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Abstract 

Rammed earth is attracting renewed interest throughout the world thanks to its "green" characteristics in the context of 

sustainable development. Several research studies have thus recently been carried out to investigate this material. Some 

of them attempted to simulate the rammed earth’s mechanical behavior by using analytical or numerical models. Most 

of these studies assumed that there was a perfect cohesion at the interface between earthen layers. This hypothesis 

proved to be acceptable for the case of vertical loading, but it could be questionable for horizontal loading. To address 

this problem, discrete element modeling seems to be relevant to simulate a rammed earth wall. To our knowledge, no 

research has been conducted thus far using discrete element modeling to study a rammed earth wall. This paper presents 

an assessment of the discrete element modeling’s robustness for rammed earth walls. Firstly, a brief description of the 

discrete element modeling is presented. Then, thirteen parameters that were necessary for discrete element modeling 

were identified. The relevance of the model and the material parameters were assessed by comparing them with 

experimental results from the literature. The results showed that, in the case of vertical loading, interfaces did not have 

an important effect. In the case of diagonal loading, model with interfaces produced better results. Interface’s 

characteristics can vary from 85% to 100% of the corresponding earthen layer’s characteristics.  

Keywords: rammed earth, discrete element method, interface characteristics 

1 Introduction 

Rammed earth (RE) materials are ideally composed of sandy-clayey gravels which are compacted inside a temporary 

formwork to manufacture walls. Clay acts as the binder between the grains and a mixture of silt, sand, and gravel up to 

a few centimeters in diameter. Material that has been prepared for optimum moisture content, i.e., to provide the highest 
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dry density for the energy used, is then compacted (Bui et al. 2009 [4]). The RE wall is composed of several layers of 

earth which are rammed manually or pneumatically in a timber or metal formwork. After compaction, the thickness of 

each layer is typically 8–10 cm. The procedure is repeated until completion of the wall. A detailed presentation of RE 

construction can be found in Walker et al. (2005) [31]. 

RE is now the focus of scientific research for two main reasons. Firstly, in the context of sustainable building, the 

interest in earth as a building material is largely derived from its low embodied energy, both for unstabilized (Morel et 

al. 2001 [23]) and stabilized RE (Reddy and Kumar 2010 [25]), and also because the material has a good natural 

moisture-buffering capacity for indoor environments (Allinson and Hall 2010 [1]). Secondly, the heritage of RE 

buildings in Europe and the world is still important (Fodde 2009 [17], Bui et al. 2009 [3]). Maintaining this heritage 

requires scientific knowledge to assess appropriate renovations. 

Several investigations have recently been conducted to study the mechanical characteristics of RE by using analytical 

methods ([4], [5], [6], [11], [12], [13], [21]) or by employing a numerical model ([9], [18]). These studies assumed that 

the cohesion at the interface between earthen layers was perfect. This hypothesis proved to be acceptable for the case of 

vertical loading [7], but it could be questionable for horizontal loading. To address this problem, discrete element 

modeling (DEM) seemed to be a relevant means of simulating a RE wall. To our knowledge, no study has used DEM to 

study RE walls. Therefore, this paper presents an assessment of the DEM’s robustness in the case of RE walls. Firstly, a 

brief description of the DEM is presented. Then, parameters necessary for the DEM are determined. The relevance of 

the model is assessed by comparing the findings with experimental results from the literature. The results showed that, 

in the case of vertical loading, interfaces did not have an important effect. In the case of diagonal loading, model with 

interfaces produced better results. Interface’s characteristics can vary from 85% to 100% of the corresponding earthen 

layer’s characteristics. Thus, in practice, model without interfaces can also be used, because results are sufficiently 

precise and can be calculated faster.   

2 Discrete element method 

An explicit DEM based on finite difference principles originated in the early 1970s as the result of landmark work on 

the progressive movements of rock masses as 2D rigid block assemblages (Cundall, 1971 [15], [16]). This technique 

was then extended to the modeling of masonry structures ([8], [10], [24]; [29]) and concrete structures [28]. To our 

knowledge, however, no research has thus far used DEM to study RE walls.  

The 3DEC (3-Dimensional Distinct Element Codes [19]) was used in this study. The RE wall was modeled as an 

assemblage of discrete blocks (earthen layers), and the interfaces between earthen layers were modeled by introducing 

an interface law. The behavior of these elements will be described in the following sections. 
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2.1 Constitutive behavior of earthen layers (blocks) 

Earthen layers were assumed to be homogeneous, isotropic and were modeled by blocks which were further divided 

into a finite number of internal elements for stress, strain, and displacement calculations. The failure envelope used in 

this study was the Mohr-Coulomb criterion with a tension cut-off. This model existed in the discrete element code; its 

relevance was checked in the case of masonry walls [20].  

 

 

Figure 1: Mohr-Coulomb failure criterion used (Itasca 2011 [19])  

The Mohr-Coulomb criterion is expressed in terms of the principal stresses σ1, σ2, and σ3, which constitute the three 

components of the generalized stress vector for this model (n = 3), whereby the three principal stresses are: σ1 ≤ σ2 ≤ σ3. 

Components of the corresponding generalized strain vector are the principal strains 1, 2, 3.
 
This criterion can be 

represented in the plane (σ1, σ3), as illustrated in Figure 1 (compressive stresses are negative). The failure envelope f(σ1, 

σ3) = 0 is defined from point A to B by the Mohr-Coulomb shear failure criterion f
s
 = 0 with f s=σ1 − σ3Nφ+2c√Nφ ; 

and from B to C by a tensile failure criterion of the form f
t
 = 0 with f

t
 = σ3 – σt ; where φ is the friction angle, c is the 

cohesion, σt is the tensile strength, and Nφ=
1+sinφ

1-sinφ
. 

Note that the tensile strength of the material cannot exceed the value of σ3 corresponding to the intersection point of the 

straight lines f
s
 = 0 and σ1 = σ3 in the (σ1, σ3) plane. This maximum value is given by σmax

t =
c

tanφ
. The potential function, 

g
s
, used to define shear plastic flow, corresponds to a non-associated law according to the equation g

s
 = σ1 − σ3Nψ, 

where ψ is the dilation angle and NΨ=
1+sinψ

1-sinψ
.  

If shear failure takes place, the stress point is placed on the curve f
s
 = 0 using a flow law which is derived by using the 

potential function g
s
. If tensile failure is declared, the new stress point is simply reset to conform to f

t
 = 0 (Figure 1); no 

flow rule is used in this case. 
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2.2 Constitutive behavior of interfaces 

The interfaces between earthen layers were modeled by an interface law between the blocks following the Mohr-

Coulomb interface model with a tension cut-off. This interface constitutive model considers both shear and tensile 

failure, and interface dilation is included. In the elastic range, the behavior is governed by normal and shear stiffness of 

the interface, n
k and

s
k : 
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where:   
n

 : normal loading; n
u : normal displacement 

   
s

 : shear stress; 
s

u :shear displacement. 

The maximum shear force allowed is given by:   tan.
(max)max n

c 
 

 (2)   

where c and φ are the interface cohesion and friction angle. After this peak, shear strength drops until a residual strength 

res (Figure 2a), with:    tan
(max)nres

  (3) 

 

Figure 2: Interface behavior: a) Mohr-Coulomb slip model; b) Bilinear dilatant model; c) Behavior under 

uniaxial loading. 

 

As indicated in Figure 2b, the interfaces begin to dilate when the interface fails in shear, at 
)( elass

u shear displacement. 

This displacement leads to a dilatation of:  

Δ𝑢𝑛,𝑑𝑖𝑙𝑎𝑡𝑎𝑡𝑖𝑜𝑛 = ∆𝑢𝑠𝑡𝑎𝑛𝜓      (4) 

where  is the dilatancy angle.  

The normal stress must be corrected to take the effect of dilatation into account: 

𝜎𝑛,𝑡𝑜𝑡𝑎𝑙 = 𝜎𝑛,𝑒𝑙𝑎𝑠𝑡𝑖𝑐 + 𝜎𝑛,𝑑𝑖𝑙𝑎𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑘𝑛. Δ𝑢𝑛 + 𝑘𝑛. Δ𝑢𝑛,𝑑𝑖𝑙𝑎𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑘𝑛. Δ𝑢𝑛 + 𝑘𝑛 . Δ𝑢𝑠𝑡𝑎𝑛𝜓     (5) 

When a dilatation is presented, the shear displacement is in the plastic phase (us >us(elas) , Figure 2a). The normal 

displacement is assumed linear until zdil  (Figure 2b). Dilatation increases if the shear displacement increment runs in 

the same direction as the total shear displacement and decreases if the shear increment runs in the opposite direction. 
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The extension occurs until the limiting shear displacement (zdil) is reached. The interface behavior under uniaxial loads 

is plotted in Figure 2c, where T is the interface tensile strength. Before the tensile failure (n < T),  an elastic behaviour 

is assumed.  

3 Identification of Mohr-Coulomb’s parameters used in the DEM  

Thirteen parameters need to be identified for the model: 

- For the earthen layer (7 parameters): density D, Young modulus Elayer, Poisson’s ratio , tensile strength ft,layer, 

cohesion clayer, friction angle layer, and dilatancy angle layer ;  

- For the interface (6 parameters): normal stiffness kn, tangent stiffness ks, tensile strength ft,interface, cohesion 

cinterface, friction angle interface, and dilatancy angle interface 

Among the aforementioned parameters, several characteristics of the earthen layer can be directly or indirectly found in 

the literature (density: Bui et al. 2009 [4]; Young’s modulus: Bui et al. [4], [7]; Poisson’s ratio: Bui et al. 2014 [7]; 

tensile strength and cohesion: Bui et al. 2014 [9]; friction angle: Cheah et al. 2012 [11], Bui et al. 2014 [9]; and 

dilatancy angle: Vermeer et al. 1984 [30]), which will be detailed in the next sections. However, parameters concerning 

the interface have not been reported previously. This study has identified these 13 parameters. The first step was to 

determine the interface’s elastic stiffness (normal stiffness and tangent stiffness) by using the results of in situ 

nondestructive measurements. The next step was to identify the other parameters using the results of laboratory 

destructive tests.    

3.1 Identification of the interface’s elastic stiffness  

First, during the manufacture processing, earth is at a “wet” state which corresponds to the optimum water content, so 

cohesion between the earthen layers is developed. Then, in normal conditions, RE wall principally works in 

compression due to its own weight and the vertical loads. These are the reasons why the theory of elasticity can be 

assumed for an interface element in the case of small loading (Lourenço et al., 2005 [20]). 

Theoretically, by applying a classical homogenization method (see Bui et al. 2009 [4] or Lourenço et al. 2005 [20]), the 

interface’s elastic stiffness could be determined from the Young modulus and shear modulus of the wall and the earthen 

layer (block): 

𝑘𝑛 =
𝐸𝑤 .  𝐸𝑙𝑎𝑦𝑒𝑟

(𝐸𝑙𝑎𝑦𝑒𝑟−𝐸𝑤) .  ℎ𝑙𝑎𝑦𝑒𝑟
    (6) 

 

𝑘𝑠 =
𝐺𝑤 .  𝐺𝑙𝑎𝑦𝑒𝑟

(𝐺𝑙𝑎𝑦𝑒𝑟−𝐺𝑤) .  ℎ𝑙𝑎𝑦𝑒𝑟
    (7) 
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where  Ew , Gw are the Young and shear modulus of RE wall 

Elayer , Glayer are the Young and shear modulus of an earthen layer (block), and 

hlayer is the thickness of an earthen layer 

Following the theory of elasticity (Lourenço et al. 2005 [20]): G = E / [2(1+)]    (8) 

Therefore:  kn=2(1+)ks   (9) 

The Young and shear modulus of a RE wall can be determined experimentally (e.g., see Bui et al. [4], [7], Silva et al. 

[26]). However, determining the characteristics of an earthen layer is a very delicate operation because it is difficult to 

manufacture and test a sample which represents only an earthen layer of RE. Bui et al. (2009) discussed this in their 

study [4]. 

For this reason, another method was used to determine the interface’s stiffness. In fact, normal and tangent stiffness of 

interfaces represent elastic characteristics so that they can be identified in an elastic domain. Therefore, the results from 

in-situ non-destructive tests can be used to identify these parameters. Wall no. 1 in Bui et al. (2009) [4] was chosen to 

be modeled, which was a RE wall 2.3 m in height built on a concrete base of 0.3 m (Figure 3). 

In that study, accelerometers were placed on the top and at the base of the wall, which made it possible to measure both 

the accelerations in two horizontal axes and the torsional movement of the wall. After data processing based on the 

theory of structural dynamics, the wall’s natural frequencies were identified. From these natural frequencies, the wall’s 

Young modulus could be determined following the relationship (Clough and Penzien [14]): 

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠, 𝑃𝑜𝑖𝑠𝑠𝑜𝑛′𝑠 𝑟𝑎𝑡𝑖𝑜)√
𝑌𝑜𝑢𝑛𝑔′𝑠 𝑚𝑜𝑑𝑢𝑙𝑢𝑠

𝑑𝑒𝑛𝑠𝑖𝑡𝑦
 (10) 

More details can be found in Bui et al. [4]. 

 

Figure 3: Sensor layout on wall No. 1 and shock directions (dimensions in centimeters)  
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That study (Bui et al. 2009 [4]) showed that, with respect to the wall’s moisture content, density varied from 19.5 to 

20.3 kN/m
3
 and the Young modulus varied from 440 to 470 MPa,. In the present study, the wall was modeled at quasi-

dry state, which corresponded to a density and Young modulus of 19.5 kN/m
3
 and 470 MPa, respectively (Figure 4). 

The compressive strength was determined by compression tests in the laboratory, which gave fc = 1.0 MPa. The Poisson 

ratio  reported by Bui et al. 2014 [7] for the case of quasi-dry specimens was equal to 0.22. 

The other parameters are less important in this case because the strains were small during dynamic measurement. The 

identification of those parameters will be presented in detail in the following section of this paper. The following values 

were used: cohesion and tensile strength of the earthen layer: ft,layer = clayer = 0.1 fc (Bui et al. 2014 [9]); friction angle of 

the earthen layer layer=45° (Cheah et al. 2012 [11]); and dilatancy angle layer=12° (Vermeer et al. 1984 [30]). For the 

cohesion, tensile strength, and friction angle of the interface, a parametric study has been firstly performed and then 

they were taken at 85% of the respective values of earthen layer; this ratio will be justified in the next sections; 

dilatancy angle of interface =12°.  

(a)   (b)   

Figure 4: Wall No. 1 (a) and its mesh in DEM (b)  

 

A technique by which the interface stiffness can be determined from measured frequencies was developed and 

presented by Bui et al. (2014) [10]. The principle of this technique was that, in the DEM model, the wall was excited by 

a weak shock. The dynamic response at a top point of the wall was recorded and analyzed (Figure 5). The natural 

frequencies were identified by transforming data from the time domain (Figure 5) to the frequency domain using the 

FFT (Fast Fourier Transform). The peaks in the frequency domain correspond to the natural frequencies of the structure. 

Each natural frequency corresponds to a vibrational mode. 
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Figure 5. Recorded vibration of the top point P1 in a horizontal direction after impact. 

 

Table 1: Comparison of frequencies obtained by DEM and by measurement 

 

 

 

 

A parametric study was performed to study the variation in the model frequencies as a function of the interface stiffness 

(kn and ks). The value of kn (so ks), which reproduced the first measured frequency (the most important frequency), was 

selected; the correlation of other frequencies was also checked (for more information, see Bui et al. (2014) [10]). A 

stiffness of kn = 60GPa/m (so ks=24.6GPa/m) was selected and the corresponding frequencies are presented in the Table 

1. 

3.2 Identification of the earthen layer’s parameters 

Following previous studies (Bui et al. [4], [5], [9]), the presence of an interface did not have an important influence on 

the behavior of walls under vertical load. Therefore, the aim of this section of the present study is firstly to confirm this 

point; and then, when the influence of interface parameters is showed negligible under vertical load, the parameters of 

the earthen layer will be identified. 

Two walls tested in the previous study (Bui et al. 2014 [9]) were used to identify the parameters in compression. These 

walls measuring (100 × 100 × 30) cm
3
 were subjected to concentrated loads on a (30×30) cm

2
 surface at the middle of 

the wall parameters (Figure 6). 

In that study, the walls were modeled by using the finite element method (FEM), which assumed that the link between 

earthen layers was perfect (homogeneous material). That model could reproduce the maximum experimental load and 

the failure mode of the first cracks but it could not reproduce the failure displacement (corresponding to the maximum 

load) and the last cracks (failure).  
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By using DEM, the robustness of DEM and FEM can be compared in the present study. In order to assess the influence 

of interfaces, two DEM models were studied: 

- Model without interface (homogeneous material) (Figure 6b) 

- Model with interface (Figure 6c) 

The contact between the RE wall and the concrete base was modeled by a contact which follows the Mohr-Coulomb 

law and had a friction angle of 15° (usual value for concrete surface). 

 

   

(a)                       (b)    (c) 

Figure 6: a) Wall studied; b) c) Model without and with interfaces. 

 

3.2.1. Influence of interfaces in compression test 

Following the previous study, the experimental compressive and tensile strengths of earthen layers were fc=1.3MPa and 

ft,layer = 0.13MPa, respectively. For the other parameters, the following experimental values were found in the literature: 

- A cohesion of the earthen layer that equals 7-10% of the compressive strength of the earthen layer: clayer = 

0.07-0.1 fc (7% following New Zealand Standard (design value) [27] and 10% following Bui et al. 2014 [9]) 

can be taken; friction angle of earthen layer can vary from 45 to 56° : =45-56° (45-56° following Cheah et al. 

2012 [11]; 51° following Bui et al. 2014 [9]); dilatancy angle of earthen layer layer=12° (following Vermeer et 

al. 1984 [29]: dilatancy angle of clay 0°; concrete 12°; granulated and intact marble 12°-20°; dense sand 15°; 

loose sand < 10°; thus in the case of RE, a dilatancy angle of 12° can be taken). According to a preliminary 

study, the dilatancy angle did not play an important role in RE walls. 

- cohesion, tensile strength, and friction angle of interfaces could be estimated at about 85% of the respective 

values of the earthen layer. Indeed, in the study of Ciancio and Augarde (2013) [13], the tensile strength of the 

interface was about 85% of that of the earthen layer. The dilatancy angle of 12° of the interface could be taken 

because it did not play an important role here. 
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Nevertheless, in order to assess the influence of the interface in this case, low values of cohesion, tensile strength, and 

friction angle of interfaces were chosen for the model, which were 25% of the respective values of earthen layers. The 

cohesion and friction angle of earthen layers of clayer=10%fc and layer=45°, respectively, were chosen. The sensitivity of 

these parameters will be discussed in the next section. The synthesis of the parameters used is presented in Table 2. A 

comparison of the results is illustrated in Figure 7, Figure 8, and Figure 9. These results show that even with very low 

interface parameters, the results obtained by models with or without interfaces were similar. That confirms that 

interfaces do not significantly affect vertical loading. 

  

Table 2: Parameters of earthen layer and interface used to study the influence of interface in the case of vertical 

loading 

Earthen layer 

Density 
Young 

Modulus 
Poisson ratio Tensile strength Cohesion Friction angle 

Dilatancy 

angle 

d 

(kg/m
3
) 

E 

(MPa) 
 

ft =10%fc 

(kPa) 

C=ft = 10%fc 

(kPa) 


 

(°) 


 

(°) 

1950 500 0.22 130 130 45 12 

Interface 

Normal stiffness 
Tangent 

stiffness 
Tensile strength Cohesion Friction angle 

Dilatancy 

angle 

n
k

 (GPa/m) 
s

k
 

 (GPa/m) 

ft, inter = 25% ft , layer 

(kPa) 

Cinter = 25% Clayer 

(kPa) 


         

(°) 


         

(°) 

60 24.59 32.5 32.5 25 12 

 

 

 

Figure 7: Comparison of the numerical and experimental results 
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a)                                               b) 

Figure 8: Failure modes of the wall: a) experimental result; b) FEM with Mazars’ damage model (Bui et 

al 2014a [9]) 

 

 

                              
(a) (b) 

Figure 9: Max principal strain in the numerical model (at 5mm vertical displacement): a) with interface = 25% 

layer; b) without interface. 

 

Figure 9 shows that the DEM (with Mohr-Coulomb model) reproduces the failure mode better than the FEM (with 

Mazars’ damage model, Figure 8b). 

3.2.2. Assessing the cohesion and friction angle of earthen layers 

Figure 7 shows that, with the chosen parameters, the maximal load for the numerical model was greater than that for the 

experimental model (about 10%). This difference may be due to the used parameters which were not yet optimized. As 

the interface could be neglected in this case, only the influence of the cohesion and friction angle of earthen layers was 

studied. Two cases were considered to optimize the numerical model: 

- Friction angle was fixed at 45°; cohesion varied from 7% to 10% of the compressive strength: clayer 

=(7% ;8% ;9% ;10%)fc. The results are presented in Figures 10 and 11. 

- Cohesion was fixed at 7% and 9% of the compressive strength, respectively; friction angle varied from 45° to 

56°. The results are presented in Figures 12 and 13. 
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Figure 10: Comparison of the numerical and experimental results (layer=45°) 

 

 

Figure 11: Influence of cohesion clayer on the first crack load and ultimate load (=45°) 

 

  

 

Figure 12: Influence of the friction angle on the vertical load a) clayer=7%fc ; b) clayer=9%fc . 
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Figure 13: Variation of first crack load and ultimate load in function of friction angle, a) clayer=7%fc; b) 

clayer=9%fc 

From Figures 11 and 12, the best cohesion value for the layers is in the range 7 to 9%. Figure 13 shows that the friction 

angle does not play a significant role for the first crack load (which corresponds to the slope’s change in Figures 10 and 

12). However, it does affect the ultimate load. Figure 11 shows that the tensile strength has an effect on the first crack 

load and the ultimate load. When this parameter increases, the first crack and ultimate loads increase; the more 

important effect on the ultimate load can be observed.  

From these results, the best pair of layer characteristics was clayer=9% and layer=48°, which gave the results closest to 

the experimental results: first crack load, ultimate load, and the post-peak mode. It is interesting to note that the used 

model can reproduce three phases of the walls’ behavior: elastic, post-elastic and post-peak phases. However, there 

were still some differences in the experimental results, which may come from the limit of the models used for DEM 

(Mohr-Coulomb for earthen layers, tension cut-off for interfaces). However, the study could confirm the results 

presented in previous studies in which the layer’s cohesion was about 7-10% of compressive strength and the layer’s 

friction angle was about 50° (Bui et al. 2014 [9], Cheah et al. 2012 [11]).  

3.3 Identification of cohesion and tensile strength of the interface 

The results of diagonal compression tests presented in Silva et al. (2013) [26] were used to identify the cohesion and 

tensile strength of the interfaces. In that study, walls of 550x550x220mm
3
 compacted in 9 layers were tested (schema in 

Figure 14). The testing procedure was similar to that of ASTM E519 [2], which consisted in applying a monotonic 

displacement of 4 µm/s and using supports of 100 mm in length. With a diagonal compression, the interface shear 

behavior was solicited more than for vertical loading, which made it possible to determine the characteristics. 

 

(a) (b) 
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Figure 14: Model with and without interfaces. 

 

The wall GSRE_7.5 was selected to be studied, i.e., granitic stabilized rammed earth with 7.5% of ash (by weight). This 

stabilization technique consisted in the alkaline activation of fly ash (stabilization by addition of a geopolymeric 

binder). The experimental results obtained in that study were: compressive strength fc=1.09MPa; Young modulus 

E=2858MPa; shear strength =0.18MPa, and shear modulus G= 620MPa. 

This wall was chosen, firstly, because its compressive and shear strengths were similar to that of currently unstablized 

RE. However, its elastic and shear modulus were greater than that of currently unstabilized RE (see Bui et al. 2014 [7], 

for example). This could be due to the effect of the stablization. Secondly, the failure mode of this wall was more 

complex than for other walls (GSRE_2.5 and GSRE_5). Further details about failure modes will be discussed later in 

this paper. 

In order to assess the influence of interfaces, several cases were studied: 

- Cohesion, tensile strength, and friction angle of interfaces were the same as earthen layers. This is equivalent 

to the case without interface. 

- Cohesion, tensile strength, and friction angle of interfaces of 85% and 90% of the earthen layers, respectively, 

were taken. It is important to note that a preliminary study showed that lower values for interface parameters 

could not reproduce the experimental results in this case.  

3.3.1. Model without interfaces 

By taking the above results into account, in this case, the layer cohesion was 7% and 10% of the compressive strength 

(clayer/fc=7% and 10%), respectively; the friction angle varied from 45° to 56°. The results are presented in Figure 15, in 

which:  

- Shear stress of the specimens was calculated:  τ=
0.707×P

An
 (10) 

where P is applied load and An is the net area of the specimen. 
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- Shear distortion  was obtained by:  γ=
∆v

gv
+

∆h

gh
  (11) 

where v and h were vertical shortening and horizontal extension of the panel, respectively; gv and gh were 

vertical and horizontal gage lengths. In the DEM model, v and h were measured on two diagonal lines of the 

specimen . 

From Figure 15, all models could reproduce the shear modulus of the wall, which was the slope of the first part of the 

test (until 20% of the ultimate shear stress). However, these models could not reproduce the slope’s change after the 

first part of the test. Among these results, cohesion clayer=10%fc and friction angle layer=50° for the pair of layers gave 

the most adapted result for the ultimate shear strength. Therefore, these values were chosen for the model with 

interfaces to check whether this model could better reproduce the behavior of the wall after the first part of the test. This 

model could reproduce the diagonal crack of the experiment (Figure 16) but it could not yet reproduce the horizontal 

crack at the interface between the third and fourth layers (from the top). 

 

Figure 15: Comparison of the results of models without interfaces and those of the experiment. 
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Figure 16: a) Max principal strain in the model without interface; b) experimental failure [26] 

 

3.3.2. Model with interfaces 

As no study in the literature previously investigated the cohesion and the friction angle of the interface, a parametric 

study with several values was performed for the model with interfaces: interface cohesion cinterface and friction angles 

interface, respectively, of 70% ; 80% ; 85% , and 90% of the corresponding parameters of the earthen layer were taken. 

 

 

Figure 17: Comparison of the numerical and experimental results 

The interface’s elastic stiffness, kn and ks, which was determined in a previous part of the study by in situ dynamic 

testing (kn=60GPa/m ; ks=24.6GPa/m), was used. The validity of these values will be checked for this case.  

(a) (b) 
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The results are presented in Figure 17. It is observed that the models with interfaces could reproduce the first part of the 

experimental result up to 50% of the ultimate shear stress, which was better than the model without an interface (up to 

20% of the ultimate shear stress). Among the models with interfaces, the model in which the interface’s characteristics 

constituted 90% of the layers gave results closest to those of the experimental model. Indeed, the peak curve for this 

model was closest to the peak of the experimental curve, both for shear stress and shear distortion. However, none of 

the studied models could reproduce the nonlinear behavior of the experiment before the peak. This may be explained by 

the behavior law used for the interfaces (Figure 2), which is linear before the failure. 

Nevertheless, when the failure modes were observed (Figures 18 and 19) the model with interfaces at 85% of the layer’s 

characteristics was the one that could reproduce the failure at the interface of the third layer. The model with interfaces 

having 90% of the layer’s characteristics could only reproduce the diagonal crack. For the model with interfaces having 

70% of the layer’s characteristics, the failure was a local failure of the interface that was not representative of the 

experiment.  

These results show that a discrete model with interfaces having 85-90% of the layer’s characteristics is the most 

relevant. This result is similar to that presented in the paper of Ciancio and Augarde (2013) [13], where the tensile 

strength at the interfaces was 85-90% of the tensile strength in earthen layers.  

 

                                                                                            

Figure 18: a) model with interfaces, cinterface=85%clayer; b) experimental failure [26] 

 

(a) (b) 

(a) (b) 
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Figure 19:  Models with interfaces: a) cinterface=70%clayer ; b)  cinterface=90%clayer 

 

3.4 Discussion of the interface characteristics 

The results of the models in which the interface’s characteristics represented 90-100% of the layer’s characteristics 

could reproduce the slope of the elastic part, the ultimate shear stress, and the diagonal crack of the experiment. This 

failure mode was observed on other walls in the study of Silva et al. (2013) [26],  

Figure 20. This means that the interface’s characteristics can vary from 85% to 100% and still give satisfactory results. 

Hence, for an accurate result, the model with the interface is better but, in practice, the model without the interface can 

also give a sufficiently precise result and be calculated faster. The results of our study confirm the suprising result 

presented in Bui et al. 2014 [9], where the tensile strengths in earthen layers and at interfaces were similar. 

 

 

 

Figure 20: Failure mode of the wallets: (a) GSRE_2.5; (b) GSRE_5.0 (Rui et al. 2013) 

 

4 Conclusions and prospects 

This paper assessed the relevancy of the DEM for RE walls. The process of identifying thirteen parameters of the DEM 

was presented. The study showed that the DEM with the Mohr-Coulomb model reproduced the failure mode better than 

the FEM did (with Mazars’ damage model) as shown in a previous study.  

The results confirmed that, in the case of vertical loading, interfaces did not have an important effect on the behavior of 

RE walls. In the case of diagonal loading (which can simulate a seismic case), interfaces should be considered in order 

to produce better results relative to the ultimate load, the failure modes. However, for the experiments performed in this 

study, the interface’s characteristics varying from 85% to 100% of the corresponding layer characteristics gave 

satisfactory results. Thus, in practice, the model without interfaces can also be used as the results are sufficiently precise 

(a) (b) 
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and can be calculated faster. This finding confirms the results presented in Bui et al. 2014 [9], where the tensile 

strengths in earthen layers and at interfaces were similar. 

From the mechanical characteristics determined in this study, the following values can be suggested for studies on RE 

walls: 

- For earthen layers, considered homogeneous and isotropic: the tensile strength and the cohesion can be taken 

to be equal to about 10% of the compressive strength of the earthen layer (ft = clayer = 0.1 fc). This result is 

similar to that presented in Bui et al. 2014 [9]. The friction angle of about 50° of the earthen layer (layer=50°) 

can be taken. This result is also on the same order of the results of Cheah et al. 2012 [11] and Bui et al. 2014 

[9]. The dilatancy angle of the earthen layer can be taken at layer=12° but this parameter did not play an 

important role in the case of RE walls under in-plane loading. However, it would be interesting to study the 

importance of this parameter for out-plane loading (wind, earthquake). 

- For interfaces: cohesion, tensile strength, and friction angle of interfaces of about 85-100% of the respective 

values of earthen layer should be taken. A dilatancy angle of of 12° of the interface can be taken. Interface 

stiffness of kn = 60GPa/m (so ks=24.59GPa/m) can be taken. 

The ultimate load and failure mode are well reproduced thanks to the choosen material model, but nonlinear 

behavior before the peak is difficult to reproduce numerically. Compatibility conditions at material and non-

material interfaces are expected to play an important role and may be related with some instabilities which 

play an important role in local damage initiation at phase interfaces, as discussed  for example in [32] and 

[33].   

It is important to note that while the present paper is prepared, another article was rencently published 

(Miccoli et al., 2014 [22]). The aim of that study is very similar to our investigation (study the parameters of 

RE walls); but in that paper, the authors used the finite element method with interface elements. Their results 

were very similar to the findings in our manuscript by DEM, that confirmed the the results presented in our 

paper. 

In the futur studies, other numerical models will be tested in oder to improve the non-linear part of the 

diagonal tests that was not yet perfectly reproduced in the present study. In particular, the useful ideas 

presented in [34] and [35] for modelling delamination and friction where taken into account to simulate the 

relative displacement phenomena at the interfaces between the different layers formed in the ramming 
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process, where damaged bands can be formed. The detection of eventually formed shear bands or localized 

damage band in rammed earth can be envisaged by means of the methods and models presented in [36-37].   
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