimisation

rocedure that uses Fisher’s Linear Discriminant as the initial so-
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ution. Moreover, the GLD does not require any parameter ad-

ustments. We have also proposed a local neighbourhood search

ethod by which a more robust linear classifier may be obtained

or non-normal distributions. Our experimental results on two ar-

ificial and ten real world applications show that when the covari-

nce matrices of the classes are unequal, LDA is unable to minimise

he Bayes error. Thus, under heteroscedasticity, our proposed algo-

ithm achieves superior classification accuracy to the LDA for nor-

ally distributed classes. While the proposed GLD algorithm com-

ares favourably with other heteroscedastic LDA approaches, the

LD requires a far less training time. Moreover, the GLD, together

ith the LNS, has been shown to be particularly robust, comparing

avourably with the SVM, but requiring far less training time on

ur datasets. Thus, for expert systems like machine fault diagno-

is or human activity monitoring that require linear classification,

he proposed algorithms provide a low-complexity, high-accuracy

olution. 

While this work has focused on linear classification, on-going

ork is focused on modifying the GLD procedure for the purpose

f linear dimensionality reduction. Moreover, it is of particular in-

erest to us to be able to derive the Bayes error for some known

on-normal distributions. An alternative to this is to be able to

btain a kernel that implicitly transforms some data of a known

on-normal distribution into a feature space where the classes

re normally distributed. Finally, like all local search algorithms,

he performance and complexity of the LNS procedure depends on

he choice of the initial solution. Therefore, further work that ex-

lores the use initial solutions (including the heteroscedastic LDA

pproaches discussed) other than the GLD for the LNS procedure is

eing done. 

ppendix A 

heorem 1. Let w 

+ 
0 

and w 

−
0 

be the two distinct solutions of (34) ,

hen w 

+ 
0 

and w 

−
0 

cannot both satisfy (38) given that σ 1 
 = σ 2 . 

roof. Let 

= 

√ 

(μ1 − μ2 ) 2 + 2(σ 2 
1 

− σ 2 
2 
) ln 

(
τσ1 

σ2 

)
(A.1) 

nd let 

 

+ 
0 = 

μ2 σ
2 
1 − μ1 σ

2 
2 + σ1 σ2 β

σ 2 
1 

− σ 2 
2 

(A.2) 

Then 

z 2 
σ2 
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(μ2 − μ1 ) σ2 + βσ1 

σ2 (σ 2 
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− σ 2 
2 
) 

, 
z 1 
σ1 
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(μ2 − μ1 ) σ1 + βσ2 

σ1 (σ 2 
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− σ 2 
2 
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(A.3) 

Suppose that w 

+ 
0 

satisfies (38) , then 

(μ2 − μ1 ) σ2 + βσ1 

σ2 (σ 2 
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− σ 2 
2 
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≥ (μ2 − μ1 ) σ1 + βσ2 
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− σ 2 
2 
) 

(A.4) 

.e., 

βσ 2 
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− σ 2 
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≥ βσ 2 
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− σ 2 
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(A.5) 

his implies that σ 2 
1 / (σ

2 
1 − σ 2 

2 ) > σ 2 
2 / (σ

2 
1 − σ 2 

2 ) since β is a posi-

ive scalar. 

Consider now w 

−
0 

given as: 

 

−
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Then 
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(A.7) 
In order for (38) to be satisfied, it can be shown, similar to

A.5) , that 

−βσ 2 
1 

σ 2 
1 

− σ 2 
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≥ −βσ 2 
2 

σ 2 
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− σ 2 
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(A.8) 

hich can be simplified to give 1 ≤ 0. Since this conclusion is false,

nly w 

+ 
0 

satisfies (26) . �
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