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Lean NOX trap study on a light-duty diesel using fast response emission analysers 

 

A.J. Alimin, S.F. Benjamin and C. A. Roberts 

Automotive Engineering Applied Research Group, Coventry University, UK 

 

Abstract 

 

Storage and regeneration events have been studied using fast response emission analysers (~10ms) 

for a lean NOx trap fitted to a light-duty diesel engine. Tests were conducted at both low and high 

exhaust temperatures for various storage and purging periods. The use of fast response analysers has 

provided detailed information during the short regeneration periods and as combustion switched 

between rich and lean operating modes. It has also enabled quantification of the storage, reduction 

and overall conversion efficiencies as well as the instantaneous trapping efficiency.  With exhaust 

temperatures of 250oC storage efficiency was low ~30%. During purging two distinct NO spikes 

(breakthroughs) were measured downstream of the LNT at the beginning and end of regeneration. 

For this LNT the primary reducing mechanism is CO reacting with NO but CO reacting with ceria 

and/or water, the water-gas shift reaction, is suspected.. With exhaust temperatures of 400oC storage 

efficiencies were high ~80-90% except for a case of long storage/short purge when the trap was near 

saturation. NOx breakthrough during enrichment depended on storage and purge periods and the 

availability of catalyst sites. NO2 breakthrough was also observed at the end of regeneration as the 

combustion switched to lean operation. Generally, for the high temperature case on this LNT, the 

primary reducing mechanism is CO reacting with NO2.  
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1 Introduction 

 

Rising fuel costs and concerns regarding greenhouse gas emissions have resulted in an increase in 

the number of diesel passenger vehicles both in Europe and the US. The fuel economy improvement 

is due to the inherently better thermal efficiency of diesel over conventional petrol engines. However 
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diesels produce higher emissions of nitrogen oxides (NOX) and particulates. Whilst technologies to 

deal with the latter are well advanced (particulate traps) reducing NOx is more problematic with the 

automotive industry facing tough challenges in order to comply with European and US emission 

regulations.  

 

Conventional petrol engines operating at stoichiometric conditions with 3 way catalysts are extremely 

effective at reducing NOx. Diesels, however, burn with excess air and so reduction of NOX to nitrogen 

in the exhaust gas stream is more difficult. European emission regulation Euro 4 (2005) requires NOx 

emissions limited to 0.25 g/km.  Euro 5 (2009) and Euro 6 (2014) require further reductions to 0.18 

and 0.08 g/km respectively.  US standards are even more stringent with the current US Federal Tier 2 

Bin 5 (2007) limits set at 0.044 g/km [1]. Whilst Euro 5 NOx emissions might be met with 

improvements in combustion technology it is almost certain that NOx after-treatment systems will be 

needed to meet Euro 6 and current US Federal Tier 2 Bin 5 regulations. The two main NOx after-

treatment technologies under consideration are Lean NOx Traps (LNT) and Selective Catalytic 

Reduction (SCR). Each technology presents its own set of challenges and it is still uncertain which will 

prevail. Whilst both technologies have been demonstrated on engine test stands and in vehicles there 

is still a great deal of uncertainty as to the physical and chemical processes involved and so 

developing optimum design strategies is extremely challenging. 

  

LNT catalysts typically use a blend of Pt/Rh- group metals, which catalyse the reduction/oxidation 

process and a basic adsorbent or base-metal-oxide (BMO) that provides the storage capacity.  Typical 

adsorbers are barium oxide (BaO) and barium carbonate (BaCO3).  An oxidation catalyst converts 

engine-out NO emissions into NO2. This is subsequently stored on the LNT during lean engine 

operation as NO2 reacts with the BMO to form barium nitrate (Ba(NO3)2). Periodic regeneration of the 

trap under all driving condition is essential since it has a finite trapping capability. Regeneration is 

achieved by running the engine rich for a few seconds so that excess hydrocarbon (HC), carbon 

monoxide (CO) or hydrogen (H2) reacts on the Pt/Rh group metals with the NOx that is released by 

disintegration of the nitrate under these conditions. The technology is challenging as LNTs are sulphur 

sensitive and only achieve highest conversion efficiencies within a limited temperature window. Other 

technical challenges relate to identifying the optimum storage/purging periods, preventing NOx 
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“slippage” during purging events and developing appropriate control strategies. In particular, too 

frequent purging provides a fuelling penalty whilst insufficient purging reduces trapping efficiency. 

 

LNT behaviour has been studied in laboratory reactors using synthetic gases [2-14], on engine test 

beds [9, 15-22] and on vehicle drive cycle facilities [8, 21, 22]. Several research groups have 

developed mathematical models to describe LNT performance [3, 16, 19, 21-25].This research has 

demonstrated that there are multifarious factors that can influence NOX conversion efficiency amongst 

which are exhaust gas composition and temperature, air-fuel ratio,  the duration of the lean and rich 

cycles and the composition of BMO and noble metal type. Epling [26] provides a useful summary and 

highlights a number of unresolved issues. One of these is the cause of NOx slippage around the time 

of transition from lean to rich conditions. NOx slippage, which reduces conversion efficiency, has been 

reported by many groups [3, 6, 8-14, 17, 19, 20, 25]. 

 

The work described in this paper is part of a programme to develop a mathematical model of LNT 

systems for light-duty diesels [16, 23].The model should be capable of describing both storage and 

purging events and be validated against engine test data. Most previous engine studies have been 

undertaken using emission analysers with response times of the order of seconds and therefore 

cannot provide the resolution to characterise trap behaviour during purging events. This paper 

addresses this issue by using fast-response emission analysers; the data generated will be used for 

model validation. 

 

2 Experimental Test Rig  

 

Figure 1 shows a schematic of the test rig and figure 2 the LNT system. In the experiments a 4-

cylinder, 2 litre diesel engine was used, equipped with a common rail fuel injection system, exhaust 

gas recirculation (EGR) and an intake throttle body. The engine management system (EMS) 

comprised an engine control unit (ECU) and an injection control unit (ICU), and the throttle body was 

connected to the DSPACE control tool to enable periodic rich combustion.  The EMS was also 

connected to a GREDI system that was used as the calibration tool for the engine.  The fuel used 

throughout the tests was Carcal 55 low sulphur diesel (Swedish Class diesel).  
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The turbo outlet of the engine was linked to a lean NOX trap test rig exhaust that consisted of a long 

diffuser followed by a flow straightener upstream of a DOC and an LNT. The diffuser and flow 

straightener therefore supplied approximately spatially uniform flow to the catalysts. The DOC used Pt 

as the main catalyst whilst the LNT used a blend of Pt and Rh. The LNT had a base metal oxide as the 

storage compound, supported by ceria. 

 

The engine control software allowed control of the intake throttle body, EGR, as well as the injection 

quantities and timings for each of the pilot, main and post injections.  It also produced different cyclic 

regeneration sets (alternating lean and rich operations). The in-cylinder enrichment technique was 

able to generate the rich combustion condition that was needed for regenerating the LNT.  The 

approach used for in-cylinder enrichment in this study, which was based on varying fuel injection 

parameters and intake air throttling, was only one of many possible options for generating rich 

combustion but was used because it was the simplest. The fuel injection settings, amount and timing, 

were logged simultaneously at 50 Hz using GREDI. Data logging of emissions was performed at 50 

Hz, using a Froude-Consine Texcel testbed data logger.   

 

Fast response analysers (~10 ms) supplied by Cambustion were used to sample and analyse the 

exhaust emissions during storage and regeneration. An HFR500 Fast FID flame ionisation detector 

was used for sampling the HC emissions, a NDIR500 non-dispersive infra-red analyser for CO and 

CO2 and a CLD500 chemiluminescence detector for NO and total NOX.  The sampling probe without a 

NOX converter measured NO and with the converter measured total NOX, thus allowing for 

measurement of NO2 by subtraction. Each of the Cambustion instruments had two sampling heads 

and so at a given time six measurements could be made. Two wide band lambda sensors (Bosch 

lambda meter LA4 and lambda sensor LSU4.9) were used to record air fuel ratio and O2 levels in the 

exhaust. Three separate gas sampling positions were chosen: inlet (before the DOC), gap (between 

the DOC and LNT) and outlet (after the LNT).  Gas temperatures were measured upstream of the 

DOC, in the gap between the DOC and LNT and downstream of the LNT. The DOC and LNT brick 

temperatures were also measured at their centres. Emissions were sampled after engine and catalyst 

bed temperatures had approximately stabilised.   
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The fast response analysers captured details of the events during the storage and regeneration 

periods. The analysers were, in particular, able to measure the emissions traces during the rapid 

lambda changeover at the beginning and end of the regeneration period. The presence of signal noise 

in the emissions measurements was caused by small particles or carbon soot temporarily blocking the 

sampling passage from the probe heads to the service unit, see for example figure 3(b) between 72 

and 122 s.  The analysers became dirty in a very short time and required frequent meticulous 

cleaning. This limited the duration of each experiment. As it was not possible to simultaneously sample 

at all three sampling locations for all species composite plots were derived using data from different 

engine cycles. However in order to deduce the relative amounts of NO and NO2 both NOx sampling 

heads were always placed at the same location. The data from each set of experiments were 

synchronised using the regeneration event (throttle body signal voltage) as the timing reference. 

Inevitably, however, there will be small differences between cycles. 

 

Periodic storage and regeneration tests were carried out under conditions of steady speed and load. 

Measurements were taken when lean/purging events provided approximately cyclic behaviour from 

the LNT. Table 1 shows the test matrix which comprised various lean-storage/ rich-regeneration cycles 

and two different engine operating modes, A and B, designated as the low and high temperature 

conditions respectively.  

 

3 Emissions test results 

 

3.1 Low temperature study 

(Engine Mode A: LT60L3R and LT60L6R) 

 

These tests were performed at an exhaust temperature of about 250oC at inlet to the test rig. The 

storage period was fixed at 60 seconds and two regeneration periods were examined, 3 and 6 

seconds. This temperature is relatively low, leading to overall poor conversion efficiency. The cyclic 

NO, NO2, HC, CO, CO2, and O2 plots during storage and regeneration for the LT60L3R test are 

shown in figures 3(a) – 3(f). For the HC emissions only the plots from the gap and outlet are presented 
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in figure 3(c). One regeneration for test LT60L3R is shown on an expanded scale in figures 4(a) and 

(b) and similarly for test LT60L6R in figures 5(a) and (b).  

 

Figure 3 shows just two regenerations events. The cycle is repeated, and although there are some 

cycle to cycle variations, similar features were identified during each storage and regeneration event. 

Engine-out emissions show low levels of reductants, CO, HC during the lean or storage period. During 

the 3 second regeneration, CO and HC levels from the engine increase significantly whilst O2 and 

NOX levels fall. Figures 3(a) and (b) show NOx breakthrough occurring as two distinct NOx spikes 

recorded downstream of the LNT, either side of the regeneration event. During regeneration oxidation 

of CO across the LNT is observed; CO emissions post LNT are lower whereas CO2 has increased, 

figs 3(d) and (e).  

 

The NOX emitted by the engine during the lean period was mostly NO which was partly oxidised to 

NO2 by the DOC as evidenced by the increase of NO2 and the decrease of NO across the DOC, figs 

3(a) and (b). The reduction in NO2 levels across the LNT shows that part is being stored, which is not 

the case for NO. Overall at this temperature the storage efficiency, discussed later, is poor.  

 

Figures 4(a) and 5(a) show details during regeneration. The start of regeneration for these and 

subsequent figures can be deduced from when CO concentrations begin to rise at the first sampling 

location (inlet). The first NO breakthrough was generally much higher than the second. Increasing the 

regeneration period from 3-6 seconds did not have an effect on the NOX breakthrough behaviour. The 

existence of NOX spikes during regeneration has been noted by others, as noted earlier, but the fast 

response analysers have enabled the identification of two distinct events.  

 

The first NOx release occurred as active purging of the trap began, and the storage compound 

Ba(NO3)2 started to disintegrate to NO which subsequently escaped the LNT before being reduced. 

Figures 4(a) and 5(a) show these NO spikes occurring between 64-65 secs and 67-68 secs 

respectively. CO after the trap was fully consumed during these time periods, figs 4(b) and 5(b), and 

the amount of CO2 emitted increased correspondingly. However a molar balance analysis of NOx and 

CO [27] showed that significantly more CO was oxidised than required for NOx reduction over the 
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whole cycle. This suggests that CO oxidation was also occurring by other means. There is the 

possibility that ceria, oxidised during the lean storage phase, may be preferentially reduced by CO at 

the start of purging, equ (1).  

 

CeO2 + CO =Ce2O3 + CO2     (1) 

  

The role of ceria during purges has been discussed by Theis [8]. Furthermore, under rich conditions, 

the water-gas shift (WGS) reaction [19]  equ (2), may become important and might account for the 

rapid consumption of CO during the early part of regeneration. The liberation of H2 from  WGS may 

also contribute to the breakdown of Ba(NO3)2..It is interesting to note that recent publications  [19, 20] 

have reported the formation of  ammonia during purging which requires reaction with H2 

 

CO + H2O → CO2 + H2       (2) 

 

Following NO breakthrough figure 4(a) shows that between 65s and 66s no NOX was observed post 

LNT.  For the LT60L6R test, in figure 5(a), between 68s and 72s, NOX was also absent.  During these 

periods CO is partially consumed across the LNT, especially for the LT60L3R case, with CO2 

increasing. It is probable that stored NO has been released and has continued to react with a 

reductant, principally CO, catalysed by the Rh present on the LNT catalyst. The main function of Rh on 

an LNT catalyst is for assisting NO reduction by CO or HC [11]. At this point the rate limiting process is 

evidently NOx release rather than CO supply. HC was also consumed, fig3(c), but less so than CO, 

indicating that CO acts as the main reducing agent. This is consistent with the findings of West et al. 

[18], as well as lab-scale studies on the role of CO by Abdulhamid et al. [12]. 

 

Figure 4(a) shows a small secondary NOx spike appearing in the gap at the start of regeneration. A 

possible explanation for this is that some NOx is stored on the DOC during the lean period. During the 

lean period NOx levels post DOC were observed to be less than those upstream [27]. At the start of 

regeneration engine-out NOx levels are reduced and the resulting concentration gradient between the 

DOC and the exhaust gas stream causes a flux of NOx away from the surface of the DOC. A similar 

spike is seen in fig 5(a). 
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At the end of regeneration, the LT60L3R test, fig (4a), shows a spike of NO just before 67s within the 

gap and NO and NO2 spikes post LNT. A similar breakthrough is observed for the LT60L6R test 

between 72 and 73s, see figure 5(a). The engine-out NO trace does not feature a sharp NO spike at 

this time thus suggesting the spike within the gap originates from the DOC and that post  LNT from the 

LNT itself.  This has not previously been reported.  

 

The increase of CO2 engine–out emissions during regeneration reflects the higher levels of EGR 

during this period. CO2 post LNT is higher due to CO oxidation.  At the end of regeneration figures 

4(b) and 5(b) show spikes of CO2 at all three locations, although they are higher post DOC and LNT 

indicating oxidation of any remaining CO, HC and carbonaceous material within the catalyst system as 

conditions become lean. Indeed temperatures were observed to increase in the DOC and LNT during 

regeneration [27]. Increasing the temperature of the LNT may reduce its storage capability perhaps 

triggering further NOx release. The NOx spike from the DOC may be due to carbonaceous material 

storing NOx during enrichment. As the mixture becomes lean this material is burnt off releasing NOx.   

 

 

3.2 High Temperature (60 second storage) 

(Engine Mode B: HT60L3R, HT60L6R and HT60L9R) 

 

These tests were performed at an exhaust temperature of about 400 deg C at inlet to the test rig. The 

storage period was fixed at 60 seconds and three regeneration periods were examined, 3, 6 and 9 

seconds. At this temperature higher conversion efficiency is expected. The cyclic NO, NO2, CO, and 

CO2, plots during storage and regeneration for the HT60L3R test are shown in figure 6(a) - (d).  As 

with the tests at low temperature, emissions traces are similar from cycle to cycle. During the lean 

period the DOC oxidised some of the engine-out NO resulting in 50% of the NOx in the gap 

comprising NO2. NOx from the DOC was stored completely by the LNT, as very low levels of NO and 

NO2 were measured post LNT, figures 6(a) and (b).  Moreover, there was no indication that the trap 

was starting to fill up, because the difference in level between the gap and the outlet remained large 
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50 s after a regeneration event. It is clear that operation at this high exhaust temperature improves the 

storage capability of the LNT. 

 

CO and CO2 emissions are shown in figures 6(c) and (d). They indicate full CO consumption inside 

the LNT during regeneration with CO2 post LNT increasing significantly.  CO consumption was also 

found to be much higher than HC consumption [26] suggesting that CO acts as the main reducing 

agent for trap regeneration and NOX reduction at this higher temperature. Figure 6(b) shows NO2 

breakthrough towards the end of regeneration. The form of these NO2 spikes varied between cases as 

discussed below. 

 

The NO and NO2 emissions at inlet, gap and outlet during regeneration for tests HT60L3R, HT60L6R 

and HT60L9R are shown respectively in figures 7(a), 8(a) and 9(a).  The corresponding plots for CO 

and CO2 are shown in figures 7(b), 8(b) and 9(b). Referring to the HT60L3R test, figure 7(a), between 

63 and 64s, NO and NO2 spikes were detected inside the gap as the lambda sensor registered the 

start of enrichment.  The appearance of these spikes, as in the HT60L6R and HT60L9R tests in 

figures 8(a) and 9(a), could be explained as for the low temperature tests, i.e.  NOx storage on the 

DOC during lean operation with release at the start of enrichment. Between 63 and 66s in figure 7(a), 

there was little NO or NO2 detected at the LNT outlet indicating reduction of released NOx. At 66 

seconds however NO2 is released i.e. 3 seconds from the start of the regeneration, whilst CO outlet is 

still zero. This suggests that release of NO2 is faster than its reaction with CO at this time. It appears 

that almost the entire NO stored on the LNT has been released during purging as NO2; with any NO 

being oxidised on Pt sites. The possibility of any reaction between CO and NO is discounted from a 

mole balance analysis [26].  It seems the released NO2 fully consumes CO by catalysis as no CO was 

detected post LNT, fig 7(b). During the same time period, CO2 emissions increase significantly after 

the LNT, fig 7(b).  In contrast with the results from the low temperature tests the reaction between CO 

and NO2 predominates. It seems that CO controls NO2 release. Reaction between CO and NO2 has 

been mentioned by others [21, 22]. 

 

For the longer purges figures 8(a), 9(a) also show that around 2 -3 seconds from the start of 

regeneration NO2 breakthrough was detected after the LNT.  In figure 8(b) between 66 and 69s, and 
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figure 9(b), between 69 and 72s, the CO emission trace after the LNT shows complete consumption in 

the first 3 s into the regeneration period, and a large increase of CO2 after the LNT. However between 

68 and 72s in figure 8(a) and (b) and between 72 and 78s in figures 9(a) and (b), high levels of NO2 

and CO emissions are detected after the LNT.  As CO emissions pre and post the LNT are similar it 

suggests that released NO2 ceases to react with CO. One possible explanation is the lack of 

availability of Pt sites on the LNT. It appears that in the first 3 s of regeneration all the available Pt 

sites had been used up by the CO reacting with the NO2. Clearly 3 seconds or slightly less would 

appear to be the optimum purge time for 60 seconds storage. 

 

The occurrence of CO2 spikes in figures 7b, 8b, and 9b when the regeneration has ended may be 

explained as for the low temperature case, i.e. oxidation of remaining CO, HC and carbonaceous 

material during rich to lean transition. With reference to figure 7(a), between 66 and 67s a spike of 

NO2 was observed (breakthrough) as the combustion mixture started to change from rich to lean. As 

in the case of the low temperature study this may be due to further release of NOx from the LNT due 

to the observed temperature rise in the LNT [27].  

 

 

3.3 High Temperature (120 second storage)  

(Engine Mode B: HT120L3R and HT120L9R) 

 

High temperature tests were performed for longer storage (120 secs) and with purge times of 3 and 9 

seconds. Emissions pre and post DOC and LNT, during regeneration for HT120L3R are shown 

respectively in figures 10(a) and (b).  The plots for HT120L9R are displayed in figures 11(a) and (b).   

 

In figures 10(a), around 123s, and 11(a), 129s, NO and NO2 spikes were observed in the gap.  The 

occurrence of these spikes could be explained as previously i.e. NOx storage on the DOC during lean 

operation with release at the start of enrichment.   

 

For the longer storage and short regeneration test, HT120L3R, the trap was approaching saturation 

(see figure 13) and figure 10(a) shows that between 123 and 126s significant amounts of NO and NO2 
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were therefore readily released; the reaction rate with CO being incapable of converting all.During the 

regeneration period, fig 10(b) shows CO had been fully consumed reacting with some of the released 

NOx.  

 

With 9 sec purging, HT120L9R, figure 11(a) shows that between 129 and 138s very little NO emission 

was detected after the LNT compared with 3 sec purging, figure 10(a). This suggests more of the NO 

stored had been oxidised to NO2 prior to Ba(NO3)2 decomposition.  The NO2 produced then reacted 

with CO, since between 129 and 134s CO was fully consumed and only started to rise after that when 

presumably the trap has been effectively purged. The CO2 level post LNT for the HT120L9R test, 

shown in figure 11(b), increased as full consumption of CO was taking place. Some NO2 breakthrough 

is observed as for the 3 sec purging test around 132-134 secs and gradually weakens or reacts 

halfway through the regeneration period, completely disappearing towards the end of the regeneration 

event.  More NO2 breakthrough occurred concurrently with CO consumption than was observed for 

the high temperature 60 second storage cases discussed earlier. For the longer 120 second storage 

period the trap is more saturated and thus NO2 release rate might be expected to more readily exceed 

the rate of reaction with CO.  It would also seem that for 120 second storage only 5- 6 seconds of 

purging is required.  

 

During the transition from rich to lean, between 126 and 127s for the HT120L3R test, figure 10(a), and 

between 138 and 140s for the HT120L9R test, figure 11(a) an NO2 spike was observed after the LNT. 

Also as before, CO2 spikes are observed during rich to lean transition. 

 

3.4 LNT system efficiency 

 

It is instructive to compare the test cases in terms of conversion efficiencies. The LNT’s performance 

is defined here with reference to its overall efficiency (storage and purging), trapping or storage 

efficiency, and reduction efficiency. If Min and Mout are cumulative masses in and out of the LNT 

respectively  and  subscripts L and  R refer to the lean and rich periods respectively then  

 

LNT Overall efficiency = M in L+R – M out L+R     ( 4 ) 
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                                            M in L+R 

 

LNT Storage efficiency = M in L – M out L       ( 5 )  

                                               M in L 

 

In equations ( 4 ) and ( 5 ), the lean and rich periods were defined respectively as the duration the 

engine was running in lean and rich conditions, as strictly indicated by the regeneration event of the 

intake air throttle.   

 

LNT Reduction efficiency   =   LNT Overall efficiency    ( 6 )  

             LNT Storage efficiency 

           

 

Instantaneous NOx trapping efficiency =    NOx in – NOx out   × 100  ( 7 ) 

                                                                  NOx in    

 

In equation (7 ), NOx in and NOx out were the measured NOX values (ppm) at the LNT inlet and outlet 

at each time instant. The plots for the LNT system instantaneous trapping efficiency as defined by 

equation (7) for the tests at low operating temperature are shown in figure 12(a), and the tests at high 

operating temperature are illustrated in figure 12(b) and 12(c).  It can be seen that the instantaneous 

trapping efficiencies for both low temperature and high temperature groups start at low values due to 

the presence of NOX spikes during the regeneration period. 

 

Low temperature group tests operated at trapping efficiency between 20 – 70%. The trapping 

efficiency was highest immediately after regeneration before it began to drop gradually with time 

during the storage period.  The situation is completely different with the high temperature group tests.  

Their trapping efficiencies were very high, between 85 − 98%, although under long storage and short 

regeneration, HT120L3R, the system trapping efficiency was lower, 40 − 70%.  The lower 

instantaneous trapping efficiency for HT120L3R is ascribed to an insufficient regeneration period for 

purging the LNT. 



 13 

The LNT system efficiencies - storage, overall and reduction- for all test conditions are summarised in 

figure 13.  For the low temperature group, the storage, overall and reduction efficiencies at 6 s 

regeneration period were lower than regeneration at 3 s.  Compared with the high temperature group, 

their storage and overall efficiencies are much lower, although the reduction efficiencies are 

comparable in both temperature groups.  The highest storage, overall and reduction efficiencies were 

achieved in the HT60L3R and HT120L9R tests, where reduction efficiencies were nearly 100%.  For 

tests using 60 s storage the overall system efficiency falls consistently as the regeneration period is 

increased, with 5 to 10 % change between experiments. For a longer storage period, 120 s, a 

significantly longer regeneration period is necessary to avoid saturating the trap.  

3.5  Investigation of NOX storage capacity 

 

An investigation of the storage capacity of the LNT was performed by measuring the NOX emissions 

pre and post LNT for an extended period of storage following a long regeneration period. In this 

experiment the engine was operated at 2000rpm/5bar, corresponding to the high temperature cases, 

and the regeneration period was 9 s. This would have fully purged the trap so that it was able to 

effectively store the incoming NOX.  Emissions were monitored until both the NO and NOX 

measurements indicated saturation.  Stored NO, NO2 and NOX based on cumulative mass are 

displayed in figure 14. 

 

From figure 14, at around 16 minutes after regeneration there was no change in NO level across the 

LNT, so the trap was saturated with NO. Saturation for NO2 occurred much later. After 28 minutes, 

NO2 storage was still occurring, but the trap was approaching saturation. Clearly the LNT stores both 

NO and NO2, although it adsorbs more NO2.   

 

 

 4 Conclusions 

 

Storage and regeneration events have been studied using fast response emission analysers (~10ms) 

for a lean NOx trap fitted to a light-duty diesel. Tests were conducted at both low and high exhaust 

temperatures for varying storage and purging periods. The use of fast response analysers has 
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provided detailed information during the short regeneration periods and as combustion switched 

between rich and lean operating modes thus providing a unique data base for on-going model 

validation. It has also enabled quantification of the storage, reduction and overall conversion 

efficiencies as well as the instantaneous trapping efficiency. The main conclusions are summarised 

below. 

 

4.1 Low temperature 

 

Tests were conducted for a 60 second storage period and with 3 and 6 sec purging. 

 

• At an exhaust temperature of 250 deg C the storage efficiency was low, ~30%, with the 

instantaneous efficiency dropping from 70% to 20% as the trap filled. Reduction efficiencies 

during purging were ~80% resulting in low overall conversion efficiencies of about 25%.  

 

• During purging two distinct NO spikes (breakthroughs) were measured downstream of the 

LNT at the beginning and end of regeneration. 

 

• The first breakthrough originated from the LNT and is thought to be due to a combination of 

effects. At low temperature CO reduction with NO may be proceeding at a rate much slower 

than NO release from the BMO but CO preferably reacting with ceria and/or water, the water-

gas shift reaction, is suspected. 

 

 

• The second NO breakthrough observed during transition from rich to lean conditions may be 

associated with the reduction in storage capacity as the LNT temperature increased.   

 

• Doubling the purging period from 3 to 6 seconds did not change the characteristics of NO 

breakthrough. 

 

• The primary reducing mechanism for this LNT is CO, rather than HC, acting on NO. 
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 4.2 High temperature 

 

Tests were conducted for two storage periods, 60 and 120 secs. For the shorter storage, purge times 

of 3, 6 and 9 seconds were investigated whilst for the longer storage purging of 3 and 9 secs duration 

was used. 

 

• At an exhaust temperature of 400 deg C the storage efficiencies were high, between 82-92%, 

except for the long storage/short purge case which showed a drop in efficiency as the trap 

filled. During purges reduction efficiencies were between 90 and 98% for all cases. Overall 

conversion efficiencies were generally high, between 74-90%, except for the long 

duration/short purge which was low at 40%.  

 

• With 60 sec storage no substantial NOx breakthrough occurred with a 3 sec purge. For longer 

purges of 6 and 9 seconds NO2 breakthrough was observed 2-3 seconds from the beginning 

of and up to the end of regeneration. This would seem to be a result of the unavailability of 

catalyst sites as little CO was consumed during this time. NO2 breakthrough was also 

observed at the end of regeneration, as the combustion switched to lean operation and, as in 

the low temperature case, is possibly due to a reduction in storage capacity.. 

 

• For the 120 sec storage with 3 sec purge significant NO and NO2 breakthrough occurred 

during purging as the trap was almost saturated. NOx breakthrough with the longer purge was 

less.  NO2 breakthrough was also observed at the end of regeneration as the combustion 

switched to lean operation. 

 

• Generally for the high temperature case with this LNT the primary reducing mechanism is CO 

acting on NO2 as distinct from that for low temperature.   
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Table 1: LNT storage and regeneration tests matrix 

No. Test  
name 

Mode Engine 
speed 

(RPM) 

Torque 
(Nm) 

Storage  
period  

(s) 

Regeneration  
period  

(s) 

Average exhaust  
temperatures  
at inlet (OC) 

1 LT60L3R A 1500 48 60 3 241 
2 LT60L6R A 1500 48 60 6 249 
3 HT60L3R B 2000 80 60 3 387 
4 HT60L6R B 2000 80 60 6 402 
5 HT60L9R B 2000 80 60 9 394 
6 HT120L3R B 2000 80 120 3 382 
7 HT120L9R B 2000 80 120 9 395 
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Figure 1: Schematic of the system set-up 
 

 

 

 

 

 

 

 

 

 

Figure 2: Details of the LNT test rig 
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 Figure 3(a): LT60L3R – NO emissions during storage and regeneration 
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Figure 3(b): LT60L3R – NO2 emissions during storage and regeneration 
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Figure 3(c): LT60L3R – HC emissions during storage and regeneration 
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Figure 3(d): LT60L3R – CO emissions during storage and regeneration 
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Figure 3(e): LT60L3R – CO2 emissions during storage and regeneration 
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Figure 3(f): LT60L3R – O2 emissions during storage and regeneration 
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Figure 4(a): LT60L3R – NO and NO2 emissions during LNT regeneration 

 

LT60L3R

0

3

6

9

12

15

62 63 64 65 66 67 68
Time (secs)

C
O

 (%
)

0

3

6

9

12

15

C
O

2 
(%

)

CO2 in CO2 outCO2 gap

CO gap

CO outCO in

 
Figure 4(b): LT60L3R – CO and CO2 emissions during LNT regeneration 
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Figure 5(a): LT60L6R – NO and NO2 emissions during LNT regeneration 
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Figure 5(b): LT60L6R – CO and CO2 emissions during LNT regeneration 
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Figure 6(a): HT60L3R – NO emissions during storage and regeneration 
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Figure 6(b): HT60L3R – NO2 emissions during storage and regeneration 

 



 29 

0

1

2

3

4

5

6

7

62 72 82 92 102 112 122 132
Time (secs)

C
O

 (%
)

CO in CO gap CO out

CO in

CO out

CO gap

REGENERATION

STORAGE

REGENERATION

 
Figure 6(c): HT60L3R – CO emissions during storage and regeneration 
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Figure 6(d): HT60L3R – CO2 emissions during storage and regeneration 
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Figure 7(a): HT60L3R – NO and NO2 emissions during LNT regeneration 
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Figure 7(b): HT60L3R – CO and CO2 emissions during LNT regeneration 
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Figure 8(a): HT60L6R – NO and NO2 emissions during LNT regeneration 
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Figure 8(b): HT60L6R – CO and CO2 emissions during LNT regeneration 
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Figure 9(a): HT60L9R – NO and NO2 emissions during LNT regeneration 
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Figure 9(b): HT60L9R – CO and CO2 emissions during LNT regeneration 
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Figure 10(a): HT120L3R – NO and NO2 emissions during LNT regeneration 
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Figure 10(b): HT120L3R – CO and CO2 emissions during LNT regeneration 
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Figure 11(a): HT120L9R – NO and NO2 emissions during LNT regeneration 
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Figure 11(b): HT120L9R – CO and CO2 emissions during LNT regeneration 
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Figure 12(a) – LNT system instantaneous trapping efficiency for low operating 

temperature: LT60L3R and LT60L6R 
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Figure 12(b) – LNT system instantaneous trapping efficiency for high operating 

temperature: HT60L3R, HT60L6R and HT60L9R 
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Figure 12(c) – LNT system instantaneous trapping efficiency for high operating 

temperature: HT120L3R and HT120L9R 
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Figure 14: NOX storage following LNT regeneration at high exhaust temperature 
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