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Abstract

Among the factors that contribute to the inheramhplexity of the software development process is
the gap between the design and the formal analgsigins. Software design is often considered a
human oriented task while the analysis phase dosmisrmal representation and mathematical
foundations. An example of this dichotomy is the a6 UML for the software design phase and Petri
Nets for the analysis; a separation of concerridéhas to the creation of heterogeneous models.
Although UML is widely accepted as a language taait be used to model the structural and
behavioural aspects of a system, its lack of mathieal foundations is seen as a serious impediment
to rigorous analysis. Petri Nets on the other Hece a strong mathematical basis that are wetduit
for formal analysis; they lack however the appea the ease-of-use of UML. A pressing concern for
software developers is how to bridge the gap betleese domains and allow for model
interoperability and the integration of differenbtsets across them, and thus reduce the complexity
of the software development process. The aim sfgaper is to present a Model Driven Development
(MDD) model transformation which supports a seamtegnsition between UML and Petri Nets. This
is achieved by model interoperability from UML Seque Diagrams to Petri Nets and supported by
tool integration. The model transformation framekvallows a software system to be designed in
terms of UML Sequence Diagrams and subjected todbanalysis by taking advantage of the strong
mathematical framework of Petri Nets. The behavaiu Personal Area Network will be used to
illustrate the proposed approach and to highligbdehinteroperability and tool integration through

the design, the transformation and the analysisgha
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1.0 Introduction

The complexity of the software development prodesspresented researchers with a
significant challenge. This complexity is due teigas factors including the variety of application
domains, the variety of software platforms andvdety of the methods and the tools that support
the software development process. This complegifuither compounded by the requirement for a
software system to satisfy a set of specific prioggrsuch as fault-tolerance and security. Many
approaches and methods have been proposed asdd adgressing and reconciling these issues [1].
Of particular significance in the generation obfiware system is the need to facilitate a smooth
transition from one phase of the development pteghe next. The transition from an informal
design to formal analysis is often critical, espéigias it often involves incompatible domains of

discourse.

This dichotomy between design and analysis masifeself in the multiplicity of formalisms,
languages and software tools that are requireddoh phase. The limited scope of these tools and
their tight coupling with specific domains is orfelfte main sources of heterogeneity between the
models created in the design phase and the maatplged for analysis [2]. One of the main concerns
of software developers is how to bridge the gapvben the different underlying domains and allow
for a seamless transition between themNBjre specifically, the main issue is how to faeilé the
interoperability between the models that pertaiddsign and those required by the analysis phase;
another requirement is how to integrate the comedmg software tools. In this respect, model
interoperability and tool integration are consideas critical factors in reducing complexity in

software development.

Various languages and formalisms were introdunestder to support the software

development in general and the software desigraaatysis in particular. Software design has been



eased by the introduction of Unified Modelling Laiagie (UML) [4]. Its rich constructs have
conferred to UML a privileged role in the designsoftware systems in a variety of domains
including networks, business modelling and secufibe choice of UML for software design is also
facilitated by the widely available UML softwareote such as ArgoUML [5] and Poseidon [6]. One
shortcoming of UML however is its lack of suppast formal analysis [7]; this characteristic has led
software developers to rely more and more on fotarajuages such as Petri Nets. Petri Nets are
well suited to structural analysis suchigenessanddeadlockdetection as well as behavioural
analysis such agachability[8]. Their relevance and usefulness has also bebanced by the

availability of tools such as PIPE [9] and CPNTdA4Rg].

modelling | Sequence

~] Diagrams T
Fa T
- S
- KY)
< analysis
" gl SD2PN
& N
; e f 1 7
Designer % L i P

anal:ﬁr5|5 result PEtri NEt‘i PR

Figure 1: SD2PN model transformation framework.

This paper is concerned with addressing modetaptrability [11, 12] between Sequence
Diagrams and Petri Nethrough a model driven approach . This is achigheolgh a model
transformation framework, SD2PN, which supporteangdess transition between these
heterogeneous models and allows for the integratiatifferent toolsets as shown in Figure 1. A
designer creates a model of a system as SequeageaBis using UML tools, and performs the
required analysis in Petri Nets using Petri Netsobhis combination of model interoperability and
tool integration results in a significant reductmircomplexity in software development in general
and model analysis in particular. This is achielgdhe automated transformation that allows
complex analysis to be performed by using Petrithiels without an extensive knowledge of Petri

Nets themselves. The system design phase is &ediby a combination of a user-friendly interface



of UML tools and the rigorous analytical framewarfikthe Petri Net tools. The behaviour of a
Personal Area Network will be used throughout theep to illustrate the transition between Sequence

Diagrams and Petri Nets and the analysis that eaapplied.

The remainder of this paper is organized as fa@ldSection 2 provides a review of Sequence
Diagrams, Petri Nets and Model Driven Developmenivall as a brief introduction to the case study,
which will be used throughout this paper. Sectiate8cribes the methods and the SD2PN framework
for transforming Sequence Diagrams into Petri Nbistransformation process is illustrated with an
example from the case study. Section 4 deals Wwélextension of SD2PN with timeliness properties
and its implications. Section 5 raises some isfarediscussion and Section 6 offers some

conclusions.

2.0 Preliminaries

This section provides a brief introduction to UISkequence Diagrams, Petri Nets and Model
Driven Development as well as the behaviour of s&eal Area Network. The behaviour of the
Personal Area Network is used in the subsequetibre®f this paper to illustrate the transitioorfr

Sequence Diagrams to Petri Nets.

2.1 UML Sequence Diagrams

Unified Modelling Language (UML) [4] is a family ¢dnguages, which is widely accepted as
thede factostandard for software modelling. UML models carubed to specify the structure of a
system, its behaviour and the constraints thasyiseem must adhere to. Models in UML are instances
of metamodelsA metamodel includes system elements, their raialigps and a set of rules to which
every model must conform in order to be well dedine this paper Sequence Diagrams are used as
the modelling language for describing the behavada system.

Sequence Diagrams are a UML 2.1 version of MesSageience Charts [13] and they are

widely used in Software Engineering [14]. Sequdd@@rams can be used in modelling complex



Enterprise Systems as they provide a sequentiaidief events and are also able to model
parallelism and conflicts. As such, Sequence Dragrare well suited in modelling behaviour and

interactions.
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Figure 2: Sequence Diagram Metamodel

Figure 2 represents a subset of UML 2.1 Sequenagr&is metamodel used in this paper; it
includes important constructs used for specifyirglats with complex behaviour. The main
fragments of the Sequence Diagram are represegtethtiel elementdlessageand
CombinedFragmentd he model elememMiessageaepresents the interaction between the instarfces o
objects in the system whifeombinedFragments a high level addition to Sequence Diagrams and
consists of Interaction Operat@akernative option, breakandparallel. These model elements will be
referred to afragmentsof Sequence Diagrams throughout this paper. Thiere@ement
EventOccurrencandGeneralOrderingdenotes the sequencing of events in the diagram.
EventOccurrencés a specialization dflessageEngevhere eaclmessagés given a specific order in
reference to the previous and subsequesgsages

From the metamodel in Figure 2, it is evident tBatjuence Diagrams have a comprehensive
construct that enables the accurate representaitioehaviour as well as relationship between events

such as causality, concurrency and conflict. Howesequence Diagrams and UML in general have a
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limitation with regards to analysis, especially wlewmpared with more formal languages such as

Petri Nets.

2.2 Petri Nets

A Petri Net is a mathematical and graphical maadigllanguage that can be used to model a
diverse set of behaviours including parallel, abyanous, concurrent, hierarchical and stochastic as
well as dynamic behaviours [8]. Similarly for Segoe Diagrams, a Petri Net models graphically the
flow of events in a system. The formal and matheahhature of Petri Nets makes them ideal

candidates for complementing Sequence Diagramddreasing their shortcomings with regards to

analysis.
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Figure 3: Petri Net Metamodel

Figure 3 presents a metamodel for Petri Netswiibbe used in this paper. A Petri Net consists
of a set oblaces a set otransitionsand a set adircsthat connecplacesandtransitions A Petri Net
also consist of a set afarkingsthat assigns a number of tokens to galabe Graphical
representation of the Petri Net elements depietsesas circles antransitionsas rectanglegircs

are shown as directed arrows while tokens are septed by dots insiddaces

A transitionin a Petri Net hasmput placesandoutput placeswhich areplacesthat havearcs
in and out of théransitionrespectively. Aransitionis enabledand ready tdire when all of itsnput

placeshave at least tokeneach. When &ansition fires atokenwill be removed from each of the



input placesand added into one of tl@tput places A more comprehensive introduction to Petri

Nets could be obtained from [8].

2.3 Model Driven Development

Model Driven Development [15] aims to promote tbkerof modellingin software
development. Models in the context of MDD are cegaiin machine-readable representations, using
languages which are widely adopted by the softivathestry [4]. Hence it is possible to communicate
such models to various parties and reuse them.r&kists in lower software production cost and
shorter development cycles. In this paper, MDDuither used to develop a method to benefit from
advantages of using two representations of a sySSegquence Diagrams and Petri Nets.

In order to allow for the integration of existingpdelling software tools through the proposed
approach, the standards set by Model Driven Archite (MDA) [16], a flavour of MDD initiated by
the Object Management Group (OMG), is used. Met@@-acility (MOF) [17] is one standard for
describingmetamodelsMetamodels are themselvemdels from which models of systems are
instantiated. MOF can be compared to EBNF, whiaksed for defining the grammar of

programming languages. MOF is a blueprint from WiMOF Compliant metamodeése created.

Transformation
Source metamode| \=————s- De stination metamodel

rules =
<<inst e of>> Model Transformation <<instance of>>
Framework
Source model Destination model

Figure 4: Model Driven Development

Figure 4 gives an outline of MDA and the procesklotiel TransformationA number of
Transformation Ruleare used to specify how various elements of ortarmedel §ource
metamodglare mapped into the elements of another metanfddsiination metamodelThe process

of Model Transformation is carried out automatigaila the software tools which are commonly



referred to adlodel Transformation Framework$8-20]. A typical Model Transformation
Framework requires three inputs: source metamddstjnation metamodel and transformation rules.
For any instance of the source metamodakuasformation enginexecutes the rules to create an

instance of the destination metamodel.

2.4 Case Study: Personal Area Network

In order to demonstrate the role of Model DriveevBlopment in facilitating transitions from
Sequence Diagrams to Petri Nets while insulatieguser from the underlying complexity, a case
study featuring the behaviour of a Personal AretaviNik (PAN) is utilised throughout this paper.

This section provides a brief introduction to therd®nal Area Network.

Figure 5 presents a simplified PAN that has twéi@ta and a Wireless Router that serves as
an access point to the Internet. In the routerptisec IEEE 802.11 Carrier Sense Multiple Access
with Collision Avoidance (CSMA/CA) protocol is us¢2il]. As the example is only meant to

illustrate the capabilities of the model transfotiona, deeper technical details are omitted frora thi

Station 1

description.

Medium

—

Wireless Router

Station 2

Figure 5: Personal Area Network (PAN)

CSMA/CD assigns differemaiting timeto packets in order to manage the access of the
stations to the medium. There are three differemtimg times for various types of packets. The
shortest waiting time for medium access is caBedrt inter-frame spacin¢sIFS) which is used for
short control messages or polling responses. Thtegngzéime for time-bounded service such as a poll
from the access point is considefedF inter-frame spacin@PIFS) and the longest waiting time and
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lowest priority, DCF inter-frame spacingDIFS) is used for asynchronous data servicest€eTisea
mechanism calledontention windowWCW), which is introduced in order to facilitatellcion
avoidance The contention window makes use of an integarevétiat starts with C\, = 7 and

doubles every time a collision occurs. Every tingadion tries to gain access to the medium, a
random number is generated between 0 and CW auttled to the waiting time. This ensures that
the stations do not send their packets at the same CW is doubled for every collision that occurs
to accommodate a larger number of stations vyinghf® access of the medium. Readers are referred
to [21] for more information.

Several assumptions were made in this case fagake of clarity and to provide a better
understanding of the tool. Firstly, the waiting ¢irfior all packets is constant and all packets are
categorized as DIFS. Secondly, the CW is constasthtiaes not increase, and since there are only two
stations, the CW would be minimum, i.e. GWE 7. Thirdly, the packets are dropped after the
unsuccessful tries from the station and each stagémds only one packet. These assumptions do not

invalidate the results of the analysis by any metey onlylimit the scope of this case study.

3.0 SD2PN Model Transformation and Analysis

The transition from Sequence Diagrams to Petrs i&D2PN) allows model interoperability
between the user-friendly interface of UML and finenal mathematical nature of Petri Nets. This
transition is achieved by the model transformatami SD2PN [22]. The transformation involves

three distinct phases:

Phase 1:Decomposition of Sequence Diagrams into fragments.
Phase 2:Transformation of each fragment into a Petri Netk.

Phase 3:Composition of the Petri Net blocks usimgprphandsubstitute

These phases will be detailed in Sections 3.1aB8d23.3 and their deployment will be

illustrated using a Sequence Diagram describindpéaviour of a Personal Area Network.



Following the completion of the model transformatithe resulting Petri Net will be subjected to

structural and behavioural analysis.

3.1 Decomposition of Sequence Diagrams into Fragntsn

The decomposition process involves the identificabf the model element in the Sequence
Diagram based on the metamodel in Figure 2. Theeireldments used in the model transformation
process areessagand four types o€ombinedFragmentsilternative option breakandparallel.
These model elements are hereafter referredfragiments Each type of fragment would be
assigned a transformation rule in the next se¢tianap the fragment into a Petri Net block.
Examples of these fragments are illustrated infeiguwhere a Sequence Diagram is decomposed

into 15 numbered fragments based on the model elisme

The Sequence Diagram in Figure 6 gives an overoigow a station sends a packet to the
medium in the IEEE 802.11 protocol. The medium asa®ntrol (MAC) layer of the station receives
a packet from an application and registers ihétidles before checking the status of the meditum.
the medium is free the station is able to seng#uiket across to the medium. However, if the
medium is busy the station has to wait until thelime is free before idling again. The MAC then
checks the status of the medium again before ejtivaating the packet across or waiting again. Each
of the events in this scenario has multiple subyssthat occur in the background. The diagram is

however simplified for the sake of clarity.
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Figure 6: Sequence Diagram for a station in PAN

Throughout the decomposition process, the caysatiter between these fragments is
preserved in the metamodel elem&eineralOrderingIn the Sequence Diagrams, this ordering is the
same as top-down visual ordering. The hierarcliodér between elements is also preserved in the
metamodel as indicated by the relationship betvi@@nbinedFragmerandinteractionFragmentAs
a result, the behaviour of the original Sequenagiam could be incorporated into the resultingiPetr

Net to ensure that they are semantically equivalent
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3.2 Transformation of fragment into Petri Net block
This section describes how each Sequence Diagegmént generated in Phase 1 is
transformed into a corresponding Petri Net blodkgia series of five transformation rules; one rule

for each type of fragment.

sl
alt Jeeveeriiiiianns .
. Alt_fragmentl
m SD2PN t feerereeseneanet SD2PN
Rulel1 / L—1" =
................ y Rule 2
. Alt_fragment2

(b)

©) @

Figure 7: SD2PN Model Transformation Rules

Rule 1 -MessageA messagés either a call for the execution of aperationor sending and

receiving a signal [4]. The execution om@ssagenin a Sequence Diagram fragment is depicted as
thefiring of atransitiont in the corresponding Petri Net block. Plasgands, model a pre-condition
and a post-condition for the firing of the trarmitias shown in Figure 7 (a). These places willdegu
to create correct causality of events within thgussice diagram. As a further condition to thigrul

if mis the firstmessagén the Sequence Diagram, thgrin the corresponding block of Petri Net

must be given tokento signify the start of the Petri Net and to allthe transitions tére.

Rule 2 - Alternative: The Interaction Operat@aiternativespecifies a different set of events that may
occur based on the conditions in the fragmentigrder to preserve the semantics, this fragnent i
represented as a Petri Net block that starts witlages, that splits intdwo transitiong; andt,.

These two transitions denote the different altéveatcenarios in the Sequence Diagrams and will

each map into placeholderblock ph; andph, respectively, which represesit_fragmentland
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alt_fragment2 These placeholders will later babstitutedvith the actual events inside the fragment.
They will then map into transitiorigandt, to signal the end of thaternativefragments and will

terminate at placs as shown in Figure 7(b).

Rule 3 - Option: Interaction Operatasptioncan be treated in then same way aalternative
fragment because of the similarity of their constisuThe same block of Petri Net in Figure 7(b) is

used, with the exception ph, andph, representingpt_fragmentlandopt_fragmentanstead.

Rule 4 - Break: Breakconsists of guard (condition) such that when it is satisfied, theigion
breaks(i.e. terminates) [4]. This is modelled with thelghof two transitionst; for the case where the
guard fails and, for when the guard is satisfied. Transitiggonnects tgh,, whichrepresents
break_fragmentlwhich is the set of event that happens if thekeondition is not satisfied white
leads to plac, which is the terminal node. The placeholdbyis then connected to a transitigras

shown in Figure 7(c) to mark the termination of bieck ats,.

Rule 5 - Parallel: A parallel operator specifies that two sets of event shoaddioconcurrently
without any pre-defined set of conditions [4]. Aspttted in Figure 7(d), the corresponding block of

Petri Nets must ensure the parallel executiopaof fragmentlandpar_fragment2

3.3 Composition of the Petri Net blocks usingnorph and substitute

Following the mapping of each Sequence Diagragnfient into a corresponding Petri Net
block, an integrated Petri Net that correspondbeariginal Sequence Diagram needs to be produced
by composing the Petri Net blocks. A closer exativmeof the five transformation rules from Phase
2 reveals that each rule produces a Petri Net higitka single input place and a single output @lac

This allows the composition of the Petri Net blotk®e conducted usingorphandsubstitute

13



Morphis used to compose causality relationship betvirsdri Net blocks. Calling enorph
function with two Petri Net blocks results in thesp-condition of the first block being morphed with

the pre-condition of the second block, as showigpire 8.

O

registerPacket

P
@ morph

Figure 8: Example ofmorph in SD2PN

The functionsubstitutes used for composing hierarchical behaviour betwieetri Net blocks.
Substitutioris used only for replacing@aceholdemwith a complete Petri Net block as shown in

Figure 9.

Q\\ If busy If free Q
@ Ty - i

dropPacket substitute | ph1 | | ph2 I substitute sendPacket

Figure 9: Example ofsubstitute in SD2PN
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The process of composing the Petri net blockssstéth the mapping of the causal
relationships. This mapping requires calling t@rphfunction recursively for each causal
relationship in the original Sequence Diagram. Caltthe causal relationships are mapped, the
hierarchical relationships between the Petri Netkd are considered. The hierarchical relationships
are mapped by recursively applying théstitutefunction for everyplaceholderthat exists in the

Petri Net blocks.

Figure 10: Petri Net for a station in PAN

The Petri Net in Figure 10 is the result of applythe SD2PN model transformation to the
Sequence Diagram in Figure 6. Each numbered Petrbldck corresponds to the original numbered
Sequence Diagram fragment and the order of evemtsthe original Sequence Diagram is preserved

through the execution afiorphandsubstitute Thus the Petri Net in Figure 10 is considered

15



semantically equivalehto the Sequence Diagram in Figure 6. This alldvesRetri Net to be
analyzed using widely available Petri Net toolshsas as CPNTools [10] and PIPE [9]. This would

be further elaborated in the next section.

3.4 Analysis of the resulting Petri Net

The mathematical nature of Petri Nets createmagbase for various types of analysis.
Murata [8] outlines a number of analysis methods$iadicates how they relate to the problems in
designing an enterprise system including structamalysis methods such laenessand
boundednesas well as behavioural analysis methods suckahabilityanalysis. A liveness
analysis checks the system for deadlocks whileumtbedness analysis is used to check the effect of
the system on the buffers and registers when gtanbermediate data. On the other hand, a
reachability analysis is used to study the dyngmiperties of a system e.g. how one action may
affect the chances of an event happening in thedut

In the case of the Petri Net in Figure 10, PIPBEN&s used to perform a structural analysis on
the system. The liveness and boundedness of thensygas computed through State Space Analysis
where liveness is determined through the absendeauflocks in the Petri Net while boundedness is
computed through a P-invariant calculation. Thelted the analysis confirmed that the Petri Net
was not only live and bounded; it was also safeifded with a value of 1).

Subsequently, a behavioural analysis was condurcctin form of a Reachability Graph
generated using the Petri Net tool PIPE as shovAigure 11. The Reachability Graph identifies all
the different states of the Petri Net and determimkether each state is reachable from the initial
marking of the Petri Net. The graph in Figure 1évehthat every state in the Petri Net is reachable

through a series of event.

! The semantic equivalence between every Sequeragddn and its corresponding Petri Net generated via

SD2PN has been previously established in [7] ugingmmon semantics domain.
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Figure 11: Reachability Graph generated using PIPE

The structural and behavioural analysis perforesatlier highlights the critical nature of Petri
Nets in determining the usability of a system. Ateyn with deadlocks does not terminate while a
system that is not bounded will overflow the buffand registers of a host machine. The reachability

analysis on the other hand allows the system demsdn analyze all possible aspects of a systetn tha

may be affected by a user-initiated action.

By providing for a seamless transition from SeaqeeDiagrams to Petri Nets, SD2PN allows
the analysis capabilities of Petri Nets to be aggpto Sequence Diagrams while masking the
complexity behind the model transformation. Onestgpanalysis, performance analysis, could not be

performed with conventional Petri Nets. This is tlu¢éhe inability of conventional Petri Nets to

17



support time constraints. This shortcoming is tlegivation behind extending SD2PN with timeliness

properties.

4.0 Extension of SD2PN with Timeliness Properties

It was established that SD2PN allows a model latetoperability between Sequence
Diagrams and Petri Nets in such a way that a systerid be designed using Sequence Diagrams and
analyzed as a Petri Net without any remodellingweler, it was also determined that the scope of
the analysis in conventional Petri Nets did noeegtto performance analysis, which is a critical
factor in real-time systems. Thus, an enhancenoethiet model transformation was introduced in [23]
where SD2PN is augmented with timeliness properiibis section details the enhancement and
illustrates the significance of integrating timeaasomponent in the model transformation.

The process of extending SD2PN with timeliness @rigs is conducted by enhancing both the
metamodels of the Sequence Diagrams and the Ragiwith time constraints. This is followed by
the enhancement of the transformation rules tadethe new time constraints specified in the
metamodels. Both these enhancements are detaisttion 4.1 and 4.2 respectively. The
composition of the Petri Net blocks usimprphandsubstitutejs not affected thanks to the structural

consistency of the transformation rules.

4.1 Metamodel Enhancement
The extension of SD2PN with timeliness propentezgiires the enhancement of the

metamodels of Sequence Diagrams in Figure 2 amdNRss in Figure 3.

4.1.1 Sequence Diagrams
To allow time constraints to be present in Seqeddiagrams, the Sequence Diagram
metamodel in Figure 2 is enhanced with time coimggaFigure 12 presents an enhanced metamodel

for Sequence Diagrams where the shaded elemetiits metamodel represent the extensions that
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signifies the addition of time properties into Segce Diagrams. The shaded elements are adapted

from "Common Behaviors", chapter 13 of the UML 3dperstructure [4].
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Figure 12: Sequence Diagram Metamodel augmented wifTimeliness Properties

Interval andDuration are the two types of time-related constraints ddd® the metamodel.
Interval represents a time frame with a maximummaimdmum value where the occurrence of a
specific event must be within the maximum and mummvalue [4, 24]. A Duration is defined as the
temporal distance between two time instances [J,A2Buration consists of only one value and an
event associated with a particular Duration coully occur on the exact time specified by the
Duration. Both Interval and Duration are syntadljceepresented textually inside curly brackets as
specified in [4, 24] and each value is expressdhbat instead oValue Specificatioin order to
manage the constraints more accurately and totkeemetamodel to a minimum.

ml

4
m2{0{3}1
‘

Figure 13: Example of a Sequence Diagram with timeonstraints

Interval

Figure 13 shows an example of a Sequence Diagrainfethtures both types of time

constraint, Interval and Duration. The IntervaMmetn the sending and receiving eventsaf
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indicates that the completion (sending and recgjvirim2 takes betwee® and 8+3 to occur,
where @ is a constant. The Duration betwaafhandm2on the other hand indicates that afteris

completed, the state is preserved for the duratiaf beforem?2 could be sent.

The presence of Interval and Duration in the Sega®iagram could present a unique case
that is not represented in the previously defimadrhents. The example in Figure 13 shows the
presence of a Duration that is not attachedrteeasageThis warrants the inclusion of an additional

fragment type and an additional transformation tiié will be addressed in Section 4.2.

4.1.2 Petri Nets

The enhancement of the Sequence Diagram metamdtigime constraints introduces an
inconsistency between the source and the destiatéamodels of the model transformation. To
allow the Sequence Diagrams to be accurately maippedetri Nets, the Petri Net metamodel has to

be enhanced with time constraints as well.

The addition of constraints to an ordinary Petri Msults in a type of Petri Net called Timed
Petri Net [25]. Figure 14 represents the metamofi€imed Petri Net where the shaded elements

refer to the extension of the metamodel in FiguvétB time properties.

Marking — Petri Net <—— Time Constraints Interval
? Q lowerBound: float
5 upperBound : float
Mark Place Transition : —
11 1 1 Timed Transition
tokens: Integer ) ) Zr
+n| , «|+out| +in +out
Immediate
Arc "
Transition

Figure 14: Petri Net Metamodel with Timeliness Propdies
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The shaded elements in the metamodel in Figureddde Interval and two specializations
of transition immediate transitiomndtimed transition The Intervals are expressed as closed
intervals [25] and consists of an upper and loveemil of typefloat, to be consistent with Sequence
Diagrams. Intervals are connectedramsitions For atransitionto fire, it must beenabledand once
enabled a clock starts; thiansition canfire when the value of the clock is within the intervah
example of a timed transition is shown in Figureattere the transitiot has a time constraint with

the closed interval§, 8+3]. The transitiori2 can only fire under two conditions: it must be lded

and the clock must be betweénand +3.

Immediaté
PR Transition

218, g+ 3]

p4 p3

Figure 15: Example of a Timed Petri Net

Two types ofransitionare identified in the Figure 1Bnmediate transitions and timed
transitions Immediate transitionswvhich ardgransitionswithout time constraints, are depicted as
black rectangles while themed transitionsare depicted as white rectangles.idamediate transition
may be considered as equivalent tovaed transitionwith an interval of [0, 0]. Fotimed transitions
theintervalis shown in a bracket by the label of trensitions with a comma separating the upper
and lower bound. If the upper and lower bound efittierval is the same, as in [50, 50], it is

abbreviated as [50].

4.2 Transformation Rules Enhancement

An MDD model transformation consists of three mamponents; a source metamodel, a

destination metamodel, and a set of transformaiti@s. Both the source and the destination
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metamodel have been enhanced to include timelpregerties; this requires the transformation rules

to be enhanced as well.

In this section, Rule 1 is modified to accommodh&eexistence of the two typestodnsition
while Rules 2 through 5 remains unchanged sinae thie no intervals or durations that are attached
to CombinedFragments. Every transition in Rulelsraugh 5 is therefore designatedrasnediate

transitions

Rule 1 from Section 3.2 is used to transform eveegsage in a Sequence Diagram into a
Petri Net block consisting of twglaces s1ands2, and aransition, t. By adding a time constraint to
this rule, thdransition tis given an Interval constraint with a maximum amdimum value acting as

its upper and lower bound. There are three poss#sdes for the execution of this rule:

Case 1:If a message has an interval associated witly.i{£0...30}, thetransition tin the resulting

Petri Net block is designated aSianed Transitiorwith a closed interval [10, 30].

Case 2:If a message has a duration associated to if20.the transition tin the resulting Petri Net

block is designated asTamed Transitiorwith a closed interval [20, 20] or abbreviated 2.

Case 3:If a message does not have any time propertiashat! to it, théransition tin the resulting

Petri Net block is designated agransitionwith a closed interval [0, 0] or dmmediate Transition

sl

SD2P
g
9 Rule

o Z

| s2

Figure 16: Rule 6 of SD2PN

Rule 6 — Duration: To accommodate the new type of fragment definesieiction 4.1.1, an additional
Rule is introduced to SD2PN. Rule 6, as illustrateBigure 16 maps time properties that are not
attached to any particular message into a PetrbMek. This results in a Petri Net similar to Rale

However, there are only two possible execution<é&seRule 6:
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Case 1:If a time constraint has an interval associateitieéag. {10...30}, theransition tin the

resulting Petri Net block is designated d&raed Transitiorwith a closed interval [10, 30].

Case 2:If a time constraint has a duration associatatlite. {20}, thetransition tin the resulting
Petri Net block is designated a3ianed Transitiorwith a closed interval [20, 20] or abbreviated as

[20].

4.3 Enhanced SD2PN Model Transformation

The metamodel and transformation rules enhancenfiemh the previous section results in an
enhancement of the SD2PN model transformation. Mewé¢he fundamentals of the model
transformation process described in Section 3 nesnaichanged. The three phases of SD2PN are

still valid:

Phase 1:Decomposition of Sequence Diagrams into fragments.
Phase 2:Transformation of each fragment into a Petri Netk.

Phase 3:Composition of the Petri Net blocks usimgrphandsubstitute

The process of Sequence Diagram decompositiohasé’l is enhanced through the
introduction of an additional fragment type. In B@&t 3.1, five fragment types were introduced;
messag@ndCombinedFragmentsf typealternative option, breakandparallel. However, for the
purpose of the time enhanced model transformaginradditional fragment type is introduced, as

described in Section 4.1.1.

Phase 2 of the model transformation makes usesef af six transformation rules specified in
Section 4.2, one for each fragment type. The redesist of an enhancement to the set of five
transformation rules of Section 3.2 and the addlitibRule 6 in Section 4.2. The composition of the
Petri Net blocks in Phase 3 of SD2PN remains urgdmifrom Section 3.3 since the enhancements
made to the transformation rules in Section 4.Aataaffect the structural consistency of the Régt
blocks i.e. all Petri Net blocks begins and endfaplace The application of the three phases

results in the transformation of a Sequence Diagnama semantically equivalent Petri Net.

23



In Section 3, an example of the transformatiorcess was provided. The Sequence Diagram in
Figure 6, a representation of a Personal Area Nétweas transformed via SD2PN into the Petri Net
in Figure 10. To illustrate the introduction of g#ras an element in the model transformation, the
Sequence Diagram in Figure 6 is augmented with tiamestraints, resulting in the Sequence Diagram
in Figure 17 (a). Using the enhanced SD2PN modaktormation, this Sequence Diagram is

transformed into the Petri Net depicted in Figurgld).

Siation Medium

ica {30}

chackizang

seniPackot

checkSiaius

walltF orfncmss
1120_240]

If busy

> wailFordczess (12002400
IF Brussiy

> wanFarAocess{120...520)

El geniPackel
—"lalf fran

I Brumy
> warFaraceess{ 120, 200]

alt senodPackot

watFaracoess
1201240

T s

— o R e e e e e = =

1T By
) drapPacket

a) (b)

Figure 17: (a) Sequence Diagram for a station in PM and (b) its equivalent Timed Petri Net
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The Petri Net generated via the enhanced SD2Migure 17 (b) is structurally equivalent to
the Petri Net in Figure 10; thus indicating thesietency of the model transformation. However, the
introduction of timeliness properties into SD2PNtaexpands the scope of analysis that could be

performed on the resulting Petri Nets.

4.4 Extended Analysis of the resulting Petri Net

The extension of SD2PN with timeliness properéik®vs performance analysis to be
performed in addition to the existing structuradl dr@havioural analysis; time-sensitive analysifisuc
as a cycle-time, average time, standard deviatmgjdence intervals and throughput analysis can
be performed, as described in references [9, 26].

The Petri Net in Figure 17 (b) is still amenalaehe structural and behavioural analysis as
described in Section 3.4. However, since ther®istructural difference between the Petri Nets in
Figure 10 and Figure 17 (b), the results of thecstral and behavioural analysis remain the same.
The focus of the performance analysis in this casiroughput analysis; this will be used to asaly
the maximum delay for a station in the PersonabAetwork.

The maximum delay is calculated based on the tirakés for a station to gain access to the
medium(sendPacket)The factor that contributes to the increase irtimgitime is the number of
stations. A higher number of stations will increasatention between the stations. This inevitably
leads to a longer maximum waiting period. For thgecof a single station in the PAN, the Petri Net
would be the same as the Petri Net in Figure L/Hb)vever, for cases where there is more than one
station, the Petri Net in Figure 17 (b) would bgliated for each station. The throughput analysis
will determine the maximum waiting time based o lgst station to gain access to the medium via
themessagesendPacket’. For example, in a case where theréa stations trying to gain access to
the medium, after registering the packet (firingegfisterPacketransition), in Figure 17 (b), both
stations will face a mandatory idle time ofs((firing of idle transition) before checking the status of

the medium. Following that, only one station wil &ble to gain access to the medium while the other
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will have to wait between 128 and 24(s (firing of waitForAccesgransition), thus a maximum

waiting time of 29Qks (= 24Qs + 5Qus).

:

3 8§

400
200

Maximum Waiting
Time (ps)

1 2 3 4 5 & 7
Number of Stations

Figure 18: Maximum Waiting Time analysis result

The graph in Figure 18 indicates the maximum déiay a station may face before gaining
access to the medium to send a packet based tmdhughput analysis. The number of stations is
limited to 7 to ensure there are no collisionss thibased on the previous assumption that the
contention windowCW) does not increase.

In the example of the Petri Net in Figure 17 (bg &nalysis performed could provide a basis to
optimise related protocols to ensure a better pmdace. This provides a domain of interoperability
from Sequence Diagrams to Petri Net allowing ndy structural and behavioural analysis, but also
performance analysis. The performance analysistiimited only to throughput analysis. Various
other performance analyses such as cycle-time sinabverage time, standard deviations, and
confidence intervals analysis can also be perforidadous analysis methods are covered in detail in

references [9, 26].

5.0 Discussion

The dichotomy between the design and analysis ohenra software development exists due
to the trade-off between the ease-of-use of UMLitnthck of precision. The requirement for

analysis using a formal language, as a sequetgjalts a less formal design phase, results indyitab
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in the generation of heterogeneous models. Onaagppito addressing this issue is to enhance the
formalism of languages used in the design. Recerit m this area has been marked by a concerted
effort aimed at formalizing UML by integrating foelhmethods techniques into the model [27-31].
Formalization offers many advantages includingathitity to analyze a model via techniques such as
model checking and theorem proving in order to ensorrect specification. The introduction of
logical and timing constraints into a model, intgadar, facilitates the investigation of non-fuinctal
aspects of the system such as QoS and securiégréting formal method techniques with UML is an
active area of research. For example, Evans @abfropose the use of Z as the underlying
semantics for Class Diagrams to deal with thecstepects of models. Kuster-Filipe [32] presents a
semantics for Sequence Diagrams based on Labelkat Structures. However, it has been noted
that formalization increases complexity and isfiehieved at the expense of simplicity. The main
challenge is to strike a balance between precenuhease of use. This can be achieved by creating a
domain for interoperability between UML and a fotiaaguage.

The use of model transformation in supporting imperability between design and analysis
models in software engineering is increasingly ga@jmmportance in the software development
community. Anastasakis et al [33] deals with issedsted to model transformation from UML to
Alloy [34]. They propose UML2AIlloy [35] as a toabif the analysis of UML models via the Alloy
framework. UML2Alloy allows the analysis of statimodels which are qualified with OCL
constraints [36]. Alloy does not however provide thechanisms required for capturing complex
dynamic behaviour such as parallelism.

The choice of Petri Nets as the formal languageérforming behavioural analysis is due to
its flexibility, expressiveness and power as wslivade availability of tools. Petri Nets are also a
popular choice for representing dynamic models.gxample, Van der Aalst [37] makes use of Petri
Nets for the analysis of Workflow Management Modelsing the analytical capabilities of Petri
Nets, the Workflow Models are analyzed for validativerification, and performance analysis.
Vanhatalo et al [38] decomposed Business Proceskelglinto blocks of Single Entry Single Exit
(SESE) models and analyzed each blocks indepegd&hik technique makes it possible to analyze

the liveness and soundness of a Business Procedsl Nldoreover, they state that the fastest
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technique used in the analysis of Workflow Modalgives transforming them into Free Choice Petri
Nets [39, 40]. Free Choice Petri Nets is a sub@ég®tri Nets where conflicting behaviour and
concurrent behaviour may occur, but not simultasgo his subclass of Petri Net is predominantly
used for effective and efficient analysis of a eyst [38]. Free Choice Petri Nets are also prowing t
be particularly suitable for the analysis of laspale systems [37, 38], an important feature that
widens the scope of the application of the propdsdework to encompass similar systems.

In the transformation process SD2PN generates@mneee Petri Net. This result has been
established and proved in [22]. The seamless trangrom Sequence Diagrams to Petri Nets takes
advantage of their suitability for formal analyaisd support for the investigation of various
properties such as liveness, safeness and deadletdation [39]. It is also possible to integrate
existing Petri Net tools into a tool set, so tlatd given UML Sequence Diagram, by applying a
sequence of tools, the user @anomaticallyreceive feedback on, among others, the liveness,
safeness and deadlock freeness of the model. dhiplete tool integration is bound to reduce the
cognitive load on users since a thorough undersigraf the underlying formal structure of the
model is no longer required. This resultduth model interoperability where the less formal Seqae
Diagrams are transformed into the formal expressfdPetri Nets, and the analysis of the Petri Nets
is returned as feedback to the user in a less fatyle. This enables the user to make amendments t
the original Sequence Diagram.

It was established in this paper that the modefragerability and tool integration provided by
SD2PN could be used to generate Petri Net modais $equence Diagrams and provides a basis for
structural, behavioural and performance analysigguBetri Net tools such as PIPE and CPNTools.
The development and deployment of the tool oweshnoithe abstract approach that MDD
promotes. MDD provides a platform for models tadesed across domains; in this case those
identified by the design and formal analysis phaResising models across domains results in shorter
development cycle and lower production cost, andiin reduces complexity in the software
development process. This is evident in SD2PN witerenodel created in the software design
domain could be reused in the analysis domainwailp model interoperability between Sequence

Diagrams and Petri Nets. The transition betweeitvtoenodels is well supported by tool integration.
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SD2PN is till under development and suffers fromedimitations; among these is the
inability to map the data flow and data constraints Petri Nets. This limitation can be an
impediment to the modelling of some complex systegbmmventional Petri Nets and Timed Petri Nets
are unable to handle data types, and as such ileaplamodelling data flow or data constraints.sThi
limitation could be addressed by using anotheroilewof Petri Nets: Coloured Petri Nets (CPN). This

will be the focus of future research.

6.0 Conclusion

This paper has presented a method of model irdeabpity, which makes use Model Driven
Development in order to bridge the gap betweerdésign and analysis phases of software
development. The framework introduced in this paB&2PN, provides a seamless transition from
Sequence Diagrams to Petri Nets. This allows fadetsto be conveniently designed in UML while
taking advantage of the rigorous mathematical ambfforded by Petri Nets; it also supports the
integration the different toolsets across incontpatdomains. Petri Nets are well suited for strradtu
and behavioural analysis of a model thanks to tgiressive power and flexibility. Moreover, the
addition of time properties as a significant feataf the model transformation allows performance
analysis to be conducted on real-time and timeisemsnodels. The proposed approach has been
evaluated with a model of the behaviour of a PeakArea Network. The model was also used as a
vehicle for illustrating the difference between #teuctural and behavioural analysis of conventiona

Petri Nets and the performance analysis of Timed Rets.
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