
 
 
 

Collaborative effects in polymer 
translocation and the appearance of 
fictitious free-energy barriers 
 
Foster, D.P. and Piguet, F. 
 
Published PDF deposited in CURVE May 2014 
 
Original citation: 
Foster, D.P. and Piguet, F. (2014) Collaborative effects in polymer translocation and the 
appearance of fictitious free-energy barriers. Physical review E: statistical, nonlinear, and 
soft matter physics 89 (3) article: 30601 
 
Doi: 
http://dx.doi.org/10.1103/PhysRevE.89.030601 
 
Publisher and copyright holder: American Physical Society 
 
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright 
owners. A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge. This item cannot be reproduced or quoted extensively 
from without first obtaining permission in writing from the copyright holder(s). The 
content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the copyright holders. 
  

CURVE is the Institutional Repository for Coventry University 
 

http://curve.coventry.ac.uk/open  

http://curve.coventry.ac.uk/open
http://curve.coventry.ac.uk/open


RAPID COMMUNICATIONS

PHYSICAL REVIEW E 89, 030601(R) (2014)

Collaborative effects in polymer translocation and the appearance of fictitious free-energy barriers

D. P. Foster
Applied Mathematics Research Centre, Coventry University, Coventry CV1 5FB, United Kingdom

F. Piguet
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The translocation time of a polymer through a pore under the influence of an external field depends on a number
of parameters, the most important of which are the field strength, the interaction with the pore, and the confinement
entropy. Experimentally, the translocation is dominated either by the driving force (electrophoretic regime) or
by the entropy of confinement or pore interaction (barrier dominated regime). In this Rapid Communication we
study a simple model for polymer translocation, loosely based on the asymmetric exclusion process, which shows
that it is possible to have what experimentally would be interpreted as barrier dominated, even where there is
no barrier to translocation. This effective barrier is interpreted as being due to collaborative effects between the
monomers forming the polymer chain.
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The translocation of polymers through a nanopore is
ubiquitous in the behavior of biological systems. Nanopores
are used by the biological cell to exchange proteins [1]
and used by toxins to destroy the cell [2]. Nanopores, both
biological and synthetic, are used by experimentalists to study
the conformational behavior of polymers and proteins [3,4] and
their use provides a promising avenue for the fast sequencing of
DNA molecules [5]. One of the most commonly used pores for
these experiments is the α-hemolysin pore [6], corresponding
to a self-inserting heptomer pore used by staphylococcus
aureus to attack biological cells. In experiments the presence
of the polymer in the pore is detected by measuring the current
of charged ions through the pore between electrodes. The
presence of the polymer in the pore corresponds to a drop
in the detected current [7].

While at first sight the problem of polymer translocation
seems simple, there are many factors that need to be taken into
account. Other than the loss of entropy of the polymer confined
in the pore [8,9], there will in general also be an interaction
between the monomers and the pore walls [10,11], as well as
the driving effect of the electric field. The electric field acts
either directly on the polymer (if charged [12–14]) or via an
electro-osmotic pressure [15,16].

Experimental results due to Meller and Branton [11] for
the translocation of ssDNA through an α-hemolysin pore are
shown in Fig. 1 as an example of the translocation time
dependence on polymer length. The length of the pore was
about the same length as twelve bases and the passage of the
monomers is believed to be single file. It can be seen that there
are two regimes: For short chains there is a rapid increase in
translocation time τ with chain length N , while for longer
chains the time is essentially linear.

The rapid increase of τ with N is usually interpreted as
indicating the presence of a free-energy barrier to translocation
[8,9,17,18]. For short polymers it is expected that the crossing
of this barrier will be the dominant factor in determining the
translocation time, which then behaves as

τ ∼ exp

(
�F

kT

)
, (1)

where �F ∝ N is the height of the free-energy barrier
[9,17,19].

In this Rapid Communication we present a simple model
for the driven translocation of a polymer through a pore. This
model reproduces the same qualitative behavior as seen in
Fig. 1. Surprisingly, the qualitative agreement arises even when
the confinement entropy and pore interaction balance, i.e.,
when there is no free-energy barrier for the polymer at any
stage of the translocation process. In this case, the behavior is
interpreted as being a result of the collaborative effects in the
driven diffusion of the monomers in the pore. This possibility is
explicitly ignored in the translocation literature, which tends to
model polymer translocation by reaction coordinate methods
such as the Fokker-Planck method [8,9]. Our simple model also
has the advantage of being several orders of magnitude faster
than direct molecular dynamics simulation. This is particularly
true in the weak driving force limit. This limit is of interest for
the fast decoding of DNA sequences [5].

The idea is to model the translocating polymer as a
stream of monomers moving through the pore. This is shown
schematically in Fig. 2. The polymer chain is split into Nl

monomers to the left of the pore (waiting to enter the pore),
Np monomers in the pore, and Nr monomers to the right of
the pore (having exited the pore). The monomers outside the
pore (to the left or right) are represented by two free-energy
reservoirs of free energyFleft(Nl) andFright(Nr ) for the left and
right reservoirs, respectively. We have Nl + Nr + Np = N ,
the number of monomers making up the polymer.

The confined monomers progress on the central axis of the
pore along discrete sites labeled i ∈ [1,L]. Each site can be
either occupied or empty, representing the presence or absence
of a monomer. We take the distance between lattice sites to be
d. Unlike the standard asymmetric simple exclusion process
(ASEP) model, we must model the fact that the monomers
are chemically linked to their neighbors along the polymer
chain. This is modeled by constraining the distance between
monomers to be between a minimum distance δxmin = d and
some maximum distance δxmax, taken here to be 2d. Once the
monomers are in the pore they feel the applied electric field
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FIG. 1. (Color online) Experimental results for the translocation
of single-stranded DNA molecules made up of either adenine
[poly(dA)] or alternating cytosine and thymine [poly(dCdT)] taken
from Meller and Branton [11]. The most probable translocation time
tp is plotted against chain length.

and hop preferentially to the right. To model the monomers
entering or leaving the pore two additional sites are included
(i = 0 and i = L + 1), representing the monomers about to
enter or the space for the polymer to leave the pore as required.
The state of these sites is not a priori determined, unlike the
sites within the pore. The dynamics used for the simulation is
detailed below.

Initially, all the monomers are contained in the left-hand-
side reservoir. The translocation time is defined as the time it
takes for all the monomers to cross the system and enter the
right-hand-side reservoir. In order to implement the dynamics
of the monomer hopping, a site i ∈ [0,L + 1] is chosen at
random and updated according to the following rules.

(i) If the site is empty nothing is done.
(ii) If the site is occupied with a monomer, a direction (left

or right) is chosen at random with equal probability and the
monomer is moved in the chosen direction if possible (i.e.,
if the neighboring site is empty and if the resulting maximal
distance to its neighboring monomers is less than δxmax). If
the move is possible, the difference in the free energy δF of
the system is calculated.

(a) If δF < 0 the move is accepted.

FIG. 2. Schematic diagram showing the pore modeled as a one-
dimensional lattice. The external portions of the polymer are modeled
as particle reservoirs at equilibrium. The particles hop preferentially
to the right under the influence of the external force field �f .

(b) If δF > 0 the move is accepted with a probability
exp(− δF

kT
), where T is the system temperature.

(iii) If the chosen direction results in a monomer jumping on
sites i = 0 or i = L + 1 then the monomer is removed from the
pore and the corresponding reservoir free-energy difference is
δFl/r = Fl/r (Nl/r + 1) − Fl/r (Nl/r ).

(iv) If the site chosen is i = 0 or i = L + 1 then the
sites are assumed to be occupied (assuming there are still
monomers in the corresponding reservoir). If the direction
chosen corresponds to the monomer entering the pore then the
reservoir free-energy difference is δFl/r = Fl/r (Nl/r − 1) −
Fl/r (Nl/r ).

A time step corresponds to choosing on average each site
once, i.e., one step corresponds to L + 2 single-site choices.
A time step does not depend on the number of monomers in
the pore or the number of monomers making up the polymer,
as expected for a correctly defined time step.

The total change in free energy for one update is given by

δF = δFl + δFr − qEδx − εδNp, (2)

where q is the charge on the monomer, E is the uniform applied
field in the pore, ε is the interaction energy with the pore (here
ε < 0), δx = 0,±d is the distance moved by the monomer
(if present), and δNp = 0,±1 is the change in number of
monomers in the pore. The free energy of the polymer segment
in the reservoirs may be taken as

Fl/r = −Nl/rkT ln z̃, (3)

where z̃ is the effective coordination number (or connective
constant). The value of z̃ depends on the solvent quality. One
could include the (1 − γ1) ln N correction term, where γ1 is
the connective exponent for a self-avoiding walk with one end
attached or close to a surface. This correction term is small
compared to the leading term and is dropped. The chemical
potential is essentially given by kT ln z̃.

In what follows, we simplify the model further, taking ε =
kT ln μ. This removes any possibility of a free-energy barrier
to either polymer insertion or polymer exit from the pore. The
behavior of the translocation time is then entirely determined
by the dynamics of the monomers within the pore and the
strength of the driving force qE.

In order to compare, at least qualitatively, with the results
of Meller and Branton [11], presented in Fig. 1, we choose to
study a pore of length L = 12d. The polymer was driven using
a force qE = 0.05kT /d in the pore. This value was chosen
small enough for the translocation not to be electrophoretic,
but to allow a competition between the collaborative effects
within the chain and the driving force. The results presented
here correspond to actual translocation events. There are
translocation attempts that do not succeed, where the polymer
retreats back into its original reservoir. For the parameters
presented here, successful translocations corresponded to
about 1/6 of events, largely independently of the polymer
length. The translocation time as a function of length is
shown in Fig. 3. Qualitatively, the figure is very similar to
the experimental curve in Fig. 1.

The curve clearly shows the characteristic signal usually
associated with a free-energy barrier, even though, by con-
struction, there is no free-energy barrier. In the inset of Fig. 3
we fit the short-chain behavior by the exponential law given in
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FIG. 3. Total translocation time as a function of the chain length
for a pore of length 12d . The inset shows a possible fit of the short-
chain portion with a barrier model (1).

Eq. (1) with �F = χN ; a reasonable fit would give a value

χ

kT
= 0.37. (4)

The system within the pore is not at equilibrium and the
movement of the monomers is hindered by two effects: They
cannot move forward until the site ahead is empty and they
cannot move more than two lattice spaces from the previous
monomer. This leads to a correlated movement that is slower
than a simple driven diffusion of the center of mass. The
translocation time is divided into three parts: the time to fill the
pore (or for the polymer to completely enter the pore for short
chains), the time for the polymer to transfer through the pore,
and finally the time to empty the pore. Once the average linear
dimension of the polymer exceeds the length of the pore, the
filling and emptying times saturate and the length dependence
is dictated by the transfer stage. In this regime the transfer
velocity is constant and the translocation time becomes linear
with the chain length [11,13,20]. The average distance between
monomers σ ∈ [d,2d] and from Fig. 3 we see that σ ≈ 4d/3.

The interesting portions of the translocation process for the
discussion here are the filling and emptying times, shown in
Figs. 4 and 5 for two pores of lengths 12d and 80d. In both
phases, the filling and emptying times vary rapidly for short
chains. For a monomer to enter or leave the pore the other
monomers must arrange themselves appropriately: For filling
they must leave the first site empty and for emptying they
must be close enough to the exiting monomer to enable its
exit. This means that the monomers are correlated, defining a
boundary correlation length. If the polymer length within the
pore is smaller than this correlation length, the rate of adding a
new monomer is sensitive to the number of monomers already
in the pore. Beyond this correlation length, the correlation
effects will saturate and no further change in the insertion rate
is expected; the filling time then becomes linear with length.
It is interesting that the emptying phase is not symmetric with
respect to the filling phase because there is not the hole-particle
symmetry present in the standard ASEP model (the monomers
are linked and the holes are not). The influence of the exit is
clearly visible in Fig. 5, where there is an inflection at N ≈ 20.
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FIG. 4. Filling time as a function of chain length compared for
two different pores, one of length 12d and one of length 80d . The
filling time is the time required to either fill the pore or fully enter the
pore (depending on the length of the chain).

In the filling stage the curve seems to saturate to become linear,
but does not show, at least at the pore lengths studied, an
inflection. The reason for this difference in behavior remains
an open question. Of course, in the absence of field, there is
no difference between the filling and the emptying phases and
the two curves are superimposed.

In Fig. 6 the different times are shown for the longer
pore (L = 80d), as well as the resulting translocation time.
While the filling and emptying times still show the exponential
behavior (as discussed above), the effect of the transfer time is
greater, which makes the total curve more difficult to interpret.
This pore would correspond to a pore that is longer than the
biological pores used in Meller and Branton [11] as a multiple
of the monomer length. It would be interesting to know if in
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FIG. 5. Time to empty the pore as a function of chain length. The
emptying time is defined as the time for the polymer to leave the pore
measured from when the first monomer permanently leaves the pore,
i.e., at no stage during the emptying process is the polymer totally
within the pore.
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FIG. 6. (Color online) Different times are shown (filling, transfer,
and emptying times) as well as the resulting translocation time for a
pore of length 80d .

longer pores a similar behavior would be observed in a real
experiment.

The systematic interpretation of a rapidly varying transloca-
tion time with polymer length as a free-energy barrier is consis-
tent with a vision of the dynamics of the polymer in terms of the
diffusion of the center of mass. This interpretation is helped by
comparing the experimental results with Fokker-Planck-type
calculations, which explicitly reduce the polymer to a diffusion
of the reaction coordinate. In this Rapid Communication we
show that a simple model system where the collaborative
dynamics of the monomers is explicitly allowed gives rise to
the same behavior without an explicit free-energy barrier. This

is an important factor to take into account when interpreting or
designing translocation experiments. One may imagine that
the ssDNA molecule is rigid and thus the model adopted
here is not realistic; however, experiments [21] show that the
bond length may easily fluctuate 20% under the experimental
conditions used by Meller and Branton [11]. We have looked
at a modified model in which both δxmin and δxmax were
modified and a Hookes law force was added to the bonds,
but the qualitative behavior was not affected. We also studied
the situation where the chemical potential was not the same
on each side of the pore. If the chemical potential difference
was favorable to translocation, a fictitious barrier remained
for a range of chemical potential differences, disappearing
once the chemical potential difference reached a certain
threshold.

It is often assumed that during the translocation process
the portions of the polymer outside the pore have time to
equilibrate [8,9]. While it is not obvious that this is always
true, it is not an unreasonable assumption in the weak-field
case studied here. This assumption is the basis of the main
simplification of the translocation model used in this Rapid
Communication. It enables us to calculate each point of
Fig. 3 in a few seconds of CPU time rather than of the
order of a month of CPU time for a model using Langevin
dynamics on the full chain [20]. In any case, the assumption
of equilibration outside the pore is consistent with what is
used in Fokker-Planck calculations. The restriction of the
dynamics to one dimension inside the pore is consistent with
the translocation results presented by Meller and Branton
[11], but even for looser polymers, such as polyethyl glycol,
one might expect the translocation to be one dimensional but
with the monomers being replaced by statistical blobs (in the
manner of de Gennes [22]).
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