

Coventry
University

Coventry University Repository for the Virtual Environment
(CURVE)

Author name Gatzidis, C., Liarokapis, F., Brujic-Okretic, V. and Baker, S.

Title Virtual city maker and virtual navigator: a modelling and visualisation solution
for the creation and display of mobile 3D virtual cities

Article & version (e.g. post-print version) Post-print

Original citation [include hyperlink to jnl page / publisher]

Gatzidis, C., Liarokapis, F., Brujic-Okretic, V. and Baker, S. (2008) 'Virtual city maker
and virtual navigator: a modelling and visualisation solution for the creation and
display of mobile 3D virtual cities', Proc. of the 10th IASTED International Conference
on Computer Graphics and Imaging (CGIM 2008), ACTA Press, Innsbruck, Austria, 13-
15 February, 224-230.

Copyright © and Moral Rights are retained by the publisher. A copy can be
downloaded for personal non-commercial research or study, without prior
permission or charge. This item cannot be reproduced or quoted extensively from
without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or
medium without the formal permission of the copyright holders.

This document is the final manuscript version of the conference paper,
incorporating any revisions agreed during the peer-review process. Some
differences between the published version and this version may remain and you
are advised to consult the published version if you wish to cite from it.

Available in the CURVE Research Collection: April 2010

http://curve.coventry.ac.uk/open

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CURVE/open

https://core.ac.uk/display/228147015?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://curve.coventry.ac.uk/open�

Virtual City Maker And Virtual Navigator: A Modelling And Visualisation Solution
For Mobile 3D Virtual Cities

Christos Gatzidis1, Fotis Liarokapis2, Vesna Brujic-Okretic1, Stuart Baker3

giCentre, Department of Information Science, City University, London, EC1V 0HB, UK
{c.gatzidis, vesna}@soi.city.ac.uk1

Faculty of Engineering and Computing, Department of Creative Computing, Coventry, CV1 5FB, UK
F.Liarokapis@coventry.ac.uk2

Alcatel-Lucent Telecom Limited, Christchurch Way, Greenwich, London SE10 0AG
Stuart.e.Baker@alcatel-lucent.co.uk3

ABSTRACT
This paper presents a complete procedural 3D modelling
solution for mobile devices, called Virtual City Maker, based
on scripting algorithms allowing for both the automatic and
also semi-automatic creation of photorealistic quality virtual
urban content. The input data used include the combination
of aerial images, GIS data, 2D ground maps and terrestrial
photographs grouped with a user-friendly customized
interface which permits for the automatic and interactive
generation of large-scale, accurate, georeferenced and fully-
textured 3D virtual city content. This content can be
specially optimized for use with mobile devices but also
with navigational tasks in mind. Moreover, a user-centred
mobile virtual reality (VR) visualisation and interaction tool
operating on PDAs (Personal Digital Assistants) for
pedestrian navigation is also discussed. This engine supports
the import and display of various navigational file formats
(2D and 3D) and also includes a comprehensive front-end
user-friendly graphical user interface providing immersive
virtual 3D navigation to a wide range of users.

KEY WORDS
Applications, 3D urban modelling, mobile navigation

1. INTRODUCTION

Today there is a growing need for computer-based,
photorealistic visualizations of 3D urban environments in
many areas including environmental planning, engineering,
telecommunications, architecture, gaming, 3D city
information systems and even homeland security. Therefore,
the procedural modelling of virtual cities in 3D is a topic not
only computer graphics research but also other fields such as
GIS or photogrammetry have focused on for a number of
years. Different approaches have been favored with the two
main ones being a fully-automatic or a semi-automatic one.

While the ideal 3D urban modelling system would be a
totally automatic one, there are a number of obvious
advantages to semi-automatic or user-assisted approaches
where essentially an automatic system employs some limited
operator input for guidance in a range of the tasks involved
in order to offer better control on the resulting scene.
Furthermore, the user-assisted (or interactive) tools can also
be utilized as a more intelligent editing application for the

preliminary model. For example, a popular approach is to
offer suggestions to an automatic urban modelling system
which then in turn concludes the modelling task at hand on
its own. This can lead to a more efficient method for
modeling complex structures. A more conventional approach
to interactive modeling is to provide the user with a set of
generic models that are then adjusted (using usually image
data) altering the model and the viewing parameters [1]. In
this approach, the system provides geometric computations
but the drawback is that substantial time and effort are
required from the user. Some other more recent approaches
include the combination of user input with automatic
processing introduced at various points with a different
degree of control over the result. Offering an approximate
building location to extract a building is one of the
approaches suggested [2] that can lead to results although
there is the important disadvantage of producing a final
model very reliant on the automatic analysis. Other semi-
automatic urban modelling tools have been described, some
including methods for duplicating and/or cloning model
meshes that are similar to others [3]. Yet another approach
suggests an automatic system constructing topological
relations amongst 3D roof points collected by a user for each
roof. This method [4] results in a tool that can tackle easily
several types of complex roofs. An additional notable
interactive urban modelling approach involves the system
handling complex building structures by means of
constructive solid geometry [5]. This system also uses an
image correlation method to fit a primitive to the image. It
should be noted however that this last method can be very
costly on processing power when modelling more complex
urban sites. One of the areas where 3D urban models are also
in need today, apart from the ones mentioned in the
beginning of this section, is for urban navigation using
mobile devices. This can range to a number of sub-
applications including car and pedestrian navigation
systems, location-based services and others. It appears that
while the methods for automatic and semi-automatic
creation of 3D urban models today do cover a lot of ground
both in terms of concepts and also in delivery of content,
they fail to take into account the considerable limitations and
challenges mobile devices have to offer. Constraints in terms
of graphics memory, processing power and memory cards
render the output of most of these systems unusable on

devices such as PDAs or smartphones because of excessive
detail. At the same time, care needs to be taken in presenting
this content on mobile devices since, for example, typical
PDAs are only equipped with screens no larger than a
480x640 resolution display, thus presenting a further
challenge. In this paper we propose both a modelling
solution (Virtual City Maker) that can deliver urban content
efficiently to mobile devices as well as a virtual navigation
environment (Virtual Navigator) on a PDA to accompany it
so that that the resulting meshes can be put to the test. It
should be noted that while the content is specifically
optimised for mobile use in mind, for example a varying
low-polygon count and adjustable texture image sizes, the
results need to be of the highest quality possible rivaling
virtual city models seen on desktop machines but also
accurately placed in space to accommodate real-world
navigational needs.

2. VIRTUAL CITY MAKER SOLUTION

This section will describe in more detail the overall
workflow for the Virtual City Maker modelling tool ranging
from a description of the framework of the system to an
overview of its two modes; the automatic and semi-
automatic one with emphasis on some of the concepts,
algorithms and interfaces behind them as well as some
resulting 3D urban models.

2.1 OVERVIEW OF THE SYSTEM

First of all, regarding the input data used (a very important
part of the process which affects the results in many ways)
the authors of this paper have selected a combination of
aerial photographs and also 2D ground maps, at least for the
outline of the buildings modelled. This more hybrid
approach combines the strengths of two different techniques
for a more efficient result.

Figure 1: framework diagram of Virtual City Maker

Aerial images ensure accurate results and the bypassing (to a
certain extent) of a generalization process while ground
maps provide positional and geographic information. Our
work is not only focused on delivering content for mobile
devices but also on navigation. Therefore, geo-referenced
results and accuracy are key issues with errors in geometry
placement only afforded to be marginal making this hybrid
data use approach even more justified. Having placed
building footprint outlines in a precise manner, these
outlines have been extruded to real world heights using, if
needed, GIS vector data in the form of the .shp file format.
This particular file format operates as a combination of CAD
data with added metadata attributes.

2.2 THE AUTOMATED MODE

The key method in the automated reconstruction mode is the
detection of building outlines and roofs from aerial images
and/or 2D ground maps. The second other important step is
the extrusion to real-world heights and that is handled, when
needed, by a parser developed to read the GIS .shp files.
The philosophy behind this has been to make only those
decisions in the 3D analysis stage of the detection process
that can be made in as much assurance at each level
illustrated as possible. Therefore the hypothesis generation
process creates hypotheses that may have somewhat weak
evidence, which is where information from additional input
data comes into use. Following that, a selection process then
picks these based on more global evidence, filtering out the
unwanted ones. The hypothesis verification process uses the
most of this global information and can therefore make
better decisions, resulting in a more accurate output. To
begin with, initial hypotheses are generated for 2D
projections of building roofs. The reason behind that is that
it is generally accepted that roofs are usually the most
distinct features in aerial images from a nadir point of view
(such as the ones our system uses) and that focusing on the
roofs helps reduce the number of hypotheses to be examined
later on [18]. The generation of all roof hypotheses is
gathered by the restriction of the building shapes to
rectangular form or similar compositions and also of roofs to
be flat. Roofs of buildings of this shape should project into a
parallelogram-like shape. To showcase a more detailed
example of the process we followed here, as Lin [18]
suggests, a degree corner projected to an angle, °90 ο ,
given the angle π that one side of the projection makes with
the horizontal and the viewing angles ψ and ξ is given by
the following equation.

),tan(ωλπ=o , where

ξ
ψπ

ξψπλ
cos

)(sin
)]cos()([cos

2
2 +

++=

and

]
)cos(

1))[cos(cos()sin(
ξ

ξψπψπω −++=

Figure 2: parallelogram projection algorithm used

Any parallelogram found must satisfy the relationships
above. Following that, a selection process eliminates or
keeps hypotheses based on what detectable evidence there is
for them in the aerial image and on the global relationships
amongst them all. The basis for the verification of 3D
outlines in our work are the shadows buildings cast on the
ground in aerial images. It is assumed that the direction of
illumination in the image is known and also that the ground
surface in the vicinity of the structure is flat. These two
assurances allow for the computation of accurate height
information. To offer more insight in the algorithms
involved in this area, the building height is related to several
parameters that can be measured from the image given. With
X (pixels/meter) the image resolution in the neighborhood

of the building location, H the projected wall height, can
be computed (in pixels again) from the building height, B
(in meters), and also the viewing angles by the following
algorithm,)sin(ξ⋅⋅= XBH . The projected shadow
width, , can be calculated from the building height, the
viewing angles and the sun angles (the direction of
illumination, , the direction of shadow cast by a vertical
line, , and the sun incidence angle l using the following
algorithm as introduced again by Lin [18]).

W

x
y

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

−
+⋅⋅⋅

⎩
⎨
⎧

°+=
≠−⋅⋅

⎩
⎨
⎧

−°==
≠−⋅⋅

⎪⎩

⎪
⎨
⎧

−°==

≠+⋅⋅

=⋅⋅

=

else
xy

yXB
xy

when
i

lXB
xy

when
i
lXB

xy
when

i
lXB

whenlXB

W

)cos(
)cos(sin

180
0

cos
)sin(

90
0

cos
)sin(

270

0

cos
)sin(

0tan

ψξ

ξξ
ψ

ξξ
ψ

ξξ

γ

Figure 3: shadow width computation algorithm

However, when surfaces are not flat in the aerial image or
are cast on surfaces of nearby buildings, the quality of the
3D information is low. While still usable for other purposes
it was decided to have an alternative. Nevertheless then, in
this eventuality, the average height value from the GIS .shp
data is used. This illustrates in detail why our choice of using
a number of different input data can be so useful. The
concept behind shadow analysis used in this work derives
from the establishment of relationships between shadow
casting elements and shadows cast [17].

Figure 4: roof edge detection final results using method/algorithms

2.3 THE SEMI-AUTOMATED MODE

Often there are cases where users require urban content that
is not derived from real-world GIS coordinates but can be
fictitious (mobile gaming applications for example). The
semi-automatic mode of the application presented here can
cater for that via individual plug-ins.

2.3.1 CREATING BUILDINGS

Every virtual city consists of buildings, with these structures
being the most important ones for the overall scene. One of
the most important plug-ins for interactive or semi-automatic
editing and creation of virtual cities, and thus buildings in
particular, with the Virtual City Maker tool is the Building
Creator script. Its interface is illustrated in Figure 5.

Figure 5: Building Creator script interface

The version presented here supports the creation of 3D
buildings from splines which can either be imported from
CAD files such as 2D ground plans or can be freeform ones
that the user can draw. Multiple floor segmentation for the
building is offered as well as roof modelling with
controllable height and overhang based on the user’s
selection (out of a range of roof shapes such as gabled,
cross-gabled, flat, mansard, hipped, cross hiped, pyramidal
and shed), the ability to create insets for additional geometric
detail (such as for example segmentation between floors or
creating a ground surface surrounding the building or even a
terrace-like shape before the roof) and also allowance for
texturing. This final process has been implemented by means
of assigning different numerical material IDs to each floor

and roof so that when the user selects an image to map onto
a surface it will be saved according to this ID selection. This
speeds up and simplifies the otherwise tedious process of
texturing while at the same time giving the user full control
on it.

Figure 6: step-by-step operation of the Building Creator script, creating

a random building from a real-world map

2.3.2 OPTIMISING BUILDING STRUCTURES

Following that, another very important component script for
the overall tool is the previously mentioned Polygon
Reductor. The algorithm which forms the basis of the
Polygon Reductor script is based on a concept called edge
decimation [15], [16]. Some concepts known as vertex
decimation [14] and triangle decimation [13] are popular
alternative approaches to polygon reduction / mesh
simplification processes. In this case, i.e. with edge
decimation, polygons are removed from the mesh by
collapsing or contracting edges. That effectively means
removing two triangles from an area of the mesh’s surface
thus simplifying it. The two vertices of the collapsed,
decimated, edge are merged into one endpoint and the
triangle adjacency lists of the two original vertices are

concatenated for the newly formed vertex. It should be noted
that this contraction process has been made both progressive
(for performance reasons, more on that below) and also
reversible. In other words, every time an edge is collapsed
and then merged there needs to be enough data kept to split
the concatenated list back into the lists for each of the two
vertices in question. To achieve that goal it has to be
guaranteed that collapsing and then rebuilding an edge is a
process that needs to be general enough to work on any
random area of each given mesh. There are meshes where
not all edges have two adjacent triangles, essentially,
meaning with edges that are not continuous in nature.
Therefore, to cater for this eventuality, the algorithm used
makes a check on all degenerated-bound edges for the two
adjacent triangles needed. This tackles one of the most
important drawbacks of the edge decimation technique;
uncontrollable edge contraction. Edge merging algorithms
can often implicitly alter the topology of a model by closing
holes in the surface if the importance of all edges is not
evaluated. In more detail, Figure 7 illustrates the algorithm
we have opted to use which is the fundamental edge
decimation one (as described by Ronfard [20], amongst
others) both for preprocessing and visualizing the optimized
mesh. This approach has the following advantages: a)
progressive representations of the original building model

nB with the continuous family of meshes

(nBnBBB ,1,...,1,0 −) is very space-efficient plus has a
smaller storage than the results of standard triangle/vertex
approaches b) level-of-detail can be supported via the
transformation from the iB mesh to 1+iB by just applying
the i-th vertex split/edge collapse operation c) the model can
offer view-dependent or selective refinement.

Reconstruction pre-processing:

for (reach approximation index)
{
find and select edge whose decimation displays the smallest error measure;
collapse selected edge into one vertex;
store the collapse record also including one collapsed edge and two
collapsed triangles;
}
return (base mesh & collapse records);

Visualization / reconstruction:

using the base mesh
0B perform sequence of vertex split operations using

the stored collapsed record;

produce a continuous family of meshes (
nBnBBB ,1,...,1,0 −

);
Figure 7: progressive/reversible polygon reduction algorithm used

Finally, to select the target edges for the edge collapse we
have opted to use an energy-derived error-based function
introduced by Hoppe [21] which has yielded the best results
for our urban meshes compared to other error metrics:

)()()()()(BEBEBEBEBE discscalarspringdist +++= , where

 is the distance energy equal to the sum of squared

distances from the points to the mesh,

)(BEdist

},...,{ 1 nxxX =

)(BEspring places on each edge of the mesh a spring of rest

length zero and spring constant , measures the

accuracy of its scalar attributes and measures the
geometric accuracy of its discontinuity curves. There are two
ways to decrease the polygon count on a building mesh
using this plug-in. The first is automatically, i.e. by selecting
one of the four different levels of detail presented with each
progressively decreasing polygon count by 25%. The second
is semi-automatically, by decreasing either the vertex or the
polygon count/percentage. The resulting output can be
previewed within the script, have its settings reset and also
exported to the VRML file format for use with our
visualization engine.

k)(BEscalar

)(BEdisc

2.3.3 DIFFERENT TYPES OF SHADING

Literature suggests [11], [12] that other ways of rendering
3D urban content can also be beneficial for communicating
elements of numerous other principles such as cognition,
cartography and non-photorealism. Thus an additional plug-
in has been incorporated to the Virtual City Maker solution
called City Shader. This facilitates the production of
cartoon-shaded (via stylistic shaded rendering), clay-
rendered and wireframe visualizations with various
parameters. Most importantly, these different types of
shading can be exported to suitable file formats for mobile
use which involves a number of issues considering mobile
devices are not ideal to handle expressive visualizations. For
example the clay-rendered model, before exported to VRML
file format, had to have all its textures “baked” ensuring
lighting and shadows information were kept because this
particular file format does not support features such as
advanced lighting or radiosity. The algorithm used for the
results above is a variant of the one presented by Lake [19]
which rather than smoothly interpolating shading across a
model as in Gouraud shading (another popular approach),
finds a transition boundary and shades each side of the
boundary with a solid color.

Pre-processing & visualizing a cartoon-shaded mesh

compute the illuminated diffuse color for each material using

 where is the

vertex color, is the coefficient of global ambient light, is the

diffuse coefficient of the light source and and are the ambient

and diffuse coefficients of the object’s material;

)]()[()(msammgi ddicccS ×+×+×= iS

gc sd

mc md

compute the shadowed diffuse color using

 where is the ambient coefficient

of the light source ;

)()(mamgd ciccS ×+×= ai

for (each material)
{
create a one-dimensional texture map with two texels using the texture
functionality
store this one-dimensional texture map

fill the texel (texture pixel) at the end of the texture with and

the texel at the end of the texture with ;

1=i iS
0=i dS

}
compute the one-dimensional texture coordinate at each vertex of the model

using }0,{ uVMax ⋅ , where V is the normalized vector from the

vertex to the light source location, u is the unit normal to the surface at the

vertex and uV ⋅ is their vector inner product;
return the rendered mesh with lighting disabled and one-dimensional texture
maps enabled;

Figure 8: pseudo-code of the cartoon-shading algorithm used

Figure 9: cartoon shaded urban mesh using City Shader

3. VIRTUAL NAVIGATION SOLUTION

Travel is the major component of navigation and usually
involves unconscious cognition whereas wayfinding is the
cognitive process of defining a path via an environment
using and acquiring spatial knowledge based on both natural
and virtual cues [6]. Although a number of mobile
navigation systems have been designed, from industry and
universities, they do not seem to have the appeal that was
expected apart from the GPS in-car navigation systems.
However, even these, have selected as the main visualisation
environment to be the digital map which provides limited
capabilities and they have now started to move into a rough
3D mesh visualisation which does not include photorealism.
On the other hand, a few experimental mobile guides have
been mainly developed by universities and are mostly based
on abstract representations of the real environment without
providing a robust solution for both intuitive navigation and
wayfinding. In addition, they usually provide standard
multimedia interfaces like audio or video operations without
taking advantage of the capabilities of VR and user interface
(UI) technologies. A brief overview of the most significant
mobile VR applications has been recently documented [7],
[8]. Part of the problem lies on the provision of meaningful
spatial information in a realistic manner, so that
inexperienced users do not have to put a great amount of
cognitive effort to ‘decode’ the retrieved information (i.e. 3D
map or wayfinding operations). Another significant concern
relates to the lack of user-friendly graphical interfaces that
will allow for the customisation of the information provided
as well as the provision of different navigation tools in real-
time. The emphasis on designing for continuous mobile
interaction requires addressing a number of features [9]. To
address these issues, a VR pedestrian mobile environment

called Virtual Navigator has been implemented. Previous
user-studies [7] indicated that the use of photorealism in 3D
urban maps used for pedestrian navigation is helpful and
more attractive than the standard 2D digital map
representation. However, a few users reported some
problems with the interaction techniques used, mainly
because of the limited functionality the interface provided.
Another interesting point [8] relates to the provision of
choice to the user to accommodate sudden, external factors
that may allow them to detour from a default path. In
addition, it was positively suggested that the route line
should be more distinct, minimising the probability of
missing it while moving. To overcome these issues the
graphical user interface (a prototype shown in Figure 10) for
user-centred navigation and wayfinding was re-designed
from scratch and is now divided into four categories
including file, routes, directions and tools. The ‘file’
category contains the necessary functionality to open and
close geo-referenced spatial maps represented in 3D. The
virtual maps are currently stored in the device by using the
wireless connectivity (GPRS or WiFi) so the 3D maps can
be downloaded from a web-server. This allows Virtual
Navigator to meet one of the most significant requirements
of modern navigation systems which is to be operational
anywhere and anytime. The ‘exit’ option permits to exit
Virtual Navigation without the need of ‘killing’ the process
from the memory control panel of the PDA. Next, the
‘routes’ category allows mobile users to select the type of
representation they require for navigation and wayfinding
operations. The effectiveness of the wayfinding depends on
the number and quality of wayfinding cues provided to
pedestrians [6]. Earlier user studies [7] indicated that users
prefer different types of wayfinding aids like lines and
arrows. In our work, this includes ‘arrows’, ‘lines’,
‘hotspots’ and ‘guides’. Arrows, lines and hotspots have
been used individually in previous mobile prototypes [7], [8]
but not the guides. The purpose of using different categories
of routes is to provide a meaningful aid that has a clear start
and end, assisting pedestrians using Virtual Navigator, to
find their way and not to get lost. The size and colours of the
arrows and lines can be customised allowing for
personalisation of the cues used. One of the points that were
mentioned in previous user studies [7] is that the addition of
recognisable landmarks would provide a clearer cognitive
link between the VR environment and the real world scene.
To address this effectively, first the 3D map was modelled
using more detail such as including trees and lamps which
are considered as landmarks from a large number of users.
Besides, a number of hotspots that contain different types of
functionality were added to the virtual 3D map making it
interactive. In the simplest case, these include hyperlinks
that link the 3D map with relevant web pages about the
environment, but they can also provide links to other
multimedia information such as digital pictures, audio and
other 3D navigational information. The ‘directions’ category
refers to the type of audio-visual information that can be
provided to the pedestrians. The simultaneous presentation
of audio-visual information meets one of the requirements
(simultaneous activities that operate concurrently) of design

issues in mobile interfaces. In the simplest case-scenario,
textual directions provide information on how to navigate
from one position to another. Additionally, textual
annotations can be used effectively for presenting
information about a place or a building (i.e. ‘…this is the
main entrance of City University campus…’). Similarly,
auditory directions perform the same action using pre-
recorded wav files, but are prone to external noise. Finally,
the ‘tools’ category, allows users to change some of the
graphical and navigational properties of Virtual Navigator.
These include the speed of navigation, the interaction type as
well as the lighting of the scene. The speed of navigation can
be customised according to the user needs accordingly (it
was found that more experienced users prefer faster mode
whereas inexperienced users like a slow pace). By increasing
the altitude of the user location, through the ‘interaction’
menu, and altering the pitch to look directly down, it is
possible to switch the view from a ground view into a bird’s
eye view of the surroundings. This is analogous to the
standard map view and can be used for personal orientation
and navigation [10].

Figure 10: prototype interface design Virtual Navigator (manual mode)

4. CONCLUSION AND FUTURE WORK

Both on the modelling and VR techniques presented above
work is continuous and on-going. Future work on the Virtual
City Maker and the Virtual Navigator tools include: a) the
introduction of a new plug-in that can intelligently
distinguish between rural areas and more complex urban
areas and offer the user with a more “in-between” stage of
creating a collection of building meshes b) in the future, a
database with a management system will be designed to hold
and maintain all the necessary geo-referenced spatial data
into a secure server which will be used in urban navigation.
To serve the demands of current user-needs, our server
should feed the client, through an optimised network with
minimum latency in real-time performance and finally c)

more advanced routing services will be also developed to
provide advanced navigational assistance to mobile users by
making searches to the remote database as well as
considering the behaviour for different modes of transport.

ACKNOWLEDGEMENTS

Part of the work presented in this paper was conducted
within the LOCUS project, funded by EPSRC, through the
Location and Timing (KTN) Network. ALCATEL Lucent
Telecom Limited is also thanked for their input and insight.

REFERENCES

[1] T. Strat, L. Quam, J. Mundy, R. Welty, W. Bremner, M.
Horwedel, D. Hackett, A. Hoogs, The RADIUS Common
Development Environment, Proceedings of the DARPA
Image Understanding Workshop, San Diego, CA, 1992, 215-
226.

[2] J. Li, R. Nevatia, S. Noronha, User Assisted Modeling of
Buildings from Aerial Images, Proceedings of IEEE CVPR,
1999, II:274-279.

[3] Y. Hsieh, SiteCity: A Semi-Automated Site Modeling
System, Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, San Francisco, CA, 1996,
499-506.

[4] A. Gruen, H. Dan, A Topology Builder for Automated
Building Model Generation, Proceedings of Automatic
Extraction of Man Made Objects from Aerial and Space
Images (II), Birkhauser, Basel, 1997, 149-160.

[5] E. Gülch, H. Müller, T. Läbe, Integration of Automatic
Processes Into Semi-Automatic Building Extraction,
Proceedings of ISPRS Conference Automatic Extraction Of
GIS Objects From Digital Imagery, Munich, Germany,
1999.

[6] D. Downman, E. Kruijff, J. LaViola, I. Poupyrev, 3D
user interfaces: theory and practice (Boston, Addison
Wesley, 183-254, 2005).

[7] C. Gatzidis, F. Liarokapis, V. Brujic-Okretic, Automatic
modelling, generation and visualisation of realistic 3D
virtual cities for mobile navigation, Proceedings of the 9th
International Conference on Virtual Reality, Laval, France,
2007, 225-234.

[8] F. Liarokapis, V. Brujic-Okretic, S. Papakonstantinou,
Exploring urban environments using virtual and augmented
reality, Journal of Virtual Reality and Broadcasting, Digital
Peer Publishing, 3(5), 2006, 1-13.

[9] A. Dix, J. Finlay, G. Abowd, R. Beale, Human-computer
interaction (Harlow, Prentice Hall, 2004).

[10] D. Mountain, F. Liarokapis, Interacting with virtual
reality scenes on mobile devices, Proceedings of the 7th

International Conference on Human Computer Interaction
with Mobile Devices & Services, Salzburg, Austria, 2005,
331-332.

[11] J. Schumann, T. Strothotte, S. Laser, A. Raab,
Assessing the effect of non-photorealistic rendered images in
CAD, Proceedings of the SIGCHI conference on Human
factors in computing systems: common ground, Vancouver,
British Columbia, Canada, 1996, 35-41.

[12] J. Dollner, M. Walther, Real-Time Expressive
Rendering of City Models, Proceedings of the Seventh
International Conference on Information Visualization
(IV'03), Seattle, WA, USA, 2003, 245-250.

[13] W. J. Schroeder, J. A. Zarge, W. E. Lorensen,
Decimation of triangle meshes, Proceedings of SIGGRAPH
'92: annual conference on Computer graphics and
interactive techniques, New York, NY, USA, 1992, 65-70.

[14] B. Koh, T. Chen, Progressive VRML Browser,
Proceedings of IEEE International Workshop on Multimedia
Signal Processing, Copenhagen, Denmark, 1999, 71-76.

[15] M. Garland, P. Heckbert, Surface Simplification Using
Quadric Error Metrics, Proceedings of SIGGRAPH '97:
annual conference on Computer graphics and interactive
techniques, Los Angeles, USA, 1997, 209-216.

[16] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W.
Stuetzle, Mesh optimization, Proceedings of SIGGRAPH
'93: annual conference on Computer graphics and
interactive techniques, New York, NY, USA, 1993, 19-26.

[17] C. Lin, A. Huertas, R. Nevatia, Detection of Buildings
using Perceptual Grouping and Shadows, Proceedings of
IEEE Computer Vision and Pattern Recognition Conference,
Seattle, WA, USA, 1994, 62-69.

[18] C. Lin, R. Nevatia, Building Detection and Description
from a Single Intensity Image, Computer Vision And Image
Understanding Journal, 72(2), 1998, 101-121.

[19] A. Lake, C. Marshall, M. Harris, M. Blackstein,
Stylized rendering techniques for scalable real-time 3d
animation, Proceedings of NPAR 2000: First International
Symposium on Non Photorealistic Animation and Rendering,
Annecy, France, 2000, 13-20.

[20] R. Ronfard, J. Rossignac, Full-range approximation of
triangulated polyhedra, Computer Graphics Forum Journal,
15(3), 1996, 67-76.

[21] H. Hoppe, Progressive Meshes, Proceedings of
SIGGRAPH '96: annual conference on Computer graphics
and interactive techniques, New Orleans, Lousiana, USA,
1996, 99-108.

	Coventry.pdf
	Liarokapis2008

