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Abstract 

The monooxygenase complex is composed of three key proteins, a cytochrome P450 

(CYP), the cytochrome P450 oxidoreductase (CPR) and cytochrome b5 and plays a key 

role in the metabolism and detoxification of xenobiotic substances, including pesticides. In 

addition, overexpression of these components has been linked to pesticide resistance in 

several important vectors of disease. Despite this, the monooxygenase complex has not 

been isolated from the Southern cattle tick Rhipicephalus (Boophilus) microplus, a major 

disease vector in livestock.   

Using bioinformatics 115 transcriptomic sequences were analyzed to identify putative 

pesticide metabolizing CYPs. RACE-PCR was used to amplify the full length sequence of 

one CYP; CYP3006G8 which displays a high degree of homology to members of the CYP6 

and 9 subfamilies, known to metabolize pyrethroids. mRNA expression levels of 

CYP3006G8 were investigated in 11 strains of R. microplus with differing resistance profiles 

by qPCR, the results of which indicated a correlation with pyrethroid metabolic resistance. 

In addition to this gene, the sequences for CPR and cytochrome b5 were also identified and 

subsequently isolated from R. microplus using PCR.  

CYP3006G8 is only the third CYP gene isolated from R. microplus and the first to putatively 

metabolize pesticides. The initial results of expression analysis suggest that CYP3006G8 

metabolizes pyrethroids but further biochemical characterization is required to confirm this. 

Differences in the kinetic parameters of human and mosquito CPR in terms of NADPH 

binding have been demonstrated and could potentially be used to design species specific 

pesticides. Similar differences in the tick CPR would confirm that this is a characteristic of 

heamatophagous arthropods.  
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b5; Rhipicephalus microplus; pesticide resistance. 

 

Introduction 

The detoxification of xenobiotics is an essential function for life and is carried out by three 

specific enzyme families: Glutathione S transferases, Esterases (or Carboxylesterases) and 

the Cytochrome P450s (CYPs). Cytochrome P450s are an ancient protein family found in 

all forms of life (Scott and Wen 2001; Sztal  et al., 2012) and are known to be the major 

phase I metabolizing enzymes. In humans, CYPs metabolize approximately 65% of 

currently used clinical drugs (Zhou et al., 2005), emphasising the importance of this group 

of enzymes in xenobiotic metabolism. CYPs are characterized by the presence of a highly 

conserved heme-binding domain located towards the C terminus of the protein. This 

signature motif, with the sequence FxxGxxxCxG is found in all CYPs (Syed and Mashele 

2014; Werck-Reichhart and Feyereisen 2000) and plays a vital role in the electron transport 

mechanism used by these enzymes to, in many cases, incorporate molecular oxygen into 

xenobiotics thus rendering them more water soluble and more readily excreted from the cell 

(Mamidala et al., 2011).  

Xenobiotic metabolism is an important topic of investigation amongst arthropods due to this 

group of organisms containing numerous vectors of medical/veterinary diseases and a host 

of agricultural pests that are developing resistance to commonly used chemical control 

agents (Brogdon and McAllister 1998). Amongst the arthropods, there has been a huge 

amount of research into species such as Musca domestica (house fly) and Drosophila 

melanogaster (fruit fly) due to their use as model organisms and of course various mosquito 
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species due to the medical and economic importance (Drali et al., 2012; Kawada et al., 

2011; Kushwah et al., 2015; Wondji et al., 2011).  

Pesticide resistance is not a novel problem but one that is ever increasing due to its 

association with disease transmission to both animals and plants. Pesticide resistance has 

been described by the World Health Organisation (WHO) as “the ability of a parasite strain 

to survive and/or multiply despite the administration and absorption of a drug given in doses 

equal to or higher than those usually recommended but within the limits of tolerance of the 

subject” Abbas et al., (2014). It is this ability to survive despite the application of pesticides 

that is of interest as it provides a mechanism to continue the transmission of diseases to 

both plants and animals. One of the most studied of the arthropods with a view of disease 

transmission are the mosquito species and research has shown that CYPs play a key role 

in the development of pesticide resistance (Corbel et al., 2007; Gong et al., 2005; 

Hemingway et al., 2004; Marcombe et al., 2009). Cytochrome P450s are split into clades 

depending on their function and this allows key CYPs to be more easily identified. Four 

main clades (mitochondrial clade, CYP2, CYP3 and CYP4 clade) exist and in terms of 

pesticide metabolism the clade that is of interest is the CYP3 clade, a clade which includes 

the important mammalian CYP3A4 and insect homologues of this enzyme, namely the 

CYP6 and CYP9 families e.g. CYP6Z1 (Chiu et al., 2008) and CYP6P3 (Muller et al., 2008). 

Despite the importance of ticks, as they are second to mosquitoes as vectors of human 

disease and the most important vector of disease to animals (Hill and Wikel, 2005), with the 

ability to transmit a variety of pathogens and transmitting the widest array of disease 

causing organisms out of all the hematophagous arthropods (Bissinger and Roe 2010), little 

research has been carried out into the cytochrome P450 mediated metabolism and their 

subsequent associated resistance in this group. The vast majority of pesticide resistance 

research in these arthropods has focused on the role of GSTs (Kwon et al., 2010) and  
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carboxylesterases (Baxter and Barker 1998; Cossio-Bayugar et al., 2002), with the 

involvement of CYPs only being inferred by synergist studies (Li et al., 2004; Rodriguez-

Vivas et al., 2013). Furthermore, despite the ever increasing problem of pesticide 

resistance little of this research has involved deciphering the mechanisms underlying the 

development of resistance phenotypes. The identification of CYPs, and indeed other drug 

metabolizing enzymes, in acari is hindered by the lack of available annotated genome data. 

Some data is available on public databases such as NCBI for Ixodes scapularis and the I. 

scapularis  genome has been published (Van Zee et al., 2007) however for species such as 

R. microplus, the data available is even more sparse (Guerrero et al., 2006). It is therefore 

important to develop these resources such that a bioinformatics approach can be initiated 

to identify members of the key CYP families and where possible, identify putative 

homologues of the key insect CYPs that have been isolated and characterized to ascertain 

what they metabolize. 

In order to be fully functional cytochrome P450s require an oxidoreductase (CPR in this 

case) and additionally in some cases cytochrome b5. CPR is important in transferring 

electrons from NADPH through to the CYP allowing the incorporation of one molecule of 

oxygen, hence a monooxygenase reaction, to various substrates (Guengerich 2007). CPR 

is a highly conserved diflavin protein composed of two flavin cofactors, flavin 

mononucleotide (FMN) and flavin adenenine dinucleotide (FAD), that transfer the electrons 

one at a time to a CYP (Iyanagi et al., 2012; Lian et al., 2011). Due to the nature of CYP 

research among mammals and insects, the CPR gene has been isolated from an array of 

species and been characterized in many of these (Chen and Zhang 2014; Liu et al., 2014; 

Zhu et al., 2012) however, CPR has not been isolated or characterized from a tick species 

to date, despite the importance of this protein to the functioning of the monoxygenase 

complex and subsequent detoxification of xenobiotics. Differences have been identified 
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between human CPR and An. gambiae CPR which is potentially paving the way for a new 

target and method of control (Lian et al., 2011), but further emphasises the importance of 

characterising CPR isoforms from other arthropods. 

Cytochrome b5 is a small but highly conserved protein with a variety of roles in different 

reactions such as lipid and sterol biosynthesis (McLaughlin et al., 2010; Porter 2002; Zhang 

et al., 2005). The role cytochrome b5 plays within the monooxygenase complex and CYP 

mediated reactions has been described as controversial for many years (Porter 2005) as 

cytochrome b5 has been shown to have a stimulatory/modifying effect on CYP reactions, be 

it obligatory for some reactions and in other cases have an inhibitory effect (Im and Waskell 

2011; Porter 2002; Schenkman and Jansson 2003). Despite this extensive amount of 

research into the role of cytochrome b5 in CYP-mediated drug metabolism in mammals, 

much less equivalent research exists in arthropods considering the fact cytochrome b5 may 

have a role in pesticide metabolism. Stevenson et al., (2012) found that by co-expressing 

numerous CYPs such as CYP9J2 from Ae. aegypti with cytochrome b5 from An. gambiae 

the catalytic activity of the CYP was enhanced. Conversely, Chandor-Proust (2013) found 

that co-expression of Ae. aegypti cytochrome b5 with Ae. aegypti CYP6Z8 did not cause a 

significant effect on the activity of the CYP (Chandor-Proust et al., 2013). This emphasises 

the need to co-express cytochrome b5 when investigating CYP activity. Thus it is 

reasonable to assume that further investigation into the role of cytochrome b5 in humans 

and some mosquito species will identify potential differences between species that similar 

to CPR, may additionally be exploited in the development of arthropod control measures.  

In this paper we provide an update of our recent work towards filling the gap in the current 

knowledge of cytochrome P450s involved in pesticide metabolism in acari describing the 

isolation of the P450 monooxygenase complex from the Southern cattle tick, R. microplus. 
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Isolation of these individual components will allow detailed biochemical characterization and 

the ascertainment of their role in pesticide metabolism/resistance.  

 

Materials & Methods 

Bioinformatic analysis 

115 putative cytochrome P450 sequences from Rhipicephalus (Boophilus) microplus 

provided by Dr Felix Guerrero and colleagues (Guerrero et al., 2006) were initially analyzed 

using the National Center for Biotechnology Information (NCBI) public database 

(http://www.ncbi.nlm.nih.gov/) to identify those having nucleotide sequence similarity to 

CYP3, CYP6 and/or CYP9. Of the 115 initial sequences 5 were identified as having the 

highest ‘query coverage’ and ‘max ident’ to known pesticide metabolizing CYPs from other 

species. Within these 115 were sequences were R. microplus homologues of cytochrome 

P450 oxidoreductase (CPR) and cytochrome b5 (cytb5) genes were also identified.  

Tick samples 

Tick larval samples from the species R. microplus, were provided from USDA, Texas 

(courtesy of Dr Felix Guerrero) preserved in RNAlater-Ice® (Life Technologies, New York, 

USA), and stored at -80 °C to maintain RNA stability and integrity. 

RNA Extraction and cDNA preparation 

RNA was extracted from all 11 strains of R. microplus shown in Table 1 (the resistance 

profile of each strain is also included). The ticks were snap frozen using liquid nitrogen and 

RNA was extracted using TRIzol® reagent followed by a PureLink RNA Mini Kit (Life 

Technologies, New York, USA) according the manufacturer’s instructions. RNA quantity 

http://www.ncbi.nlm.nih.gov/
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and purity was measured using a Nanodrop ND-100 (Nanodrop Technologies, Wilmington, 

USA) and integrity was checked using agarose gel electrophoresis. 

cDNA was generated from the 11 strains of R. microplus ticks using PrimerDesign Reverse 

Transcription Premix (PrimerDesign, Southampton UK).  

RACE Reactions 

The Gonzales strain of R. microplus was used to generate RACE (Rapid Amplification of 

cDNA Ends) ready cDNA using a GeneRacer Kit (Life Technologies, New York, USA) and 

1.44 µg of RNA was used to generate both 5’ and 3’ RACE ready cDNA. RACE PCRs were 

carried out using the RACE ready cDNA as follows:  

5’ RACE reactions contained, 300 µM dNTPs, 1 Unit VELOCITY DNA polymerase, 10 µl 5x 

amplification buffer, 900 nM GeneRacer 5’ Primer (5’ 

GGACACTGACATGGACTGAAGGAGTA 3’) and 300 nM GSP Reverse primer (5’ 

GGGCGAAGCCAGACGACACC 3’), 1 mM MgCl2, 30µl sterile distilled water, 1 µl RACE 

ready cDNA template in a final reaction volume of 50 µl.  

3’ RACE reactions contained, 300 µM dNTPs, 1 Unit VELOCITY DNA polymerase, 10 µl 5x 

amplification buffer, 900 nM GeneRacer 3’ Primer (5’ 

GCTGTCAACGATACGCTACGTAACG 3’) and 300 nM GSP Forward primer (10 µM) (5’ 

TCCAGGTCCCCCACCAAGTTT 3’), 1 mM MgCl2, 30µl sterile distilled water, 1 µl RACE 

ready cDNA template in a final reaction volume of 50 µl. 

5’ and 3’ RACE fragments were generated using the following PCR cycling conditions: 1 

cycle of 98 °C for 2 minutes, followed by 5 cycles of 98 °C for 30 seconds, 72 °C for 2 

minutes, followed by 5 cycles of 98 °C for 30 seconds, 70 °C for 2 minutes, followed by 30 

cycles of 98 °C for 30 seconds, 56 °C for 30 seconds, 72 °C for 2 minutes with a final 
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extension of 72 °C for 10 minutes. RACE products were double strand sequenced in order 

to facilitate the generation of gene-specific primers for amplification of the full length cDNA. 

PCR amplification of full length CYP3006G8 

PCR reactions were set up using VELOCITY DNA Polymerase (Bioline, London, UK) as 

follows; 0.5 µl of cDNA (per 12.5 µl reaction), 10 µl 5 x Hi-Fi Reaction Buffer, 400 µM 

dNTPs, 10 µM of each forward (5’ CCGCACTCGCTCGAATCAT 3’) and reverse (5’ 

GCTGCTGTAGCAAACGATGTC 3’) primers, 1 mM MgCl2, 2 Units of polymerase enzyme 

in a total of 50 µl. Reactions were subjected to the following PCR cycling conditions. 1 cycle 

of 98 °C followed by 35 cycles of 98 °C for 30 seconds, 52 °C for 30 seconds and 72 °C for 

1 minute with a final step of 72 °C for 10 minutes. Following PCR, products were analyzed 

on a 1 % agarose gel. The full length cDNA as cloned into pCR Blunt (Life Technologies, 

Paisley, UK) and the sequence confirmed via double strand sequencing using the vector 

specific M13 forward and reverse primers. 

qPCR mRNA expression 

cDNA was generated from the 11 strains of R. microplus ticks. This was carried out using 

Reverse Transcription Premix (PrimerDesign, Southampton, UK).  

The full length CYP3006G8 was used to design a primer/probe set to carry out quantitative 

expression analysis: forward 5’ TTTCCTTACTGCTTGCTTTCC 3’, reverse, 5’ 

CGTCAAAACACTTGTCTGCC 3’, probe 5’ FAM - 

TCATATCATTCGGTTCACGACATAACAAGACG – TAM. Additionally a primer/probe set 

was designed to ELF1α which was the housekeeping gene used to normalise the data 

(Nijhof et al., 2009): forward, 5’ CTTCACCGACTTTCCTCCCCC 3’, reverse 5’ 

GCCTCCTTGGGTTTGACAGA 3’, probe, 5’ FAM - AAACGGTCGCCGTCGGTGTC – TAM 



Page 10 of 37

Acc
ep

te
d 

M
an

us
cr

ip
t

3’. Following optimization of primer/probe sets, for CYP3006G8 200 nM forward primer, 100 

nM reverse primer and 300 nM probe were used in each reaction and for ELF1α 100 nM 

forward, 200 nM reverse and 300 nM probe was used. All reactions were set up as follows, 

6.25 µl 2 x qPCR Master Mix for the iCycler (Primer Design, Southampton, UK), 2.5 µl 

RNase free water, primer/probe at the appropriate concentration indicated above and 5 

ng/µl of cDNA. Reactions were then put through the following cycling conditions, 95 °C for 

10 minutes followed by 40 cycles of 95 °C for 15 seconds, 60 °C for one minute, data 

collection, using a BioRad CFX96 real-time PCR machine. The Ct values were converted 

into copy numbers (2-Ct) and normalized against the corresponding values for the reference 

gene. Normalized values were subsequently compared to the reference strain (Gonzales) 

to determine the fold change in expression level of CYP3006G8 for each strain. Data was 

analyzed using the Students T-test to determine levels of significance.  

Isolation of CPR and cytochrome b5 

Bioinformatic analysis allowed the 5’ and 3’ ends of the R. microplus CPR gene to be 

identified, allowing gene specific primers to be designed for use in PCR to amplify the full 

length cDNA. Reactions were set up as described above using the following primer set: 

forward, 5’ CACGCGAGCCATGGAAGGGACG 3’ and reverse, 5’ 

GCAGCATCAACTCCAGACGTC 3’.  

The full length cDNA of R. microplus cytochrome b5 was identified via bioinformatics and 

primers were designed to amplify this gene. Reactions were set up as described above 

using the following primer set: forward, 5’ CGTTCGCCAGTAGCTTTCCT 3’ and reverse, 5’ 

CCTGGTCTGTTTGCCCTCAT 3’. Both full length cDNAs were cloned into pCR Blunt and 

sequences confirmed via double strand sequencing using the vector specific M13 forward 

and reverse primers.  
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Peptide sequence analysis 

Each of the isolated nucleotide sequences was analyzed using ExPASy translation 

software (http://web.expasy.org/translate/). This allowed the putative start and stop codons 

to be identified and determination of the open reading frame of each protein. It also allowed 

the identification of key residues and motifs to further confirm the isolation of each gene. 

The molecular weight of each protein was estimated using the ExPASy Bioinformatics 

Resource Portal and the compute pI/MW page (http://web.expasy.org/compute_pi/). Having 

used NCBI Blast (http://blast.ncbi.nlm.nih.gov/Blast.cgi) to investigate the homology of 

CYP3006G8 to other CYP proteins on the NCBI database and then using the same 

software to determine the homology of the putative CPR and cytochrome b5 proteins to 

other similar proteins on the database, this allowed alignments to be carried out to show 

this homology. Alignments were carried out using Clustal omega software 

(http://www.ebi.ac.uk/Tools/msa/clustalo/).  

 

Results 

Isolation of CYP3006G8 

Using known pesticide metabolizing CYPs as bait, bioinformatic analysis identified 5 

potential homologues within the R. microplus transcriptome data set however during RACE-

PCR only one set of primers designed to amplify sequence 60, successfully isolated both 5’ 

and 3’ products. Using these products gene specific primers were designed to amplify the 

full length cDNA of the encoded gene. The full length fragment was cloned, sequenced and 

submitted to Dr. David Nelson (University of Tennessee) for naming and has subsequently 

been recorded as CYP3006G8. The nucleotide and translated peptide sequence of 

http://web.expasy.org/translate/
http://web.expasy.org/compute_pi/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ebi.ac.uk/Tools/msa/clustalo/
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CYP3006G8 is shown in Figure 1, highlighting the key heme-binding domain essential for 

electron transfer and the membrane binding domain. CYP3006G8 has a calculated pI of 

8.78 and a predicted molecular weight of 61.4 kDa.  

Sequence homology analysis carried out on CYP3006G8 using NCBI Blastp confirmed 

homology to CYP6 and CYP9 sequences from several mosquito species (Table 2). 

Pairwise analysis found that CYP3006G8 shares maximum percent identities of 30.41 % to 

CYP6P3 (accession number AAL93295) from Anopheles gambiae and 30.14 % to CYP9J2 

(accession number AAK17188) from Aedes aegypti. CYP6P3 has been shown to be 

involved in pyrethroid metabolism and resistance to pyrethroids (Muller et al., 2008) and 

members of the CYP9J family have been shown to metabolize pyrethroids also (Stevenson 

et al., 2012). Figure 2 shows an alignment of the protein sequences of these two mosquito 

CYPs along with CYP3006G8 and an additional NCBI top hit of CYP6l1 (accession number 

XP_003744550) from a species of mite (Metaseiulus occidentalis). 

mRNA expression analysis  

In order to gain further support for the hypothesis that CYP3006G8 is involved in pesticide 

metabolism, its mRNA expression levels in 11 different strains of R. microplus with varying 

resistance profiles was determined. Figure 3 shows the results of this analysis expressed 

as log10 fold change following normalization with ELF1α and using the Gonzales strain as 

the reference strain. The results of this analysis revealed that 8 of the 11 strains showed 

increased levels of expression of CYP3006G8 with the strains Cz, Co and Pq showing 

increased expression levels that were highly significant (p = 0.0046, p = 0.0046 and p = 

0.0056, respectively). The Tx strain was also found to have an increase in mRNA 

expression level that was significant (p = 0.027). The strain Ca was found to have a 

significant decrease in mRNA expression (p = 0.016).  

B 
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These results are interesting as the strains Cz, Co and Tx have all been shown to 

demonstrate resistance to pesticides, with Cz and Co displaying metabolic resistance to 

pyrethroids and Tx both target site and metabolic resistance to organophosphates. In 

addition the strain Pq has been shown to have target site resistance to pyrethroids but it is 

believed that metabolic resistance may also play a role in this resistance to pyrethroids. 

Conversely, the reduced mRNA expression level of the strain Ca also correlates with a role 

for CYP3006G8 in pyrethroid metabolism as this strain is susceptible to pyrethroids but 

resistant to organophosphates.    

However this correlation is not entirely clear cut as Figure 3 shows the expression level of 

CYP3006G8 is highly variable across the 11 strains, in particular in the De strain which has 

been shown to demonstrate susceptibility to all classes of pesticides. As such, further 

biochemical analysis is required. 

Isolation of CPR 

Bioinformatic analysis of the transcriptome data set also identified the 5’ and 3’ ends of R. 

microplus CPR allowing the generation of gene specific primers and the isolation of a full 

length cDNA. The full length nucleotide and predicted peptide sequences of R. microplus 

CPR are shown in Figure 4.  The encoded peptide has a predicted pI of 5.62 and a 

molecular weight of 77.8 kDa, a sequence alignment with CPR homologues from other 

species identified the conserved binding motifs for FMN, FAD and NADPH (Figure 5). The 

results of the pairwise analysis following the alignment are shown in Table 3 and clearly 

show the high degree of sequence homology amongst cytochrome P450 oxidoreductase 

from a variety of species but also shows that variation exists.  
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Isolation of Cytochrome b5 

A full length cDNA for R. microplus cytochrome b5 was identified following bioinformatic 

analysis of the 115 transcriptomic sequences allowing this gene to be successfully 

amplified. The full length nucleotide and translated protein sequence are shown in Figure 6. 

The encoded protein has a predicted pI of 5.3 and a molecular weight of 15.1 kDa and 

displays a high degree of homology to other species as shown by the alignment in Figure 7, 

including the highly conserved histidine residues which are important for heme binding and 

residues important for creating the “b5 fold”. This high degree of homology is further 

illustrated by values obtained for pairwise analysis presented in Table 4. Figure 6 and 

Figure 7 illustrate the high number of acidic residues which generates the acidic nature of 

this protein. 

 

Discussion 

Pesticide resistance amongst the arthropods is known to be a major problem in both 

medicine and veterinary.  There are a huge number of arthropods that act as vectors for 

disease and others that cause massive destruction of farm crops. Despite this there is still 

very little knowledge and understanding of how arthropods are able to develop resistance 

via metabolism of commonly used classes of pesticides such as pyrethroids and 

organophosphates. Cytochrome P450s through the monooxygenase complex have been 

shown to be a key mechanism of metabolic resistance to pesticides in numerous 

arthropods yet this area of research has not been well investigated in the Acari, especially 

the Ixodidea which includes the Southern cattle tick and the black-legged tick both of which 

transmit disease that affect humans and animals. 



Page 15 of 37

Acc
ep

te
d 

M
an

us
cr

ip
t

CYP3006G8 becomes only the third, cytochrome P450 to be isolated from the Southern 

cattle tick, Rhipicephalus (Boophilus) microplus, with the previous two being isolated over a 

decade ago. Crampton et al., (1999a) isolated a gene that was named Cyp4w1, however 

the authors used only sequence analysis and phylogenetics to investigate the gene isolated 

and did not carry out any biochemical characterization. Additionally, CYP4W1 was found 

not to be associated with pesticide resistance. He et al., (2002) isolated the gene Cyp319a1 

from R. microplus and carried out semi-quantitative PCR and found no variation in its 

expression in six different strains with varying resistance profiles. Similar to CYP4W1, no 

heterologous expression or biochemical characterization has been carried out for 

CYP319A1.  

Bioinformatic analysis suggests that CYP3006G8 displays some homology to CYP6 and 

CYP9 members although the level of homology to these key pesticide metabolizing CYPs is 

not greater than the 40% homology required to be placed in these families. Despite this, the 

results of the alignments as shown in Figure 2 and the mRNA expression analysis of 

CYP3006G8 in 11 R. microplus strains does provide support of a role of this novel CYP in 

pesticide metabolism. 

The strains Cz, Co and Pq all of which have been profiled to display metabolic resistance to 

pyrethroids were found to have significant increases in the mRNA expression level of 

CYP3006G8. Additionally, the Tx strain which has been shown to have target site 

resistance and metabolic resistance to organophosphates showed an increase in 

expression of CYP3006G8 which despite being resistance to a different class still supports 

the hypothesis that this enzyme plays a role in metabolism/pesticide resistance. The other 

strain that had a significant difference in mRNA expression levels of CYP3006G8 was the 

Ca which displays target site and some metabolic resistance to organophosphates however 

is susceptible to all other classes including pyrethroids. This is of interest as this strain 
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displayed down-regulation of CYP3006G8 further supporting the hypothesis that 

CYP3006G8 is involved in pyrethroid pesticide metabolism. In view the data published for 

the previous two CYPs from this species, CYP4W1 (Crampton et al., 1999a) and 

CYP319A1 (He et al., 2002), CYP3006G8 is the first cytochrome P450 isolated from R. 

microplus that putatively metabolizes pyrethroids based on sequence homology and the 

correlation of mRNA expression with resistance profiling.  

In addition to isolating a potential pyrethroid metabolizing CYP, the other components of the 

monooxygenase complex have also been isolated, the first of which is cytochrome P450 

oxidoreductase (Figure 4) the sole electron transfer protein to CYPs. Isolation of this 

component is essential in determining not only the ability of CYP3006G8 to metabolize 

pyrethroids but also the activity of all future CYPs isolated from R. microplus. Recent work 

has been investigated the co-factor binding traits of CPR from different species, in particular 

between human and insects such as Anopheles gambiae. This is of interest as the 

comparison between the human and mosquito isoforms has identified differences in traits 

which may have far reaching implications (Lian et al., 2011). The results of this comparison 

found the concentration of the bound co-factors FMN and FAD per mol of enzyme were 

lower in An. gambiae than in the human CPR and that An. gambiae CPR was found to bind 

more weakly to 2’,5’-ADP (an analogue to NADP) compared to human CPR. This latter 

finding is important as 2’,5’-ADP can exert conformational changes  which can affect the 

rate of electron transfer and thus affect the P450 catalysis. It is believed these subtle 

differences could be exploited to design new species specific pesticides. Isolating CPR for 

R. microplus will now allow similar studies to be carried out to identify if the same binding 

characteristics exits within all heamatophagous organisms. 

The final component of the monooxygenase complex that was isolated was cytochrome b5. 

Again, similar to CPR, this is the first reported isolation of this gene from R. microplus, 
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indeed from any acari species and completes the isolation of the monooxygenase complex 

from this species. Cytochrome b5 is known to stimulate, inhibit or have no effect on 

catalysis by cytochrome P450s with much research carried out in mammalian CYPs (Finn 

et al., 2011; McLaughlin et al., 2010; Zhang et al., 2005), therefore it is important to be able 

to co-express cytb5 to accurately determine the activity of CYPs with different substrates. 

The isolation of R. microplus cytb5 will now allow co-expression with CYP3006G8 and any 

future CYPs that are isolated and expressed from R. microplus to determine the effect cytb5 

on catalysis and the role it may have in pesticide metabolism and the development of 

resistance. As no biochemical characterization has been carried out on CYPs from this 

species, there is no research showing what effect cytb5 has and therefore this is an 

important aspect that requires future studies. 

By employing the techniques used here and amplifying additional tick CYP genes attempts 

can continue to increase our knowledge and understanding of the role of cytochrome P450 

genes in pesticide metabolism and ultimately the role they have in pesticide resistance. 

Identifying those CYPs involved provides the potential to investigate novel compounds (or 

even synergists) either natural such as plant derived products or synthetic that can be used 

to control tick populations in this case R. microplus. 

Conclusions 

Ultimately, this paper highlights the lack of research currently being undertaken in 

identifying cytochrome P450s in acari. This is despite the huge problem of pesticide 

resistance and the transmission of diseases to both humans and wildlife via ticks and mites 

acting as vectors. However using what data is available, we have been able to start 

identifying, isolating and characterising novel pesticide metabolizing CYPs and use the 

isolated monoxygenase components as an important tool in this area of research. 
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Characterising arthropod CYPs is an important process as it allows a greater understanding 

as to which pesticides may still have an effect due to susceptibility and which are unlikely to 

have any substantial effect due to the establishment of resistance in the field and 

additionally facilitates a more targeted based approach to the development of new 

pesticides.  
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Table 1: The 11 strains of R. microplus along with the resistance profile of each strain used 

during expression analysis. 

R. microplus Strain Pesticide resistance or susceptibility 

Gonzalez (Gz) Susceptible to all, very low level of metabolic resistance 

Coatzoacoalcos (Cz) Metabolic resistance to pyrethroids, target site pyrethroid 

resistance is absent, susceptible to other classes through low level 

of metabolic resistance to Organophosphates (OPs). 

San Roman (SR) Target site and metabolic resistance to OPs, susceptible to other 

classes. 

Caporal (Ca) Target site and metabolic resistance to OPs, susceptible to other 

classes. 

San Alphonso 

(San Alfonso) (SA) 

Metabolic resistance to amitraz probably. Target site resistance to 

pyrethroids. 

Santa Luiza (SL) Amitraz and pyrethroid resistance though mechanism unknown. 

Expect metabolic resistance is important 

Corrales (Co) Target site resistance to pyrethroids, some metabolic resistance to 

both pyrethroids and OPs also present. 

Pesqueria (Pq) Target site resistant to pyrethroids, probably some metabolic 

resistance to pyrethroids also present. 

Deutsch (De) Susceptible to OPs and pyrethroids. 

San Felipe (SF) Target site and metabolic resistance to pyrethroids. Probably low 

level of metabolic resistance to OPs. 

Tuxpan (Tx) Target site and metabolic resistance to OPs 
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Table 2: Pairwise analysis results. Results of pairwise analysis following alignment of CYP3006G8 with other arthropod CYPs 

shown in Figure 2     

 Rm_CYP3006G8 M.occidentalis_CYP6l1 An.gambiae_CYP6P3 Ae.aegypti_CYP9J2 

Rm_CYP3006G8 100.00 33.52 30.41 30.14 

M.occidentalis_CYP6l1 33.52 100.00 25.10 23.96 

An.gambiae_CYP6P3 30.41 25.10 100.00 31.09 

Ae.aegypti_CYP9J2 30.14 23.96 31.09 100.00 
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Table 3: Pairwise analysis results. Results of pairwise analysis following alignment of R. 

microplus CPR with other CPR sequences 

 H.sapiens R.microplus Ae.aegypti D.melanogaster 

H.sapiens 100.00 56.95 56.12 56.87 

R.microplus 56.95 100.00 58.01 60.00 

Ae.aegypti 56.12 58.01 100.00 78.85 

D.melanogaster 56.87 60.00 78.85 100.00 
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Table 4: Pairwise analysis results. Results of pairwise analysis following alignment of R. microplus cytochrome b5 with other 

cytochrome b5 sequences 

 H.sapiens R.microplus D.melanogaster An.gambiae Cu.quinquefasciatus 

H.sapiens 100.00 51.16 46.15 44.44 46.46 

R.microplus 51.16 100.00 50.00 48.82 53.12 

D.melanogaster 46.15 50.00 100.00 60.94 67.44 

An.gambiae 44.44 48.82 60.94 100.00 85.94 

Cu.quinquefasciatus 46.46 53.12 67.44 85.94 100.00 
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Figure 1: Full Length sequence of CYP3006G8. Nucleotide and translated peptide 

sequence of the full length CYP3006G8 with the start and stop codons in bold/ underlined 

and characteristic heme binding domain (FxxGxxxCxG) bold/shaded. Membrane binding 

domain dashed underline. 

Figure 2: Amino acid alignment of CYP3006G8 with other arthropod CYPs. 

CYP3006G8 aligned using Clustal omega with CYP6l1, CYP6P3 and CYP9J2 returned as 

top hits following Blastp searches. Heme-binding domain highlighted grey, ExxR motif 

boxed with solid line and PERF motif boxed with dashed line. 

Figure 3: CYP3006G8 mRNA expression level as fold change compared to Gonzales. 

Fold change data transformed (Log10). Strains Cz (P = 0.0046), Co (P = 0.0046), and Pq (P 

= 0.0056) showed highly significant difference (**) and strains Tx (P = 0.0027) and Ca (P = 

0.016) showed significant difference (*). Strains labelled as shown in Tables 1. 

Figure 4: Nucleotide and translated peptide sequence of R. microplus Cytochrome 

P450 Oxidoreductase. Data obtained following successful PCR amplification of CPR and 

subsequent sequencing. Start and stop codons in bold and underlined. 

Figure 5: Protein alignment of R. microplus CPR with key regions highlighted. 

Alignment showing high degree of homology of CPR between different species. Membrane 

binding region dashed underlined. Key co-factor-binding regions are highlighted, FMN 

domains shaded grey, FAD domains boxed with a dashed line and NADP(H) domains 

boxed with a solid line. 

Figure 6: Nucleotide and translated protein sequence of R. microplus cytochrome b5. 

Data obtained following successful PCR amplification. Start and stop codons are in bold 

and underlined.  
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Figure 7: Peptide sequence alignment of R. microplus cytochrome b5 and other 

arthropod and mammalian Cytb5 sequences. An alignment showing the high degree of 

homology between species for the protein, cytochrome b5. Conserved heme-coordinating 

histidine residues in the heme binding domain boxed. Residues highlighted grey indicates 

amino acids in the “b5 fold”. Membrane-binding domain dashed underlined. 
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Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

atgctcgaagtgtttctcttgagcttgatcgtcgtcttcgcaacatggttcttcatacaacgaaggagg 

 M  L  E  V  F  L  L  S  L  I  V  V  F  A  T  W  F  F  I  Q  R  R  R    

cggttttccttctttaaagacctcggaattccaggtcccccaccaagttttctttccggaaacttgtcc 

 R  F  S  F  F  K  D  L  G  I  P  G  P  P  P  S  F  L  S  G  N  L  S    

gaacttatacaaaagggaacactggagaaatacaaggaatggctggacaaatatggtgacattgttggt 

 E  L  I  Q  K  G  T  L  E  K  Y  K  E  W  L  D  K  Y  G  D  I  V  G   

ttttacaacggcgctcacccatttcttatcgttaaagacccggagctaatcaagaagatccaaataaag 

 F  Y  N  G  A  H  P  F  L  I  V  K  D  P  E  L  I  K  K  I  Q  I  K       

gatttccacaattttcatggccgaggggtgtcatctggcttcgcgagaactcatccgatcaacaaagaa 

 D  F  H  N  F  H  G  R  G  V  S  S  G  F  A  R  T  H  P  I  N  K  E    

agtatgataaacgctcaaggagagcgctggaagaagatgcgcagtcttctgacgcccgctttcacgacg 

 S  M  I  N  A  Q  G  E  R  W  K  K  M  R  S  L  L  T  P  A  F  T  T    

agcaacatgaagaagatggcaagcctaagcctaatggacgacagctccaacgagtttcttcaagtcatc 

 S  N  M  K  K  M  A  S  L  S  L  M  D  D  S  S  N  E  F  L  Q  V  I      

gaatccctgaggaagaaggacgaagctctcgagttccgcgatcttttccagagactcaccgcagacgtc 

 E  S  L  R  K  K  D  E  A  L  E  F  R  D  L  F  Q  R  L  T  A  D  V      

atcattcgatcggcgtttgcgtttggtctcaaatccgacctgcagcaaaaggaccgattgaagagcaca 

 I  I  R  S  A  F  A  F  G  L  K  S  D  L  Q  Q  K  D  R  L  K  S  T    

acagagtcgctgtttcgggagacgttggatagcttgcaacaatttcgccgggcgtggataaatttcctt 

 T  E  S  L  F  R  E  T  L  D  S  L  Q  Q  F  R  R  A  W  I  N  F  L 

actgcttgctttccggagtttaatcctttgtggaggctgatcatatcattcggttcacgacataacaag 

 T  A  C  F  P  E  F  N  P  L  W  R  L  I  I  S  F  G  S  R  H  N  K      

acggcggcagacaagtgttttgacgagatcacttccatcatacagtttcgtcgtgaaaaccgtgagaga 

 T  A  A  D  K  C  F  D  E  I  T  S  I  I  Q  F  R  R  E  N  R  E  R         

gataggtgcgatcttctgcagctgatgctcaatgctgaagtggaggacgccacccttgtgaacgtgcac 

 D  R  C  D  L  L  Q  L  M  L  N  A  E  V  E  D  A  T  L  V  N  V  H      

tcgctcacggcatccggggatgctgacagcgcatctgaagggaaccagcctgaaaaggtaaaagcaggc 

 S  L  T  A  S  G  D  A  D  S  A  S  E  G  N  Q  P  E  K  V  K  A  G    

ggagcaggcggaaaaacgtgtgttctcacgaatacagaaatcttggccaatggcttcagtttcttcgtt  

 G  A  G  G  K  T  C  V  L  T  N  T  E  I  L  A  N  G  F  S  F  F  V    

gcagggttcgagacgacaggctcatcgatggcatttctgtcatatctcctcgcgaaacaccaggacatt 

 A  G  F  E  T  T  G  S  S  M  A  F  L  S  Y  L  L  A  K  H  Q  D  I    

caggaccgactcagagaagacgtccttgccgtcctcaatagagacggtgccttcacgtacgacaacgtc 

 Q  D  R  L  R  E  D  V  L  A  V  L  N  R  D  G  A  F  T  Y  D  N  V    

tttggcataaaatacctggaccaggctatatcagaatctctgcgcttttattcgccagtcgtagggttc 

 F  G  I  K  Y  L  D  Q  A  I  S  E  S  L  R  F  Y  S  P  V  V  G  F   

actacaagaagatgcgctcgtgaatacgtgcacaagggtatgaaaatacccgctggaaccagcatcgtc 

 T  T  R  R  C  A  R  E  Y  V  H  K  G  M  K  I  P  A  G  T  S  I  V     

gtcatccccaaccaccacctgagtcatgacccgaatttctgggagcaacccgaagtcttcgatccagaa 

 V  I  P  N  H  H  L  S  H  D  P  N  F  W  E  Q  P  E  V  F  D  P  E       

agattcagcccacaaaataaaggccttgttgatcccgtggtgtaccagcctttcggtcagggcccccgc 

 R  F  S  P  Q  N  K  G  L  V  D  P  V  V  Y  Q  P  F  G  Q  G  P  R       

aattgcgtcggcatgagattcgcccagctggagatgaaactaaccatggcgaaattattggcaaaatac 

 N  C  V  G  M  R  F  A  Q  L  E  M  K  L  T  M  A  K  L  L  A  K  Y         

aagctttttctggatgaacgtcatattaaggagaaaaacttggagctggaatccactttcatattcgcg 

 K  L  F  L  D  E  R  H  I  K  E  K  N  L  E  L  E  S  T  F  I  F  A    

atgcctaaggatggcatctggctcaagatcgaaaaagttatctaa 

 M  P  K  D  G  I  W  L  K  I  E  K  V  I STOP   

 

 

Figure 1
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Rm_CYP3006G8           MLEVFLLSLIVV----FATWFFIQRRRRFSFFKDLGIPGP-PPSFLSGNLSELIQKGTLE 

M.occidentalis_CYP6l1  MLFAVLSTLLVA----YFVYCLRWRLKVLSIFRRLNIPGP-SPRFLWGNMYEIYKHGHLV 

An.gambiae_CYP6P3      ---MELINAVLAAFIFAVSIVYLFIRNKHNYWKDNGFPYAPNPHFLFGHAKGQAQTRHGA 

Ae.aegypti_CYP9J2      MVEVNLFSALAV--GAVILLLYHYIAKKYHYFLTKPIPCI-KPTFLLGIFDMVVLKRVEL 

                            * . : .              .    :    :*    * ** *             

 

Rm_CYP3006G8           K-----YKEWLDKYGDIVGFYNGAHPFLIVKDPELIKKIQIKDFHNFHGRGVSSGFA-RT 

M.occidentalis_CYP6l1  M-----QKKWHEQYGPVVGFYFGLFPCLLVSDTELLKRILLKDFHNFADRSHIISG--EN 

An.gambiae_CYP6P3      DIHQELYRYFKQRGERYGGISQFIVPSVLVIDPELAKTILVKDFNVFHDHGVFTN---AK 

Ae.aegypti_CYP9J2      VFGS-KLLYNSYPDAKIIGYYELTKPTYMVRDPEMIKKIAIKDFDSFTDRTPVFGDAVPA 

                                         *      *  :* * *: * * :***. *  :           

 

Rm_CYP3006G8           HPINKESMINAQGERWKKMRSLLTPAFTTSNMKKMASLSLMDDSSNEFLQVI--ESLRKK 

M.occidentalis_CYP6l1  GSIIDDSLLTLKGQRWKEVRSTLTPSFTSKKLKKVTPE--VSSAADEFMKNV--DRHFAE 

An.gambiae_CYP6P3      DDPLTGHLFALEGQPWRLMRQKLTPTFTSGRMKQMFGTI--RDVGLELEKCM---EQSYN 

Ae.aegypti_CYP9J2      DSLFFNSLFSLRGQKWRDMRSTLSPAFTGSRMRYMAELV--VKCATSMTDFIHSEAKAGR 

                              ::  .*: *: :*. *:*:**  .:: :       . . .: . :       . 

 

Rm_CYP3006G8           DEALEFRDLFQRLTADVIIRSAFAFGLK--SDLQQKDRLKSTTESLFRETLDSLQQFRRA 

M.occidentalis_CYP6l1  DAECDFYELFQALTLDTICKTGMGVDFEIQSNIDNSAILR---------QVKMMLAYQID 

An.gambiae_CYP6P3      QPEVEMKDILGRFTTDVIGTCAFGIECNTLKTTDSEFRKYG-NKAFELNTMIM------- 

Ae.aegypti_CYP9J2      RLEFNMKDTFSRFVCDAIASVAFGIEVDSFRDPENEFYKKG-NETQKIHTFKS------- 

                           :: : :  :. *.*   .:..  .     :..              .          

 

Rm_CYP3006G8           WINFLTACFPEFNPLWRLI-ISFGSRHNKTAAD---KCFDEITSIIQFRR-ENRERDRCD 

M.occidentalis_CYP6l1  LILLIIVSFPSLLQLAGKLLTALAQRAKNSGRDPIVKLKQQCGDVVKLRRSDTEKSERSD 

An.gambiae_CYP6P3      MKTFLASSYPTL-VRNLHMKIT--------YNDVERFFLDIVKETVDYRE--ANNVKRND 

Ae.aegypti_CYP9J2      LATFVTLRFVPFLQKVFNFDFV--------DANVAGYFKKLISDNMDQRK--KQGIVRND 

                          ::   :  :      :             :      .   . :. *.   .   * * 

 

Rm_CYP3006G8           LLQLMLNAEVEDATLVNVHSLTASGDADSASEGNQPEKV-------KAGGAGGKTCVLTN 

M.occidentalis_CYP6l1  LLQLMMDAQNTVAHATDLKSMIAGDDAEAVEA-EASLKIAKKQSIPSECPFAGKPKGLTD 

An.gambiae_CYP6P3      FMNLMLQIKNKGKLDD--------SDD-------------------GSLGKG--EVGMTQ 

Ae.aegypti_CYP9J2      LVNMLMETKKGALKYE--------EPDLQVSEGYATVE-------ESHVGKSTHSRIWTD 

                       ::::::: :                                          .      *: 

 

Rm_CYP3006G8           TEILANGFSFFVAGFETTGSSMAFLSYLLAKHQDIQDRLREDVLAVL--NRDGAFTYDNV 

M.occidentalis_CYP6l1  SEVIDNALLLLLAGYETTSSSMAFMTKLLVRFPEVQERMREELLDAT--GGGKVFDFERL 

An.gambiae_CYP6P3      NELAAQAFVFFLAGFETSSTTQSFCLYELAKNPDIQERLREEINRAI-AENGGEVTYDVV 

Ae.aegypti_CYP9J2      NELISQCFFFFFAAFDNVSSILAFLSYELTVNQDIQRRLYEEIAATESTLNGQPITYEAL 

                       .*:  : : ::.*.::. .:  :*    *.   ::* *: *::  .        . :: : 

 

Rm_CYP3006G8           FGIKYLDQAISESLRFYSPVVGFTTRRCAREYVHK-----GMKIPAGTSIVVIPNHHLSH 

M.occidentalis_CYP6l1  QRCQYTEAVLQESLRMYPPIYFLTARVAAEEIKYG-----SLTIPRGMNIFSSV-NQLHY 

An.gambiae_CYP6P3      MNIKYLDNVIDETLRKYPPVES-LTRVPSVDYLIP---GTKHVIPKRTLVQI-PAYAIQR 

Ae.aegypti_CYP9J2      QKMAYLDMVVSEALRKYPTATL-TDRYANKDYVFDDEEGLRFVIEKGKTIWI-SMLALHH 

                           * : .:.*:** *        *    :            *     :       :   

 

Rm_CYP3006G8           DPNFWEQPEVFDPERFSPQNKGLVDPVVYQPFGQGPRNCVGMRFAQLEMKLTMAKLLAKY 

M.occidentalis_CYP6l1  DEDVFPLPYEFQPERFLPENKTPAMAWYWQPFGIGPRNCIGMRFAQMEIKLTMAKLLTKY 

An.gambiae_CYP6P3      DPDHYPDPERFNPDRFLPEEVKKRHPFTFIPFGEGPRICIGLRFGLMQTKVGLITLLRKF 

Ae.aegypti_CYP9J2      DPKYFPEPERFDPERFSEDNRSKIVPGTYLPFGAGPRSCIGPRLALLEVKMALYHLVKDF 

                       * . :  *  *:*:**  ::        : *** *** *:* *:. :: *: :  *: .: 

 

Rm_CYP3006G8           KLFLDERHIKEKNLELESTFIFAMPKDGIWLKIEKVI-- 

M.occidentalis_CYP6l1  RMTSESEPEHEAYIETLVMPVLQQIKDPVKCKLHLL--- 

An.gambiae_CYP6P3      RFSPSARTPE--RVEYDPKMITIAPKAGNYLKVEKL--- 

Ae.aegypti_CYP9J2      NLQPSEKTQI--PLRLSKSAFTMQAENGVWLELKARPKA 

                       .:  . .      :.     .    :     ::.      

Figure 2
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atggaagggacgagccaagatgttccgctgagtgtcgacagcagcccgctgggaagtcagaatgaggaggccccc 

 M  E  G  T  S  Q  D  V  P  L  S  V  D  S  S  P  L  G  S  Q  N  E  E  A  P 

ctgtttggcgtgttggacgtgctcatccttctggcattgctgggctttgccttctactggctcttcctgaggcgc 

 L  F  G  V  L  D  V  L  I  L  L  A  L  L  G  F  A  F  Y  W  L  F  L  R  R   

aagaaggcccccaccttcgatccggccgccatcaaaacgttttccattgaaacaagtatacagaaggctgacaac 

 K  K  A  P  T  F  D  P  A  A  I  K  T  F  S  I  E  T  S  I  Q  K  A  D  N   

accagctttattggaaagatgaaatcaacgggtaggaatattgtcatattctatggatcacagacgggcacagcg 

 T  S  F  I  G  K  M  K  S  T  G  R  N  I  V  I  F  Y  G  S  Q  T  G  T  A   

gaagagtttcctgctcgtcttgcaaaagaagccaacagatttggtctaaaagcaatggttgctgaccccgaggag 

 E  E  F  P  A  R  L  A  K  E  A  N  R  F  G  L  K  A  M  V  A  D  P  E  E    

tgtgaaatggaggacctgaccaagctgccagagatcagcaattcgatggccatcttttgtatggcaacgtacggt 

 C  E  M  E  D  L  T  K  L  P  E  I  S  N  S  M  A  I  F  C  M  A  T  Y  G  

gaaggtgaccccacagacaatgcgcaagacttttaccagtggcttcaggatggcagcgttgacctgcctggagtc 

 E  G  D  P  T  D  N  A  Q  D  F  Y  Q  W  L  Q  D  G  S  V  D  L  P  G  V 

aattatgcagtgtttgcattgggaaacaagacgtacgagcacttcaatgcgatgggcaagtacgtcgacaagcgc 

 N  Y  A  V  F  A  L  G  N  K  T  Y  E  H  F  N  A  M  G  K  Y  V  D  K  R   

atggaggaactgggagccacccgtgtctttgaactgggcctcggagatgatgatgctaacattgaggaagacttc 

 M  E  E  L  G  A  T  R  V  F  E  L  G  L  G  D  D  D  A  N  I  E  E  D  F  

gtgacctggaaggagcgcttctggaatgccgtttgtgaaaacttcgaaaaggtcttccacggagagatctcgcgc 

 V  T  W  K  E  R  F  W  N  A  V  C  E  N  F  H  L  E  I  S  G  E  D  I  N   

ctccacctggagatctctggcgaggatatcaacctccgccagtaccagctcattgtgcacactgatcttccatct 

 L  R  Q  Y  Q  L  I  V  H  T  D  L  P  S  E  K  V  F  H  G  E  I  S  R  L 

aactcatacaccacccagaaaatgccctttgatgcaaagaatccattcctggctcctgttcgagtgcacaaggaa 

 N  S  Y  T  T  Q  K  M  P  F  D  A  K  N  P  F  L  A  P  V  R  V  H  K  E  

ttatacaaaggctctcgctcatgcatgcacattgagattagcattgccggctccaaaatgaggtatgatgctggt 

 L  Y  K  G  S  R  S  C  M  H  I  E  I  S  I  A  G  S  K  M  R  Y  D  A  G   

gaccacgtggccgtctatccgatgaatgacgtcgccatagtggagaacctaggacaaatgctcaaggtggacttg 

 D  H  V  A  V  Y  P  M  N  D  V  A  I  V  E  N  L  G  Q  M  L  K  V  D  L 

gacacagtcatcacactgaaaaatcttgatgaggacagctccaagaagcatccatttccctgcccatgtagttat 

 D  T  V  I  T  L  K  N  L  D  E  D  S  S  K  K  H  P  F  P  C  P  C  S  Y   

agaaccgcactgctgtactacgtcgacatcaccactccccctaggacacacgtcttgaaggaaatttccgagtat 

 R  T  A  L  L  Y  Y  V  D  I  T  T  P  P  R  T  H  V  L  K  E  I  S  E  Y  

gccaccaacgaggaggagaaaaaaatgctgaagttgatgagctcttcttcagatgaaggaaagagcctgtacaag 

 A  T  N  E  E  E  K  K  M  L  K  L  M  S  S  S  S  D  E  G  K  S  L  Y  K   

cagtgggtactgaatgactgccgcagtgtcgtgcacattctggaggacctgccatcggcacgtcctcctttggac 

 Q  W  V  L  N  D  C  R  S  V  V  H  I  L  E  D  L  P  S  A  R  P  P  L  D   

catttgctggagcttatgcccaggctgcaggctcgatactactctatatcatcgtcgccaaaggtgcatccagac 

 H  L  L  E  L  M  P  R  L  Q  A  R  Y  Y  S  I  S  S  S  P  K  V  H  P  D   

agcatccacatgacggctgtaaaagtggagtacgagactccaaccaagcgcataaaccacggtgtggccacaggc 

S  I  H  M  T  A  V  K  V  E  Y  E  T  P  T  K  R  I  N  H  G  V  A  T  G 

tggcttgcactcaagcgacccgacaacggcactcagcctacgctgcctgtgtatgtgcggcggtcgcagttcaag 

 W  L  A  L  K  R  P  D  N  G  T  Q  P  T  L  P  V  Y  V  R  R  S  Q  F  K   

ctgccctcacggccgcagattcccatcgtgatggtggggccgggcacgggcttggcgccattccgcggcttcatc 

 L  P  S  R  P  Q  I  P  I  V  M  V  G  P  G  T  G  L  A  P  F  R  G  F  I   

caagaaagggatttccttcgcaaagaaagcaagcccgtgggtgaagctgtactctactttggctgccgcaagaag 

 Q  E  R  D  F  L  R  K  E  S  K  P  V  G  E  A  V  L  Y  F  G  C  R  K  K    

gctgaagactacctgtaccaggaggagctggaggagtacctggcaaatggtacactgaccaagttgtacctcgcc 

 A  E  D  Y  L  Y  Q  E  E  L  E  E  Y  L  A  N  G  T  L  T  K  L  Y  L  A  

ttctcgcgagaccagccacacaaagtgtatgtgacacatctcctgcgccagaacaaggatgaggtctgggacctc 

 F  S  R  D  Q  P  H  K  V  Y  V  T  H  L  L  R  Q  N  K  D  E  V  W  D  L    

attggcaagaagaatggccacttctacatttgtggtgatgcacgtaacatggcaagagacgtgcatgagatccta 

 I  G  K  K  N  G  H  F  Y  I  C  G  D  A  R  N  M  A  R  D  V  H  E  I  L   

ctagagatcttccgcgagaatggcaacatgtctgaagacgaggcagtgtcctacctcaagcgcatggagtcgcag 

 L  E  I  F  R  E  N  G  N  M  S  E  D  E  A  V  S  Y  L  K  R  M  E  S  Q   

cggcgctactcggctgacgtctggagttga 

 R  R  Y  S  A  D  V  W  S STOP   

 

 

 

Figure 4 
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H.sapiens           MINMG-DSHVDTSSTVSEAVAEEVSLFSMTDMILFSLIVGLLTYWFLFRKKKEEVPEFTK 

R.microplus         MEGTSQDVPLSVDSSPLGSQNEEAPLFGVLDVLILLALLGFAFYWLFLRRKKAPTFDPAA 

Ae.aegypti          ---M--D--AQTEPEVPPAPISDEPFLGPLDIILLAVLIGGAAWYFLKSKKKDTQT--SQ 

D.melanogaster      MASE--Q--TIDGAAAIPSGGGDEPFLGLLDVALLAVLIGGAAFYFLRSRKKEEE----P 

 

H.sapiens           IQ--------TLTSSVRESSFVEKMKKTGRNIIVFYGSQTGTAEEFANRLSKDAHRYGMR 

R.microplus         IKTFSIET---SIQKADNTSFIGKMKSTGRNIVIFYGSQTGTAEEFPARLAKEANRFGLK 

Ae.aegypti          FKSYSIQPTTVNTMTMAENSFIKKLKSSGRRLVVFYGSQTGTAEEFAGRLAKEGLRYQMK 

D.melanogaster      TRSYSIQPTTVCTTSASDNSFIKKLKASGRSLVVFYGSQTGTGEEFAGRLAKEGIRYRLK 

 

H.sapiens           GMSADPEEYDLADLSSLPEIDNALVVFCMATYGEGDPTDNAQDFYDWLQETDVDLSGVKF 

R.microplus         AMVADPEECEMEDLTKLPEISNSMAIFCMATYGEGDPTDNAQDFYQWLQDGSVDLPGVNY 

Ae.aegypti          GMVADPEECDMEELLSLKDIDKSLAVFCLATYGEGDPTDNCMEFYDWIQNNDVDFSGLNY 

D.melanogaster      GMVADPEECDMEELLQLKDIDNSLAVFCLATYGEGDPTDNAMEFYEWITSGDVDLSGLNY 

 

H.sapiens           AVFGLGNKTYEHFNAMGKYVDKRLEQLGAQRIFELGLGDDDGNLEEDFITWREQFWPAVC 

R.microplus         AVFALGNKTYEHFNAMGKYVDKRMEELGATRVFELGLGDDDANIEEDFVTWKERFWNAVC 

Ae.aegypti          AVFGLGNKTYEHYNKVGIYVDKRLEELGANRVFELGLGDDDANIEDDFITWKDKFWPAVC 

D.melanogaster      AVFGLGNKTYEHYNKVAIYVDKRLEELGANRVFELGLGDDDANIEDDFITWKDRFWPAVC 

 

H.sapiens           EHFGVEATGEESSIRQYELVVHTDIDAAKVYMGEMGRLKSYENQKPPFDAKNPFLAAVTT 

R.microplus         ENFHLEISGEDINLRQYQLIVHTDLPSEKVFHGEISRLNSYTTQKMPFDAKNPFLAPVRV 

Ae.aegypti          DHFGIESSGEEVLMRQYRLLEQPETPTERLYTGEVARLHSLQTQRPPFDAKNPFLAPIKV 

D.melanogaster      DHFGIEGGGEEVLIRQYRLLEQPDVQPDRIYTGEIARLHSIQNQRPPFDAKNPFLAPIKV 

 

H.sapiens           NRKLNQGTERHLMHLELDISDSKIRYESGDHVAVYPANDSALVNQLGKILGADLDVVMSL 

R.microplus         HKELYK-GSRSCMHIEISIAGSKMRYDAGDHVAVYPMNDVAIVENLGQMLKVDLDTVITL 

Ae.aegypti          NRELHKAGGRSCMHIEFDIEGSKMRYEAGDHLAMYPVNDQDLVLRLGKLCNADLDTIFSL 

D.melanogaster      NRELHKGGGRSCMHIELSIEGSKMRYDAGDHVAMFPVNDKSLVEKLGQLCNADLDTVFSL 

 

H.sapiens           NNLDEESNKKHPFPCPTSYRTALTYYLDITNPPRTNVLYELAQYASEPSEQELLRKMASS 

R.microplus         KNLDEDSSKKHPFPCPCSYRTALLYYVDITTPPRTHVLKEISEYATNEEEKKMLKLMSSS 

Ae.aegypti          INTDTDSSKKHPFPCPTTYRTALTHYLEITALPRTHILKELAEYCSEEKDKEFLRFMCST 

D.melanogaster      INTDTDSSKKHPFPCPTTYRTALTHYLEITAIPRTHILKELAEYCTDEKEKELLRSMASI 

 

H.sapiens           SGEGKELYLSWVVEARRHILAILQDCPSLRPPIDHLCELLPRLQARYYSIASSSKVHPNS 

R.microplus         SDEGKSLYKQWVLNDCRSVVHILEDLPSARPPLDHLLELMPRLQARYYSISSSPKVHPDS 

Ae.aegypti          NPEGKAKYQEWVQDSCRNIVHVLEDLPSCRPPIDHICELLPRLQPRYYSISSSSKLYPTT 

D.melanogaster      SPEGKEKYQSWIQDACRNIVHILEDIKSCRPPIDHVCELLPRLQPRYYSISSSAKLHPTD 

 

H.sapiens           VHICAVVVEYETKAGRINKGVATNWLRAKEPAGENGGRALVPMFVRKSQFRLPFKATTPV 

R.microplus         IHMTAVKVEYETPTKRINHGVATGWLALKRPDNGT--QPTLPVYVRRSQFKLPSRPQIPI 

Ae.aegypti          VHVTAVLVKYETKTGRVNHGVATTFLSQKHPLDGE-PLPRVPIFIRKSQFRLPAKTETPV 

D.melanogaster      VHVTAVLVEYKTPTGRINKGVATTYLKNKQPQGSE--EVKVPVFIRKSQFRLPTKPETPI 

 

H.sapiens           IMVGPGTGVAPFIGFIQERAWLRQQGKEVGETLLYYGCRRSDEDYLYREELAQFHRDGAL 

R.microplus         VMVGPGTGLAPFRGFIQERDFLRKESKPVGEAVLYFGCRKKAEDYLYQEELEEYLANGTL 

Ae.aegypti          IMVGPGTGLAPFRGFIQERDFNKKDGKEVGQTILYFGCRKRSEDYIYEEELEDYVQRGIM 

D.melanogaster      IMVGPGTGLAPFRGFIQERQFLRDEGKTVGESILYFGCRKRSEDYIYESELEEWVKKGTL 

 

H.sapiens           TQLNVAFSREQSHKVYVQHLLKQDREHLWKLIE-GGAHIYVCGDARNMARDVQNTFYDIV 

R.microplus         TKLYLAFSRDQPHKVYVTHLLRQNKDEVWDLIGKKNGHFYICGDARNMARDVHEILLEIF 

Ae.aegypti          -KLRTAFSRDQAHKVYVTHLLEEDMDLLWNVIGENKGHFYICGDAKNMATDVRNILLKVL 

D.melanogaster      -NLKAAFSRDQGKKVYVQHLLEQDADLIWNVIGENKGHFYICGDAKNMAVDVRNILVKIL 

 

H.sapiens           AELGAMEHAQAVDYIKKLMTKGRYSLDVWS 

R.microplus         RENGNMSEDEAVSYLKRMESQRRYSADVWS 

Ae.aegypti          QTKGSMSESEAIQYIKKMEAQKRYSADVWS 

D.melanogaster      STKGNMSEADAVQYIKKMEAQKRYSADVWS 

 

Figure 5
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atggccacgccgacgaaaacctacacgctagacgaaatcgagaagcacaacgaaaagtattctgcatgg  

 M  A  T  P  T  K  T  Y  T  L  D  E  I  E  K  H  N  E  K  Y  S  A  W   

ttactaatccacaacgcagtgtacgacgtgacgaaatttatggaagagcacccaggcggtgaagaagtt 

 L  L  I  H  N  A  V  Y  D  V  T  K  F  M  E  E  H  P  G  G  E  E  V 

cttttggagcaggctggaaagcatgcaactgaagcatttgaagatgttggacattccacagatgccaga 

 L  L  E  Q  A  G  K  H  A  T  E  A  F  E  D  V  G  H  S  T  D  A  R 

gagttgatgaaacagtacaagattggtgatctttgtgaggaggaccagaagaaaatcggtcaggttgct 

 E  L  M  K  Q  Y  K  I  G  D  L  C  E  E  D  Q  K  K  I  G  Q  V  A   

aagaaaactcagtgggcagctaccacctccaacgaaagctcctggatgagctggctgattcctgttgga 

 K  K  T  Q  W  A  A  T  T  S  N  E  S  S  W  M  S  W  L  I  P  V  G   

gtggcagctgctgcctccattttgtaccgactcttcctgtcctatggcgctcatcagtga 

 V  A  A  A  A  S  I  L  Y  R  L  F  L  S  Y  G  A  H  Q  -    
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H.sapiens              MAEQSDEAVKYYTLEEIQKHNHSKSTWLILHHKVYDLTKFLEEHPGGEEVLREQAGGDAT 

R.microplus            ----MATPTKTYTLDEIEKHNEKYSAWLLIHNAVYDVTKFMEEHPGGEEVLLEQAGKHAT 

D.melanogaster         ---MSSEETKTFTRAEVAKHNTNKDTWLLIHNNIYDVTAFLNEHPGGEEVLIEQAGKDAT 

An.gambiae             -----MSEVKTYSLADVKSHNTNKSTWIVIHNDIYDVTEFLNEHPGGEEVLLEQAGREAT 

Cu.quinquefasciatus    ----MSSEVKTYSLAEIKAHNTNKSSWIVIHNNIYDVTEFLNEHPGGEEVLLEQAGKEAT 

                                * ::  ::  ** . .:*:::*. :**:* *::********* **** .** 

 

H.sapiens              ENFEDVGHSTDAREMSKTFIIGELHPDDRPKLNKPPE--TLITTIDSSSSWWTNWVIPAI 

R.microplus            EAFEDVGHSTDARELMKQYKIGDLCEEDQKKIGQVAKKTQWAATTS-NESSWMSWLIPVG 

D.melanogaster         ENFEDVGHSNDARDMMKKYKIGELVESERTSVAQ-KSEPTWSTEQQTEESSVKSWLVPLV 

An.gambiae             EAFEDVGHSSDAREMMKKFKVGELIEAERKQIPV-KKEPDWKMDQQD-DNQLKQWIVPLI 

Cu.quinquefasciatus    EAFEDVGHSTDAREMMKKFKVGELIESERKQVPV-KKEPDWSTEQKD-ENSLKSWIVPLI 

                       * *******.***:: * : :*:*   :: .:    .        .  ..   .*::*   

 

H.sapiens              SAVAVALMYRLYMAED--- 

R.microplus            VAAAASILYRLFLSYGAHQ 

D.melanogaster         LCLVATLFYKFFFGGALQ- 

An.gambiae             LGLLATILYRFYFTQ---- 

Cu.quinquefasciatus    LGLLATIIYRFYFTQ---- 

                           .:::*::::       
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