
 
Coventry 
University 

 
 
 
Coventry University Repository for the Virtual Environment 
(CURVE) 
 
Author name  Gatzidis, C., Liarokapis, F., Brujic-Okretic, V. and Baker, S. 
 
Title  Virtual city maker and virtual navigator: a modelling and visualisation solution 
for the creation and display of mobile 3D virtual cities 
 
Article & version (e.g. post-print version)  Post-print 
 
Original citation [include hyperlink to jnl page / publisher]  
 
Gatzidis, C., Liarokapis, F., Brujic-Okretic, V. and Baker, S. (2008) 'Virtual city maker 
and virtual navigator: a modelling and visualisation solution for the creation and 
display of mobile 3D virtual cities', Proc. of the 10th IASTED International Conference 
on Computer Graphics and Imaging (CGIM 2008), ACTA Press, Innsbruck, Austria, 13-
15 February, 224-230. 
 
Copyright © and Moral Rights are retained by the publisher. A copy can be 
downloaded for personal non-commercial research or study, without prior 
permission or charge. This item cannot be reproduced or quoted extensively from 
without first obtaining permission in writing from the copyright holder(s). The 
content must not be changed in any way or sold commercially in any format or 
medium without the formal permission of the copyright holders. 
 
This document is the final manuscript version of the conference paper, 
incorporating any revisions agreed during the peer-review process. Some 
differences between the published version and this version may remain and you 
are advised to consult the published version if you wish to cite from it. 
 
Available in the CURVE Research Collection: April 2010 
 

 
 
 

http://curve.coventry.ac.uk/open  

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CURVE/open

https://core.ac.uk/display/228147015?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://curve.coventry.ac.uk/open�


 

Virtual City Maker And Virtual Navigator: A Modelling And Visualisation Solution 
For Mobile 3D Virtual Cities 

 
Christos Gatzidis1, Fotis Liarokapis2, Vesna Brujic-Okretic1, Stuart Baker3

giCentre, Department of Information Science, City University, London, EC1V 0HB, UK  
{c.gatzidis, vesna}@soi.city.ac.uk1

Faculty of Engineering and Computing, Department of Creative Computing, Coventry, CV1 5FB, UK 
F.Liarokapis@coventry.ac.uk2

Alcatel-Lucent Telecom Limited, Christchurch Way, Greenwich, London SE10 0AG 
Stuart.e.Baker@alcatel-lucent.co.uk3

 
ABSTRACT 
This paper presents a complete procedural 3D modelling 
solution for mobile devices, called Virtual City Maker, based 
on scripting algorithms allowing for both the automatic and 
also semi-automatic creation of photorealistic quality virtual 
urban content. The input data used include the combination 
of aerial images, GIS data, 2D ground maps and terrestrial 
photographs grouped with a user-friendly customized 
interface which permits for the automatic and interactive 
generation of large-scale, accurate, georeferenced and fully-
textured 3D virtual city content. This content can be 
specially optimized for use with mobile devices but also 
with navigational tasks in mind. Moreover, a user-centred 
mobile virtual reality (VR) visualisation and interaction tool 
operating on PDAs (Personal Digital Assistants) for 
pedestrian navigation is also discussed. This engine supports 
the import and display of various navigational file formats 
(2D and 3D) and also includes a comprehensive front-end 
user-friendly graphical user interface providing immersive 
virtual 3D navigation to a wide range of users.  
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1. INTRODUCTION 
 
Today there is a growing need for computer-based, 
photorealistic visualizations of 3D urban environments in 
many areas including environmental planning, engineering, 
telecommunications, architecture, gaming, 3D city 
information systems and even homeland security. Therefore, 
the procedural modelling of virtual cities in 3D is a topic not 
only computer graphics research but also other fields such as 
GIS or photogrammetry have focused on for a number of 
years. Different approaches have been favored with the two 
main ones being a fully-automatic or a semi-automatic one.  
 
While the ideal 3D urban modelling system would be a 
totally automatic one, there are a number of obvious 
advantages to semi-automatic or user-assisted approaches 
where essentially an automatic system employs some limited 
operator input for guidance in a range of the tasks involved 
in order to offer better control on the resulting scene. 
Furthermore, the user-assisted (or interactive) tools can also 
be utilized as a more intelligent editing application for the 

preliminary model. For example, a popular approach is to 
offer suggestions to an automatic urban modelling system 
which then in turn concludes the modelling task at hand on 
its own. This can lead to a more efficient method for 
modeling complex structures. A more conventional approach 
to interactive modeling is to provide the user with a set of 
generic models that are then adjusted (using usually image 
data) altering the model and the viewing parameters [1]. In 
this approach, the system provides geometric computations 
but the drawback is that substantial time and effort are 
required from the user. Some other more recent approaches 
include the combination of user input with automatic 
processing introduced at various points with a different 
degree of control over the result. Offering an approximate 
building location to extract a building is one of the 
approaches suggested [2] that can lead to results although 
there is the important disadvantage of producing a final 
model very reliant on the automatic analysis. Other semi-
automatic urban modelling tools have been described, some 
including methods for duplicating and/or cloning model 
meshes that are similar to others [3]. Yet another approach 
suggests an automatic system constructing topological 
relations amongst 3D roof points collected by a user for each 
roof. This method [4] results in a tool that can tackle easily 
several types of complex roofs. An additional notable 
interactive urban modelling approach involves the system 
handling complex building structures by means of 
constructive solid geometry [5]. This system also uses an 
image correlation method to fit a primitive to the image. It 
should be noted however that this last method can be very 
costly on processing power when modelling more complex 
urban sites. One of the areas where 3D urban models are also 
in need today, apart from the ones mentioned in the 
beginning of this section, is for urban navigation using 
mobile devices. This can range to a number of sub-
applications including car and pedestrian navigation 
systems, location-based services and others. It appears that 
while the methods for automatic and semi-automatic 
creation of 3D urban models today do cover a lot of ground 
both in terms of concepts and also in delivery of content, 
they fail to take into account the considerable limitations and 
challenges mobile devices have to offer. Constraints in terms 
of graphics memory, processing power and memory cards 
render the output of most of these systems unusable on 

 



 

devices such as PDAs or smartphones because of excessive 
detail. At the same time, care needs to be taken in presenting 
this content on mobile devices since, for example, typical 
PDAs are only equipped with screens no larger than a 
480x640 resolution display, thus presenting a further 
challenge. In this paper we propose both a modelling 
solution (Virtual City Maker) that can deliver urban content 
efficiently to mobile devices as well as a virtual navigation 
environment (Virtual Navigator) on a PDA to accompany it 
so that that the resulting meshes can be put to the test. It 
should be noted that while the content is specifically 
optimised for mobile use in mind, for example a varying 
low-polygon count and adjustable texture image sizes, the 
results need to be of the highest quality possible rivaling 
virtual city models seen on desktop machines but also 
accurately placed in space to accommodate real-world 
navigational needs. 
 
2.  VIRTUAL CITY MAKER SOLUTION 
 
This section will describe in more detail the overall 
workflow for the Virtual City Maker modelling tool ranging 
from a description of the framework of the system to an 
overview of its two modes; the automatic and semi-
automatic one with emphasis on some of the concepts, 
algorithms and interfaces behind them as well as some 
resulting 3D urban models. 
 
2.1 OVERVIEW OF THE SYSTEM 
 
First of all, regarding the input data used (a very important 
part of the process which affects the results in many ways) 
the authors of this paper have selected a combination of 
aerial photographs and also 2D ground maps, at least for the 
outline of the buildings modelled. This more hybrid 
approach combines the strengths of two different techniques 
for a more efficient result.  
 

 
Figure 1: framework diagram of Virtual City Maker  

Aerial images ensure accurate results and the bypassing (to a 
certain extent) of a generalization process while ground 
maps provide positional and geographic information. Our 
work is not only focused on delivering content for mobile 
devices but also on navigation. Therefore, geo-referenced 
results and accuracy are key issues with errors in geometry 
placement only afforded to be marginal making this hybrid 
data use approach even more justified. Having placed 
building footprint outlines in a precise manner, these 
outlines have been extruded to real world heights using, if 
needed, GIS vector data in the form of the .shp file format. 
This particular file format operates as a combination of CAD 
data with added metadata attributes. 
 
2.2 THE AUTOMATED MODE 
 
The key method in the automated reconstruction mode is the 
detection of building outlines and roofs from aerial images 
and/or 2D ground maps. The second other important step is 
the extrusion to real-world heights and that is handled, when 
needed, by a parser developed to read the GIS .shp files.  
The philosophy behind this has been to make only those 
decisions in the 3D analysis stage of the detection process 
that can be made in as much assurance at each level 
illustrated as possible. Therefore the hypothesis generation 
process creates hypotheses that may have somewhat weak 
evidence, which is where information from additional input 
data comes into use. Following that, a selection process then 
picks these based on more global evidence, filtering out the 
unwanted ones. The hypothesis verification process uses the 
most of this global information and can therefore make 
better decisions, resulting in a more accurate output. To 
begin with, initial hypotheses are generated for 2D 
projections of building roofs. The reason behind that is that 
it is generally accepted that roofs are usually the most 
distinct features in aerial images from a nadir point of view 
(such as the ones our system uses) and that focusing on the 
roofs helps reduce the number of hypotheses to be examined 
later on [18]. The generation of all roof hypotheses is 
gathered by the restriction of the building shapes to 
rectangular form or similar compositions and also of roofs to 
be flat. Roofs of buildings of this shape should project into a 
parallelogram-like shape. To showcase a more detailed 
example of the process we followed here, as Lin [18] 
suggests, a  degree corner projected to an angle, °90 ο , 
given the angle π  that one side of the projection makes with 
the horizontal and the viewing angles ψ  and ξ  is given by 
the following equation. 
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Figure 2: parallelogram projection algorithm used 
 

 



 

Any parallelogram found must satisfy the relationships 
above. Following that, a selection process eliminates or 
keeps hypotheses based on what detectable evidence there is 
for them in the aerial image and on the global relationships 
amongst them all. The basis for the verification of 3D 
outlines in our work are the shadows buildings cast on the 
ground in aerial images. It is assumed that the direction of 
illumination in the image is known and also that the ground 
surface in the vicinity of the structure is flat. These two 
assurances allow for the computation of accurate height 
information. To offer more insight in the algorithms 
involved in this area, the building height is related to several 
parameters that can be measured from the image given. With 
X  (pixels/meter) the image resolution in the neighborhood 

of the building location, H  the projected wall height, can 
be computed (in pixels again) from the building height, B  
(in meters), and also the viewing angles by the following 
algorithm, )sin( ξ⋅⋅= XBH . The projected shadow 
width, , can be calculated from the building height, the 
viewing angles and the sun angles (the direction of 
illumination, , the direction of shadow cast by a vertical 
line, , and the sun incidence angle l  using the following 
algorithm as introduced again by Lin [18]). 
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Figure 3: shadow width computation algorithm 
 
However, when surfaces are not flat in the aerial image or 
are cast on surfaces of nearby buildings, the quality of the 
3D information is low. While still usable for other purposes 
it was decided to have an alternative. Nevertheless then, in 
this eventuality, the average height value from the GIS .shp 
data is used. This illustrates in detail why our choice of using 
a number of different input data can be so useful. The 
concept behind shadow analysis used in this work derives 
from the establishment of relationships between shadow 
casting elements and shadows cast [17]. 
 

 
Figure 4:  roof edge detection final results using method/algorithms 

2.3 THE SEMI-AUTOMATED MODE 
 
Often there are cases where users require urban content that 
is not derived from real-world GIS coordinates but can be 
fictitious (mobile gaming applications for example). The 
semi-automatic mode of the application presented here can 
cater for that via individual plug-ins. 
 
2.3.1 CREATING BUILDINGS 
 
Every virtual city consists of buildings, with these structures 
being the most important ones for the overall scene. One of 
the most important plug-ins for interactive or semi-automatic 
editing and creation of virtual cities, and thus buildings in 
particular, with the Virtual City Maker tool is the Building 
Creator script. Its interface is illustrated in Figure 5.  
 

 
Figure 5: Building Creator script interface 

 
The version presented here supports the creation of 3D 
buildings from splines which can either be imported from 
CAD files such as 2D ground plans or can be freeform ones 
that the user can draw. Multiple floor segmentation for the 
building is offered as well as roof modelling with 
controllable height and overhang based on the user’s 
selection (out of a range of roof shapes such as gabled, 
cross-gabled, flat, mansard, hipped, cross hiped, pyramidal 
and shed), the ability to create insets for additional geometric 
detail (such as for example segmentation between floors or 
creating a ground surface surrounding the building or even a 
terrace-like shape before the roof) and also allowance for 
texturing. This final process has been implemented by means 
of assigning different numerical material IDs to each floor 

 



 

and roof so that when the user selects an image to map onto 
a surface it will be saved according to this ID selection. This 
speeds up and simplifies the otherwise tedious process of 
texturing while at the same time giving the user full control 
on it. 
  

 
Figure 6: step-by-step operation of the Building Creator script, creating 

a random building from a real-world map 
 
2.3.2 OPTIMISING BUILDING STRUCTURES 
 
Following that, another very important component script for 
the overall tool is the previously mentioned Polygon 
Reductor. The algorithm which forms the basis of the 
Polygon Reductor script is based on a concept called edge 
decimation [15], [16]. Some concepts known as vertex 
decimation [14] and triangle decimation [13] are popular 
alternative approaches to polygon reduction / mesh 
simplification processes. In this case, i.e. with edge 
decimation, polygons are removed from the mesh by 
collapsing or contracting edges. That effectively means 
removing two triangles from an area of the mesh’s surface 
thus simplifying it. The two vertices of the collapsed, 
decimated, edge are merged into one endpoint and the 
triangle adjacency lists of the two original vertices are 

concatenated for the newly formed vertex. It should be noted 
that this contraction process has been made both progressive 
(for performance reasons, more on that below) and also 
reversible. In other words, every time an edge is collapsed 
and then merged there needs to be enough data kept to split 
the concatenated list back into the lists for each of the two 
vertices in question. To achieve that goal it has to be 
guaranteed that collapsing and then rebuilding an edge is a 
process that needs to be general enough to work on any 
random area of each given mesh. There are meshes where 
not all edges have two adjacent triangles, essentially, 
meaning with edges that are not continuous in nature. 
Therefore, to cater for this eventuality, the algorithm used 
makes a check on all degenerated-bound edges for the two 
adjacent triangles needed. This tackles one of the most 
important drawbacks of the edge decimation technique; 
uncontrollable edge contraction. Edge merging algorithms 
can often implicitly alter the topology of a model by closing 
holes in the surface if the importance of all edges is not 
evaluated. In more detail, Figure 7 illustrates the algorithm 
we have opted to use which is the fundamental edge 
decimation one (as described by Ronfard [20], amongst 
others) both for preprocessing and visualizing the optimized 
mesh. This approach has the following advantages: a) 
progressive representations of the original building model 

nB  with the continuous family of meshes 

( nBnBBB ,1,...,1,0 − ) is very space-efficient plus has a 
smaller storage than the results of standard triangle/vertex 
approaches b) level-of-detail can be supported via the 
transformation from the iB  mesh to 1+iB  by just applying 
the i-th vertex split/edge collapse operation c) the model can 
offer view-dependent or selective refinement. 
 
Reconstruction pre-processing: 
 
for (reach approximation index) 
{ 
find and select edge whose decimation displays the smallest error measure; 
collapse selected edge into one vertex; 
store the collapse record also including one collapsed edge and two 
collapsed triangles; 
} 
return (base mesh & collapse records); 
 
Visualization / reconstruction: 

using the base mesh 
0B  perform sequence of vertex split operations using 

the stored collapsed record; 

produce a continuous family of meshes (
nBnBBB ,1,...,1,0 −

); 
Figure 7: progressive/reversible polygon reduction algorithm used  

 
Finally, to select the target edges for the edge collapse we 
have opted to use an energy-derived error-based function 
introduced by Hoppe [21] which has yielded the best results 
for our urban meshes compared to other error metrics: 

)()()()()( BEBEBEBEBE discscalarspringdist +++= , where 

 is the distance energy equal to the sum of squared 

distances from the points   to the mesh, 

)(BEdist

},...,{ 1 nxxX =

 



 

)(BEspring  places on each edge of the mesh a spring of rest 

length zero and spring constant , measures the 

accuracy of its scalar attributes and  measures the 
geometric accuracy of its discontinuity curves. There are two 
ways to decrease the polygon count on a building mesh 
using this plug-in. The first is automatically, i.e. by selecting 
one of the four different levels of detail presented with each 
progressively decreasing polygon count by 25%. The second 
is semi-automatically, by decreasing either the vertex or the 
polygon count/percentage. The resulting output can be 
previewed within the script, have its settings reset and also 
exported to the VRML file format for use with our 
visualization engine.  

k )(BEscalar
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2.3.3 DIFFERENT TYPES OF SHADING 
 
Literature suggests [11], [12] that other ways of rendering 
3D urban content can also be beneficial for communicating 
elements of numerous other principles such as cognition, 
cartography and non-photorealism. Thus an additional plug-
in has been incorporated to the Virtual City Maker solution 
called City Shader. This facilitates the production of 
cartoon-shaded (via stylistic shaded rendering), clay-
rendered and wireframe visualizations with various 
parameters. Most importantly, these different types of 
shading can be exported to suitable file formats for mobile 
use which involves a number of issues considering mobile 
devices are not ideal to handle expressive visualizations. For 
example the clay-rendered model, before exported to VRML 
file format, had to have all its textures “baked” ensuring 
lighting and shadows information were kept because this 
particular file format does not support features such as 
advanced lighting or radiosity. The algorithm used for the 
results above is a variant of the one presented by Lake [19] 
which rather than smoothly interpolating shading across a 
model as in Gouraud shading (another popular approach), 
finds a transition boundary and shades each side of the 
boundary with a solid color. 
 
Pre-processing & visualizing a cartoon-shaded mesh 
 
compute the illuminated diffuse color for each material using 

 where  is the 

vertex color,  is the coefficient of global ambient light,  is the 

diffuse coefficient of the light source and  and  are the ambient 

and diffuse coefficients of the object’s material; 

)]()[()( msammgi ddicccS ×+×+×= iS

gc sd

mc md

compute the shadowed diffuse color using 

 where  is the ambient coefficient 

of the light source ; 

)()( mamgd ciccS ×+×= ai

for (each material) 
{ 
create a one-dimensional texture map with two texels using the texture 
functionality  
store this one-dimensional texture map 

fill the texel (texture pixel) at the  end of the texture with  and 

the texel at the  end of the texture with ; 

1=i iS
0=i dS

} 
compute the one-dimensional texture coordinate at each vertex of the model 

using }0,{ uVMax ⋅ , where V  is the normalized vector from the 

vertex to the light source location, u  is the unit normal to the surface at the 

vertex and uV ⋅  is their vector inner product; 
return the rendered mesh with lighting disabled and one-dimensional texture 
maps enabled; 

Figure 8: pseudo-code of the cartoon-shading algorithm used 
 

 
Figure 9: cartoon shaded urban mesh using City Shader 

 
3. VIRTUAL NAVIGATION SOLUTION 
 
Travel is the major component of navigation and usually 
involves unconscious cognition whereas wayfinding is the 
cognitive process of defining a path via an environment 
using and acquiring spatial knowledge based on both natural 
and virtual cues [6]. Although a number of mobile 
navigation systems have been designed, from industry and 
universities, they do not seem to have the appeal that was 
expected apart from the GPS in-car navigation systems. 
However, even these, have selected as the main visualisation 
environment to be the digital map which provides limited 
capabilities and they have now started to move into a rough 
3D mesh visualisation which does not include photorealism. 
On the other hand, a few experimental mobile guides have 
been mainly developed by universities and are mostly based 
on abstract representations of the real environment without 
providing a robust solution for both intuitive navigation and 
wayfinding. In addition, they usually provide standard 
multimedia interfaces like audio or video operations without 
taking advantage of the capabilities of VR and user interface 
(UI) technologies. A brief overview of the most significant 
mobile VR applications has been recently documented [7], 
[8]. Part of the problem lies on the provision of meaningful 
spatial information in a realistic manner, so that 
inexperienced users do not have to put a great amount of 
cognitive effort to ‘decode’ the retrieved information (i.e. 3D 
map or wayfinding operations). Another significant concern 
relates to the lack of user-friendly graphical interfaces that 
will allow for the customisation of the information provided 
as well as the provision of different navigation tools in real-
time. The emphasis on designing for continuous mobile 
interaction requires addressing a number of features [9]. To 
address these issues, a VR pedestrian mobile environment 

 



 

called Virtual Navigator has been implemented. Previous 
user-studies [7] indicated that the use of photorealism in 3D 
urban maps used for pedestrian navigation is helpful and 
more attractive than the standard 2D digital map 
representation. However, a few users reported some 
problems with the interaction techniques used, mainly 
because of the limited functionality the interface provided. 
Another interesting point [8] relates to the provision of 
choice to the user to accommodate sudden, external factors 
that may allow them to detour from a default path. In 
addition, it was positively suggested that the route line 
should be more distinct, minimising the probability of 
missing it while moving. To overcome these issues the 
graphical user interface (a prototype shown in Figure 10) for 
user-centred navigation and wayfinding was re-designed 
from scratch and is now divided into four categories 
including file, routes, directions and tools. The ‘file’ 
category contains the necessary functionality to open and 
close geo-referenced spatial maps represented in 3D. The 
virtual maps are currently stored in the device by using the 
wireless connectivity (GPRS or WiFi) so the 3D maps can 
be downloaded from a web-server. This allows Virtual 
Navigator to meet one of the most significant requirements 
of modern navigation systems which is to be operational 
anywhere and anytime. The ‘exit’ option permits to exit 
Virtual Navigation without the need of ‘killing’ the process 
from the memory control panel of the PDA. Next, the 
‘routes’ category allows mobile users to select the type of 
representation they require for navigation and wayfinding 
operations. The effectiveness of the wayfinding depends on 
the number and quality of wayfinding cues provided to 
pedestrians [6]. Earlier user studies [7] indicated that users 
prefer different types of wayfinding aids like lines and 
arrows. In our work, this includes ‘arrows’, ‘lines’, 
‘hotspots’ and ‘guides’. Arrows, lines and hotspots have 
been used individually in previous mobile prototypes [7], [8] 
but not the guides. The purpose of using different categories 
of routes is to provide a meaningful aid that has a clear start 
and end, assisting pedestrians using Virtual Navigator, to 
find their way and not to get lost. The size and colours of the 
arrows and lines can be customised allowing for 
personalisation of the cues used. One of the points that were 
mentioned in previous user studies [7] is that the addition of 
recognisable landmarks would provide a clearer cognitive 
link between the VR environment and the real world scene. 
To address this effectively, first the 3D map was modelled 
using more detail such as including trees and lamps which 
are considered as landmarks from a large number of users. 
Besides, a number of hotspots that contain different types of 
functionality were added to the virtual 3D map making it 
interactive. In the simplest case, these include hyperlinks 
that link the 3D map with relevant web pages about the 
environment, but they can also provide links to other 
multimedia information such as digital pictures, audio and 
other 3D navigational information. The ‘directions’ category 
refers to the type of audio-visual information that can be 
provided to the pedestrians. The simultaneous presentation 
of audio-visual information meets one of the requirements 
(simultaneous activities that operate concurrently) of design 

issues in mobile interfaces. In the simplest case-scenario, 
textual directions provide information on how to navigate 
from one position to another. Additionally, textual 
annotations can be used effectively for presenting 
information about a place or a building (i.e. ‘…this is the 
main entrance of City University campus…’). Similarly, 
auditory directions perform the same action using pre-
recorded wav files, but are prone to external noise. Finally, 
the ‘tools’ category, allows users to change some of the 
graphical and navigational properties of Virtual Navigator. 
These include the speed of navigation, the interaction type as 
well as the lighting of the scene. The speed of navigation can 
be customised according to the user needs accordingly (it 
was found that more experienced users prefer faster mode 
whereas inexperienced users like a slow pace). By increasing 
the altitude of the user location, through the ‘interaction’ 
menu, and altering the pitch to look directly down, it is 
possible to switch the view from a ground view into a bird’s 
eye view of the surroundings. This is analogous to the 
standard map view and can be used for personal orientation 
and navigation [10]. 
 

 
Figure 10: prototype interface design Virtual Navigator (manual mode) 

 
4. CONCLUSION AND FUTURE WORK 
 
Both on the modelling and VR techniques presented above 
work is continuous and on-going. Future work on the Virtual 
City Maker and the Virtual Navigator tools include: a) the 
introduction of a new plug-in that can intelligently 
distinguish between rural areas and more complex urban 
areas and offer the user with a more “in-between” stage of 
creating a collection of building meshes b) in the future, a 
database with a management system will be designed to hold 
and maintain all the necessary geo-referenced spatial data 
into a secure server which will be used in urban navigation. 
To serve the demands of current user-needs, our server 
should feed the client, through an optimised network with 
minimum latency in real-time performance and finally c) 

 



 

more advanced routing services will be also developed to 
provide advanced navigational assistance to mobile users by 
making searches to the remote database as well as 
considering the behaviour for different modes of transport. 
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