
 
Coventry 
University 

 
 
 
Coventry University Repository for the Virtual Environment 
(CURVE) 
 
Tessa Daniel 
 
Investigating into the use of advance sensing technologies for protection suits. 
Published Report (PDF) 
(Refereed) 
 
Daniel, T. (2008) Information extracting from large-scale WSNs – A complete 
querying perspective. Report no. COGENT.002 Coventry: Coventry University 
 
 
Available in the CURVE Research Collection: November 2008 
This version is available at: https://curve.coventry.ac.uk/cu/items/f6170731-0b33-
181c-b858-56680d982df6/1/ViewItem.jsp  
 
 
Copyright © and Moral Rights are retained by the author(s) and/ or other 
copyright owners. A copy can be downloaded for personal non-commercial 
research or study, without prior permission or charge. This item cannot be 
reproduced or quoted extensively from without first obtaining permission in 
writing from the copyright holder(s). The content must not be changed in any way 
or sold commercially in any format or medium without the formal permission of 
the copyright holders. 
 

 
 
 
 
 
 

http://curve.coventry.ac.uk 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CURVE/open

https://core.ac.uk/display/228146596?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://curve.coventry.ac.uk/cu/items/f6170731-0b33-181c-b858-56680d982df6/1/ViewItem.jsp�
https://curve.coventry.ac.uk/cu/items/f6170731-0b33-181c-b858-56680d982df6/1/ViewItem.jsp�
http://curve.coventry.ac.uk/�


COGENT
computing

Technical report number COGENT.002
Cogent Computing Applied Research Centre

28/2/2008

Information Extraction from
Large-scale WSNs - A Complex
Querying Perspective

Tessa Daniel
t.daniel@coventry.ac.uk

Regardless of the application domain and deployment scope, the ability to retrieve in-
formation is critical to the successful functioning of any wireless sensor network (WSN)
system. In general, information extraction procedures can be categorized into three
main approaches: agent-based, query-based and macroprogramming.Of the three,
query-based systems are the most popular mainly because they provide a usable,
high level interface to the sensor network while abstracting away some of the low
level details like the network topology and radio communication. In contrast, macro-
programming provides a more general-purpose approach to distributed computation
compared to traditional query-based approaches and focus on programming the net-
work as a whole rather than programming the individual devices that form the network.
The agent-based approach tailors the information extraction mechanism to the type of
information needed and the configuration of the network it needs to be extracted from.
This report surveys extensively the literature in the area of WSN information extraction,
highlights the benefits of in-network processing and proposes a novel hybrid approach
that incorporates query and macroprogramming techniques for information extraction
in large-scale, informational systems. The feasibility of the approach is demonstrated
through simulation.

This is an interim report of work covered in the first year of the PhD program entitled
as above.
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Chapter 1

Introduction

The increase in availability and affordability of wireless technology has led to a proliferation of large wire-
less sensor networks (WSNs) with increasing numbers of nodes deployed to resolve complex “informa-
tional” problems. Typically, however, nodes in these networks have limited resources including energy
(given the limited battery power), memory, computing power and communication bandwidth. The coupling
of high complexity global tasks and the reduced resource nodes make WSNs a rich research domain. The
use of WSNs has been explored in a number of application domains with deployments ranging from sci-
entific research to battlefield surveillance for the military. Some examples of deployments include habitat
monitoring applications [73, 44]; agricultural monitoring [64]; healthcare [35]; disaster management and
detection [19] and military applications [92]. Moreover, some newer applications involve the integration
of multiple WSN systems spanning a variety of disciplines. The High Performance Wireless Research
and Education Network [52] and ROADNet [104]projects, both in California, are two examples of such
multidisciplinary applications currently in operation.

Although specific application requirements may differ from one WSN system to another, essential to all
WSN systems is the ability to acquire data and generate information in order to fulfil the application
needs. Many of the WSN information extraction approaches currently in operation are based on ap-
plicative query mechanisms where requests are initiated via queries written in an appropriate declarative
language, posed to the network, and data or information generated as a result. Data processing in such
applications usually follows one of two approaches: centralised or distributed. For some systems, re-
sources are not as severely constrained so minimising energy usage is not a major concern. In such
unconstrained systems, a centralised approach to processing is often used where sensed values are
pushed to a power-rich location for processing, which may involve cleaning and querying the data as part
of more in-depth analyses.

In a large number of systems, however, constraints like computing and battery power dictate that appli-
cations be developed with energy-efficiency in mind. For many of these applications human intervention
can be both time consuming and expensive, for example, in terms of changing batteries or adding new
nodes. Therefore, a key design objective is to extend the lifetime of the network as much as possible. It is
well-understood that power usage costs in WSNs are dominated by communication as opposed to com-
putation [48, 70, 94]. Therefore, techniques which promote a decrease in communications while using
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in-network data reduction have been identified as key to creating more energy-efficient WSN applications.
Distributed processing is proposed as a method that promotes processing of data on nodes in the network
[70, 11]. This in-network processing takes advantage of nodes’ processing power and may include tech-
niques like data aggregation, fusion or elimination of redundant values through filtering [132, 47]. The net
result is more energy-efficient applications since data transmission is reduced in exchange for in-network
computation.

Given the apparent advantage (in terms of energy usage) of utilizing in-network processing, this PhD
program is concerned with the development of novel, deployable, information extraction mechanisms that
incorporate some form of in-network processing.

1.1 Information Extraction

Regardless of the application domain and deployment scope, the ability to retrieve information is critical
to the successful functioning of a WSN system. In general, information extraction procedures can be cat-
egorized into three main approaches: agent-based, query-based and macroprogramming. Of the three,
query-based systems are the most popular mainly because they provide a usable, high level interface to
the sensor network while abstracting away some of the low level details like the network topology and ra-
dio communication. They are very useful and provide a solution in cases where data needs to be retrieved
from the entire network. With this ease of use, however, come a number of limitations.

The first limitation is in terms of what queries can be posed to the network. In general, the query-based
applicative systems in use allow the issuing of restricted queries, ranging from those targeting raw sensor
readings on nodes in the network to those requiring the computation of simple aggregates like average,
maximum, and minimum over some attribute of interest, for the entire network. Second, the query lan-
guages used cannot easily express spatio-temporal characteristics which are an important aspect of the
data generated in WSNs. Third, it is quite difficult if not impossible to construct information requests that
represent higher level behaviour, or involve just a ’subset’ of the network (whether physical or logical) or
require more complex in-network interactions between ’subsets’ in order to generate information. Further-
more, as distributed computation is not the main focus of SQL-based query languages (which support
most WSN query-based approaches) implementing arbitrary aggregation, for example, is quite difficult
[87].

In contrast, macroprogramming has been proposed as an approach to information extraction that pro-
vides a more general-purpose approach to distributed computation compared to traditional query-based
approaches. As applied to WSNs, macroprogramming approaches focus on programming the network
as a whole rather than programming the individual devices that form the network. Many macroprogram-
ming systems provide the ability to create programs that represent higher level behaviour, a level of
abstraction beyond that of the more popular query-based approaches. Global behaviour can be specified,
programmed and then translated to node level code. Ideally, the programmer is not concerned with low
level details like network topology, radio communication or energy capacity.

Of interest with some macroprogramming systems are the application-defined, in-network abstractions
(some based on local node interactions) that are used in data processing. One example is the Regiment
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system [89]in which a programming abstraction called a region is used. A region is described as a
collection of spatially distributed signals with an example being the set of sensor readings from nodes
in a geographic area. Regions as opposed to individual nodes are programmed (for example, an rfold
operator is used to aggregate the values in a region into a single signal which can then be communicated
to the user or used in further computation).

Macroprogramming, however, still presents a number of challenges. First, creating a powerful macro-
program requires a learning curve for the programmer. Expressing high-level requirements are not nec-
essarily as intuitive to the user as perhaps SQL-based approaches are. Second, although proposed as
an approach that eliminates the need for node-level programming, many of the current macroprogram-
ming systems provide node-specific abstractions, undermining the rapid development and productivity
advantages macroprogramming is meant to provide. Finally, because of the wide semantic gap that exists
between the high level program and the node level code, compiler construction is quite challenging. The
code generated as a result of compilation has to cater for not just computation but node-level communi-
cation as well.

A third approach to information extraction looks at the extracting of information in a network-aware manner
and tailors the mechanism to the type of information needed and the configuration of the network it needs
to be extracted from. These models use agents to perform tasks, make decisions and collaborate to
achieve more complicated tasks. An agent is simply a piece of software that performs a task without the
need of user invocation to function. Many agent-based models are multi-agent systems in which multiple
agents sometimes coded to function in different ways, collaborate, coordinate and organize to perform
complex tasks and generate information. These models therefore introduce expressiveness and flexibility
in terms of what functions they can facilitate in the network as well as in facilitating the ability for agents
to make decisions while in the network. Agents can act autonomously, multiple agents can run on a node
at the same time, and multiple applications can co-exist in the network. Mobile agents can move, clone
themselves and act to deal with unexpected changes in the environment [98, 33].

Although attractive, in theory, the agent-based approach presents a number of challenges particularly in
terms of the difficulty they present for non-expert users to design and program. First, given the complexity
of distributed systems, it is a challenge to model accurately what interactions will be taking place between
components in the network when designing agents. Second, when implementing the agents, particu-
larly mobile agents, the code must be able to run in unpredictable, resource-constrained environments.
Forecasting accurately exactly what conditions will exist in the network is difficult and therefore difficult
to program for. Third, there is difficulty in testing and debugging, given the distributed nature of the sys-
tem. In mobile agent systems, tracking and understanding execution in the face of agents moving from
node to node makes debugging and testing even more of a challenge. Given these difficulties, practical
implementations of agent-based systems, particularly multi-agent and mobile agent systems, are not as
widespread as query-based systems are. Each of the three approaches above is suitable for a number of
applications. They each have strengths but pose challenges as well. The agent-based approach provides
a high degree of expressiveness and flexibility as do the macroprogramming approaches, but they both
are more difficult to implement into deployable WSN systems. The query-based systems have, as their
key feature, ease of use but are limited in the types of queries that can be posed to the network. Macro-
programming tries to address this by providing powerful constructs for capturing higher level behaviour
through global programs but introduce a steep learning curve to the user.
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The author argues that a hybrid approach that retains the simplicity and ease of use of the more traditional
query-based approaches while allowing the inclusion of useful logical abstractions provided by macropro-
gramming approaches to facilitate construction and resolution of more powerful queries is possible and
indeed desirable. This approach can also incorporate some of the principles of agent-based systems,
such as collaboration and decision making in the network, in assisting in query resolution.

In some applications, it is necessary to not only have information generated from within the network and
communicated to a requesting node but to also be able to pose questions that represent higher level
requests. This class of applications provides the inspiration for this research work and is discussed in
greater detail in Chapter 3. To summarize, given a motivating scenario, two issues are addressed in the
proposed research programme.

First, is the desire to provide users of WSN applications with the ability to construct and pose higher
level information requests instead of simple queries requiring the collection of raw sensed values or the
calculation of simple aggregates over the entire network. Complex queries are proposed as suitable
constructs that can allow the expression of spatio-temporal characteristics and requests requiring more
involved in-network interactions to generate information.

Second, is the desire to provide a system that produces responses to these higher level requests for
information within the network instead of as a result of post-collection analysis of all data.

A series of research questions have been formulated in response to these two topics. These questions,
together with the proposed research methodology are presented in the following sections.

1.2 Research Questions

This PhD program proposes to investigate the methods for constructing higher-level information requests
as well as techniques for processing these requests within the network. There are three main research
questions:

1. Is it possible to construct and disseminate complex queries that allow a user to program the sensor
network in a similar way to current applicative approaches?

2. Is it possible to create an in-network distributed query processing system that allows information to
be generated within the network and make that information available to the user?

3. Does such an in-network distributed query processing system offer solutions where current central-
ized approaches fail?

The research questions are detailed below.
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1.2.1 Complex Queries for Representation of Higher Level In formation Requests

Some research has addressed the need for complex queries and for the ability to process these queries
within the network. [108]define a complex query as a query consisting of one or more subqueries that
are combined by conjunctions or disjunctions in an arbitrary manner. In their work on the Active Query
Forwarding mechanism (ACQUIRE), they promote the use of these ’nested queries’ and describe a mech-
anism that seeks to resolve the query in-network, generating information as a response. The work, how-
ever, does not address the implementation of the mechanism and instead presents a mathematical model
that is used to analyse the performance of the approach in terms of energy cost.

[25]also identify the need for nested queries (which they too call complex queries) and highlight the prob-
lems with evaluating such queries especially in cases where aggregation dependencies exist between
the nested queries. They put forward the idea of the query itself supporting abstractions which can then
be used in query resolution. In their example the abstractions are geographical regions. Their research
resulted in a qualitative study of the requirements of such a system and did not extend to implementation.

This research is therefore concerned with the processing of complex queries and first defines a complex
query as one which:

1. consists of one or more subqueries (nested queries) and/or

2. contains multiple operations such as aggregates and/or.

3. contains spatial and/or temporal elements.

The query-based systems currently in use neither provide the facility to construct these complex queries
nor give users the ability to process them. Such queries, for instance, queries with dependencies (nested
queries) would require more complex in-network interactions than those supported by current query-based
systems.

One example of a complex query which forms the object of the research here would be:

’What is the average temperature in those areas in the network where the humidity is greater than 95 and
the air pressure is between 900 and 1000 mbar’.

This query exhibits a number of complex elements. First, the query language would have to be able to
accommodate the expression of the spatial elements described as ’areas’ in the example above. Second,
the query is a dependent or nested query and can only be answered after some reasoning within and
between the defined spatial entities. In effect, parts of the query depend on a previous question being
answered and only become relevant if a particular answer is obtained.

With the primary goal of creating a system that exhibits simplicity and usability, using a declarative lan-
guage already familiar to users of existing applicative query mechanisms as well as traditional database
systems is considered a worthwhile approach. Although not examined in this report, the PhD program will
identify and investigate existing SQL-based query languages in creating a language capable of expressing
the complex query requirements described above.
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1.2.2 In-Network Complex Query Processing

As will be shown, a number of in-network processing techniques have already been proposed in the
literature and used in existing information extraction systems. These include techniques like aggregation,
fusion and filtering which have been shown to improve energy efficiency in WSN systems and have been
incorporated extensively in both query-based and agent-based systems. In addition, a powerful feature of
many of the macroprogramming systems has been the creation and use of node or network level logical
abstractions to facilitate in-network information processing. The literature has shown that so far logical
abstractions have not been considered for application in query processing systems. The author believes
that these logical constructs can provide a more powerful means for processing the complex queries
identified as being of interest in this research work. The work examines the usefulness of abstractions
that can be constructed logically within the network and used in conjunction with the in-network processing
techniques identified above. The abstraction can be based on two types of attributes. Static attributes
which do not vary over time, for example, the type of reading a node provides and dynamic attributes which
do vary over time, for example, the current sensor reading. The key idea here is that the abstractions
would be a component of the query itself and constructed prior to the dependent query being posed.
These abstractions will drive the manner in which the query is both disseminated and processed within
the network.

Consider an example where a user is interested in monitoring the soil acidity and relative humidity in ’hot
patches’ of the vineyard. The query posed would first need to define what the ’regions of interest’ are. In
this case, regions would be logically constructed over areas where the temperature level registers above
a given threshold. Once these regions have been defined, the body of the query, aimed at retrieving soil
acidity and humidity readings, will be disseminated to the relevant nodes via the region construct and not
to any node within broadcast range, for instance. The idea is that the regions are queried rather than
individual nodes.

Hence, the goal of the research is the creation of a novel query processing system that allows the con-
struction and posing to the WSN of higher level requests (called complex queries), queries so far not
addressed in existing query processing systems. The system will have as a key feature, query-dependent
logical abstractions which will be used to facilitate query dissemination and processing in the network.

1.3 Methodology

The research is approached by first identifying a real-life application where in-network complex query
processing is essential. It is anticipated that the identification of a motivating application will both inform
the creation of realistic complex queries and also help establish a coherent set of application scenarios
within which proposed processing techniques can be tested. The query types identified will form the
basis for the investigative work into devising strategies, techniques and finally a framework for in-network
processing.

Existing components and techniques which could contribute to the goal will be investigated and if possible
utilized in developing the query processing system. The implementation of the system will be evaluated
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both in simulation and on the Cogent testbed (a 40 node WSN). A number of performance metrics will be
used in assessing the success of the system. These will include energy efficiency (for example, comparing
power consumption during query processing), robustness of the approach to node or link failure, latency
in getting query results to the user and scalability of the approach.

1.4 Report Structure

To set the context of the work presented in this report, it is important to first examine the current literature
for approaches that have been used in information extraction in WSNs. Chapter 2 therefore examines
these methods as well as a number of WSN architectures (which influence the selection of an appropriate
information extraction method) and a number of routing protocols (which have an impact on information
processing). Chapter 3 consists of two main sections. The first section positions the work in the thesis by
describing the class of WSN applications the research targets and identifies a key motivating application
that will be used as a basis for development of the prototype system. The second section describes the
constraints and assumptions under which the work is carried out and outlines the system architecture.
For the purposes of this report, some suitable in-network processing strategies from the literature were
identified and tested in simulation. Appropriate corresponding information extraction techniques were
developed by the author and were further tested and critically evaluated in terms of effectiveness and
efficiency alongside existing centralized approaches. Chapter 4 presents these achievements and sets
the stage for future work.

1.5 Contribution

A number of contributions are reported in this progress report. First, a comprehensive literature review
has been produced which considered over one hundred and twenty five publications. The second contri-
bution is the description of a novel complex query processing system architecture. Thirdly, the report also
identifies candidate WSN architectures for which the proposed system is suited and discusses preliminary
experiments which investigate the use of logical abstractions for complex query resolution. Future work
will investigate the formulation of a suitable query language for composition of complex queries and the
development of a distributed processing system for complex query resolution.
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Chapter 2

Information Extraction Methods

By and large, the work in this research project is centered round information extraction in WSNs with
particular focus on approaches that utilize in-network processing for generation of information. In general,
there are three main approaches to information extraction from WSNs:

Agent-based : this approach tailors the information extraction mechanism to:

1. the type of information needed - for example, an agent may incorporate code for data aggregation
as required by the application.

2. the configuration of the network the information needs to be extracted from - for example, a mobile
agent’s route through the network would be determined by the network topology.

An agent is simply a piece of software that performs a task without the need of user invocation to function.
Agents are used to perform tasks, make decisions and collaborate to achieve more complicated tasks.
Some applications are based on multi agent systems in which multiple agents sometimes programmed
to function in different ways, collaborate, coordinate and organize to perform complex tasks and generate
information.

Query-based : this approach takes the view that the user should be shielded from the internal workings
of the information extraction method. With a focus on usability, query-based approaches promote the
idea that the user should not need to have detailed knowledge of the underlying network configuration
or how the mechanism works in order to retrieve information from and communicate with the network.
Requests are initiated via queries written in an appropriate declarative language and information returned
as a result.

Macroprogramming : this approach focuses on programming the network as a whole by directly spec-
ifying global behaviour instead of programming individual nodes. It involves the definition of high level
languages that can capture operations going on in the network at a global level rather than at node level.
Global behaviour is specified, programmed and then translated into code which runs on the nodes. Ide-
ally the programmer is not concerned with low level details like network topology, radio communication or
energy capacity.
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This chapter discusses these three approaches to information extraction, identifies example systems,
and highlights those that have been used in practical deployments. Wherever possible the architecture
and mode of information processing (whether centralised or distributed) is identified. The key issues for
discussion lay with:

1. identifying which of the methods proposed in the literature have been evaluated at implementation
level. (This analysis is needed as a large proportion of the research effort is at theoretical level and
not readily suitable for practical deployments.)

2. identifying which of the methods proposed in the literature make use of or support in-network infor-
mation extraction. (This is important as approaches that utilise in-network processing like aggrega-
tion and filtering have been shown to be more energy efficient and therefore more desirable.)

2.1 Agent-based Approaches

The agent-based approach to information extraction tasks a network by injecting into it a program with
some type of processing or decision making function. In this approach there is no attempt to devise ways
of transmitting data to ’collection’ or ’aggregation’ points for processing, rather, the application is sent to
the data instead [23]. The agent is able to collect local data and perform any necessary data aggregation.
Autonomous agents can make decisions without user input. In the case of an autonomous agent, which
also happens to be mobile, that decision may involve whether the agent should move to a particular node,
and if yes, which node it should migrate to. Autonomous mobile agents moving from one node to another
can be designed to be cognizant of issues that may exist in the network [129]. For instance, they can make
decisions, perhaps to clone themselves, if necessary, to avoid failed regions or nodes in the network. If
an agent detects that a node has a problem and is unreachable it can adapt its route so that it avoids the
failed node [76]. The mobile agent therefore presents added flexibility in terms of decision making and
reliability in dealing with faults in the network.

2.1.1 Agent-based Architectures

[121]report three architecture models for agent-based wireless sensor networks. The classification is
based on the number and type of agents being used and the mode of operation of the agent-based
system.

In the first model , all nodes respond to a single agent usually housed at the base station or central
processor. The advantage is that there is a single control point with the benefit being the ability to access
the entire network and an increase in efficiency since transmissions from this central point could be better
synchronized and collision reduced as a result. Collisions during transmission require a retransmission
which is quite costly. Therefore, synchronization brings with it direct energy savings. There are, however,
a number of limitations to this model.

The first limitation is lack of scalability. In this model, the agent queries each node for a sensed value
which forms the input to the agent’s deliberation (the agent follows a perceive-deliberate-act cycle). As
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the number of nodes increases, however, the time taken to deliberate also increases which can lead to
time delays. Also, with larger networks it is more likely that multihop communication is needed. This can
lead to even more time delays during data gathering as well as increased power consumption.

A second problem is observed in cases where there is a need for more than one agent to access nodes
in the network simultaneously, for example, to execute different application tasks. Here an increase in the
time delay occurs because one agent would have to wait for another to complete its task before accessing
that node or set of nodes. This leads to delays in agents getting the data needed for processing and
acting if needed. This model can be considered to utilize a centralized processing approach as all data is
transmitted to a central point (albeit an agent) for further processing. In-network processing is absent.

In the second model , each node in the network hosts an agent which will determine how that node will be-
have. Control of the network is therefore distributed and agents can coordinate and collaborate to achieve
goals both at a local and global level. A main advantage in using this model is its scalability. The ability to
perform local computation without needing multihop messages to a central controller results in a reduction
in energy usage. A second advantage is the ability of the network to perform tasks concurrently given the
presence of multiple agents. However, in practice, it is difficult to create agent-based systems that solve
global tasks using only local information. The result, therefore, is an increase in resource and energy
usage for the necessary inter-agent communications, a cost avoided by the centralized model presented
above. This multi-agent approach clearly incorporates in-network processing techniques for information
generation. The "environmental nervous system" [74]a multi-agent system, is based on this model. It is a
small (three node) autonomic wireless sensor network (see figure 2.2b) aimed at environmental sensing
for intruder detection. This system is described in greater detail in Section 2.1.3.

The third model uses mobile agents. Here an agent is able to migrate to a node or nodes, collecting, ag-
gregating and fusing data before it sends a message back to the central processor. A primary advantage
here is a reduction in the cost of computation since only one node is active at a time. A second advantage
is that communication cost is low since migration of agents only involves one transmit and receive event.
The agent in this model is responsible for both collecting data and the itinerary related to the task in op-
eration. The main disadvantage, however, is that if the node to which an agent has migrated fails then
all data gathered up to that point is lost. There are, however, techniques that could be implemented to
combat this problem, for instance leaving copies of the data on previously visited nodes so that the agent
could restore its state if needed. A second disadvantage is the lack of concurrency this approach brings.
In large networks, in particular, this could be a problem if the agent takes too long to collect all the data
required to perform the given task. The mobile agent-based deployment reported by [98]is based on this
model. This network was aimed at ground vehicle classification using acoustic sensors and is described
in greater detail in Section 2.1.2.

Each of the three models described exhibits both advantages and disadvantages. According to [121]the
strengths of the three methods were simplicity in the case of the centralized approach, robustness in
the case of the multi-agent approach, and efficiency in the case of the mobile agent approach. The
weaknesses were identified as scalability, complexity and latency. Two hybrid approaches were proposed
by [121]that combined the features of the three in ways that attempted to minimize the impact of the
disadvantages described.

The first hybrid model combines features of the first and second models and divides the network into
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groups of nodes with an agent assigned to and responsible for all nodes in a group. Coordination between
groups occurs via their assigned agents. The scalability issue is addressed here if the number of nodes
an agent is responsible for is sufficiently small and the problem of inter-agent coordination costs (which
was apparent in the second model where an agent was assigned to each node) is ameliorated since we
have fewer agents in the system.

The second hybrid approach combines the second and third models and also divides the network into
small groups of nodes. The difference here is that the agent assigned to a group is a mobile agent
that migrates between nodes within a group. As in the first hybrid approach scalability is addressed and
latency is reduced if the number of nodes in a group is small as well as a reduction in coordination costs
is achieved because of the smaller number of agents. An additional advantage given the mobility of the
agent is further reduction in the cost of communication (reduced to the cost of one transmission and
reception). Much of the reported research in the area of agent-based information extraction mechanisms
for WSNs describes variations of the agent approach outlined above. In the following, some examples
of mobile and non-mobile agent system architectures will be examined in more detail. The section will
describe models or mechanisms applied in utilizing both mobile and non-mobile agents for data collection
in WSNs.

2.1.2 Mobile Agent-based Distributed Sensor Networks (MAD SN)

The distributed sensor network (DSN) model was first proposed by [126]. In this model, referred to as
a fusion architecture, all sensor data is sent to a central location where it is fused [129]. A number of
variations followed [58, 95, 96], each making some improvement on the DSN architecture but holding to a
common client/server paradigm or a centralized approach to information processing.

In a WSN with a large number of deployed sensors, each with its own piece of data, it is impractical to have
all that information flowing to a central store. First, it has been identified that communication dominates
power usage in sensor networks and that the cost of transmission of data from individual nodes in a
network to a base station or sink far exceeds the cost of in-network processing of data before transmission
[137, 115, 94]. With resource constraints like limited battery power on the nodes in the network, there
is a need to reduce the cost of communication if at all possible. This problem is further exacerbated by
the fact that often not all data that is transmitted is critical to ensuring quality information. There is often
a large quantity of redundant or erroneous data. Other problems include network bandwidth limitations,
unreliable connectivity and noise in the network. Given these constraints, DSN and other client/server
type architectures cannot meet all the challenges of WSNs. Qi, Iyengar and Chakrabarty proposed an
improved DSN architecture that used mobile agents (MADSN) [97, 98]. Figure 2.1 shows a comparison
between DSN and MADSN.

Whereas in DSN sensor nodes collected data and transmitted to the base station node or sink (the central
processor), with MADSN the computation code is transmitted to the node where the data resides. The
need to transmit masses of data is removed and replaced by transmission of only a small piece of code
representing the agent. Additional benefits are that the agents can be programmed to perform fusion
tasks to consolidate data increasing the extensibility of the system and the mode of information collection
is more stable since it is not affected by fluctuations in connectivity. If a network connection fails, the agent
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Figure 2.1: Comparison between DSN and MADSN architectures taken from [97]

can wait till it is re-established before returning its results.

An agent in MADSN is defined as an entity consisting of five attributes:

Identification - a 2-tuple representing the dispatcher’s identification number and serial number

Itinerary - migration route information assigned by the dispatcher or processor

Data - the agent’s data buffer carrying results of data integration

Method - implementation of algorithms (multi-resolution data integration algorithm)

Interface - provides interface function to enable communication between the agent and the processor
as well as to give the processor access to the agent’s data buffer.

The agent will selectively visit nodes in the network and fuse appropriate data. When it gets to the selected
node it will present its credentials and obtain access to the node’s local data or services [129]. The agent
may collect the data or perform functions before leaving with the results.

A comparison between MADSN and DSN showed a 90% savings in data transfer for MADSN over DSN
because of savings made in avoiding transfer of raw data. In some cases though, this was despite the
overhead introduced by having agents created and dispatched [97]. In another study a model that incor-
porated collaborative signal and information processing (CSIP) techniques was applied and an analysis of
performance between MADSN and DSN conducted to measure energy consumption and execution time.
Again, in that study MADSN outperformed DSN [101].

The benefits of the MADSN approach can therefore be summarised as follows:

1. It requires less network bandwidth since only the agent is transmitted as opposed to large quantities
of data.
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2. It is more scalable since performance does not depend on the number of nodes in the network.

3. It is extendable since agents can be adapted to perform different tasks within the network.

4. If a connection were to go down the mobile agent could transmit results when it was re-established.
Therefore performance is not greatly affected by the reliability of the system.

[99]studied the use of mobile agents for data fusion in a WSN running MADSN and focused on creating an
optimum design of the itinerary component of the agent to improve performance and minimize resource
usage. [100]showed that MADSN could be successfully applied to the real-world problem of vehicle
classification in an unattended ground sensor system. The study showed, however, that classification
accuracy was low (about 23%) when only one sensor was used but improved to about 80% when a
multisensor array was used. Target classification accuracy with a single sensor was high (about 75%)
only when the target was in close proximity to the sensor.

2.1.3 Autonomic Wireless Sensor Networks (AWSN)

[74]introduced the concept of the autonomic wireless sensor network. They proposed that mobile agents
could be deployed in the network to facilitate autonomic computing. Autonomic computing means the abil-
ity to self-manage, self-maintain as well as interact with a user of the network at a policy rather than hard-
ware level. The purpose of interaction would be to allow interoperability with legacy systems if needed.
Mobile agents in that context would support cooperation and negotiation in the system via relevant pro-
tocols and a suitable agent communication language. The mobile agents would introduce flexibility in
terms of the ability to modify agent code through agent migration or agent adaptation. The idea here is
that an agent could evolve as system policies evolved. In modelling autonomic behaviour, an AWSN also
uses the self-knowledge, self-protection and self-interest characteristics inherent in mobile agents of multi
agent systems.

Autonomic behaviour in Marsh’s system includes the ability to handle sensors which have been rendered
inoperable due to some type of damage, and the system can put into effect strategies to deal with that.
For instance, the authors suggest that the system could make an estimate of data lost due to system
damage and effect nearby sensors to increase their sampling rate to compensate. It could also mean
a reconfiguration of the routing topology to minimize or eliminate message loss. The AWSN concept is
closely related to the multi agent system framework and incorporates some of the same ideas including
that of entities migrating from node to node while making ’intelligent’ decisions. Figure 2.2 shows the
setup of the experiment.

[91]and [122], building on this idea of an autonomic wireless sensor network, proposed an agent-based
approach to implementing intelligent power management. In their work they promote the use of agents in
intelligently activating or deactivating nodes for power conservation based on interpolation. For example,
the following criteria are used to decide whether a node should be put to sleep: a node is considered
redundant if the remaining nodes can interpolate the temperature at its location to a desired degree of
accuracy. Redundancy in this context means that the node is not needed since the other nodes or the
network can operate effectively without it.
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Figure 2.2: Setup of the intruder detector experiment, each node houses an agent, taken from [74]

In the authors’ scenario, a coordinator agent is appointed and aggregates all calculations performed by
other agents in deciding whether deactivation should occur or not. The coordinator agent sends out
requests to other agents to calculate the components of the interpolation function used and send that
result back to the coordinator. The coordinator then calculates the actual interpolated temperature. The
coordinator then requests the temperature from the appropriate agent and if the two values fall within a
given error range the node is put into sleep mode.

It must be noted, however, that the issue of power management is influenced by a number of other net-
work characteristics such as coverage, latency and longevity. Any power management scheme would
have to balance the tradeoffs in making decisions on how power can be conserved. In the above exam-
ple, the inherent autonomic characteristics of the network itself are used for efficiently managing power
usage. Although a promising approach, this concept has not yet been implemented in agent-based WSN
deployments.

2.1.4 Mobile Agent-based Wireless Sensor Networks (MAWSN)

[23]identified that the operation of MADSN was really based on three main assumptions. First, that the
network had a cluster-based architecture, second, that each source node (nodes with data) was one hop
away from the clusterhead, and third, that the redundant data collected could all be fused into one packet
of fixed size [23, 80]. Those restrictions in a real-world context seemed to impose too strict limitations on
the applications that could make use of the architecture and excluded many systems which did not boast
any or some of these features.

Identifying this as a problem, [23]proposed MAWSN as an alternative architecture to address networks
where the features needed for the MADSN approach to work were not evident. Previous work done by
[80]showed that in multi-hop environments without clusters, mobile agents could be employed to elimi-
nate data redundancy by employing context-aware local processing techniques, use data aggregation to
eliminate spatial redundancy with sensors that were of close proximity to each other, and reduce commu-
nication overhead by combining tasks. They were able to reduce information redundancy at three levels:
the node level, the task level and the combined task level.
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At the node level mobile agents were assigned processing code specifically targeting the requirements
of the specific application. The result was that the mobile agent only needed local processing of that
data requested by the application thereby reducing the amount of data transmitted as only relevant data
was extracted from nodes for transmission. At the task level, the mobile agent aggregated sensed data
from individual nodes when visited. Finally, at the combined task level, the mobile agent used the packet
unification technique to unify shorter data packets to one longer packet again reducing the number of
transmissions. MAWSN built on the encouraging results in [80]and experimentally showed improvements
in energy consumption for data packets transmission over the more traditional client-server based WSN.

Concurrently with the above work, [119]proposed a framework aimed at implementing a wide variety of
sensor network applications. Their aim was to create an architecture that allows multiple applications to
share a network and permits scalable deployments that can evolve over time. In their design autonomous
agents are deployed in the network with a particular agent having the ability to be on one or more nodes.
Their framework is built atop TinyOS and its associated virtual machine Mate’ [65]and agents run on
Crossbow motes. The agents were shown to use resources only on those motes they visited so resources
in the network were used more efficiently. Agents were able to read sensor values, start devices and sent
radio packets if required.

In a data collection experiment aiming to find the maximum value in a field of sensor readings, an agent
was injected into the network via broadcast. After arriving at a node, it re-broadcast itself if the reading at
the current node was greater than that at the previous node. Agents stopped propagating once the region
with the maximum sensor reading was reached. This was done by incrementing a count value when an
agent arrived in the area. Once that value went over a pre-defined threshold the last agent to enter the
area could issue a notification message to the processor.

Analysis of the experiment showed that as the size of the network increased, a smaller proportion of
the network needed to be active. This meant that in large networks agents stayed on nodes only long
enough to perform their task and quickly release resources for other task execution. The conclusion of the
experiment was that the agent model presented was successful in showing that it could scale up without
having to occupy all nodes on the network in performing tasks; however some areas for future work were
identified. The first is security to ensure that unauthorized agents are not able to mount energy-depletion
and denial-of-service attacks among others. The second involves giving agents the capability to query
nodes for information such as processing power and energy. The third area involved giving agents the
ability to cache their code on a node to reduce the number of agent transmissions.

In a similar approach [61]describe the agent oriented programming paradigm for development of intelligent
sensor networks. They implemented a test application using the Java Agent Development Framework
(JADE) [53]aiming to develop an intelligent ground sensor network. The application consisted of an
Unattended Ground Sensor Network (UGSN) used to monitor moving targets with agents analyzing the
data being acquired by nodes. In the experiment, information from the sensors were correlated and fused
by reasoning agents using a fusing algorithm (the majority voting ordinary technique) suited for distributed
information fusion. A special agent called the Target Agent (TA) is created on the node where the first
sensor trigger occurs. The TA then reasons with its neighbours and after correlating their sensor data,
decides what node it should migrate to next. The objective of migration is to get closer to the target being
tracked. After each move the TA performs data fusion using the new data available on its host node.
Through the TA, the network as a whole, decides when external applications need to be updated and
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what information should be sent to those applications.

The experiment was successful in its sole aim of showing that agents were suitable for distributed infor-
mation fusion. Distributed information fusion is the idea, quite similar to aggregation, that data generated
by nodes in a network can be efficiently combined in-network instead of transmitting all raw data to a sink
for processing. The main advantages of this approach are identified as:

1. reduction in data redundancy since we have agents deciding whether data is important enough to
be used.

2. reduction in power consumption in having all data sent directly back to a central location.

3. conservation of communication bandwidth by limiting the exchange of data between nodes as much
as possible.

The advantages of agent-based distributed information fusion parallel those exhibited by other systems,
particularly query-based systems that incorporate in-network aggregation. Query-based systems are
addressed in more detail in section 2.2.

2.1.5 Multi-Agent Systems

Although the idea of using agents in wireless sensor networks is widely supported by the literature
[96, 101, 124, 99, 80] , the actual use of multi-agent systems in WSNs is not as widespread as one
might expect [123]. There are of course the big problems of deployment, testing and debugging of such
systems on what is essentially a distributed application with minimal interfaces to support user interaction.
There have been real deployments using agents [129, 119, 106, 80]but multi-agent system deployments
are still rare. [123]propose a methodology for multi-agent deployment. They start with a base station
implementation for the agent which leads to a distributed implementation where agents are mapped to
nodes, using either one-to-one, many-to-one or one-to-many mapping. This mapping is used to model
the interaction expected between agents and the base station, as well as iron out communication and
interaction rules between agents. These first two stages are carried out on a device with more processing
power like a laptop or desktop. In the third and final stage, the statements and rules governing agent
behaviour are translated to the language of the WSN system hardware that will be hosting the agent. The
result of the last stage is a topology in which the load of executing an algorithm is distributed among the
agents which can allow faster response times for complex algorithms. In addition, it can also result in a
reduction in the number of transmissions in the network since packets which previously had to be routed
to the base station for processing can now be processed by an agent on a node or on a neighbouring
node.

2.1.6 Wireless Sensor Nodes as Intelligent Agents

In the examples described above, agents are pieces of code injected into the system, gathering data,
making decisions and migrating between nodes in some cases. Some research, however, has investi-
gated the concept of having nodes themselves act as intelligent agents. [79]use intelligent agent theory
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to model sensor behaviour, viewing the WSN as a network of distributed autonomous nodes with the ca-
pability of making decisions. They also propose using artificial intelligence strategies on nodes to enable
decision making, selecting a rule-based expert system that makes use of locally collected information on a
node to make step-wise decisions. There is also a proposal to incorporate some fault-detection strategies
so that nodes can detect failing neighbouring nodes and make routing decisions using that information.

The work also selected the directed diffusion routing protocol [54]since it presented a localized, data-
centric protocol endowing each node with the same routing, sensing and aggregation capabilities. In
addition, directed diffusion promotes a view where nodes use local data to make decisions; a view mir-
rored by [79] in the approach taken in their work.

2.1.7 Agent-based Middleware

In general terms, middleware sits between the operating system and the application with its main function
being to provide support for development, deployment, execution and maintenance of sensing applica-
tions [105]. There are a number of categories of middleware based on the objectives of the approach
and the way in which the wireless sensor network is viewed. With some, the main goal is to provide a
dynamic reprogramming capability while others seek to provide a platform-independent model on which
sensor network programs can be written and executed. Other approaches try to provide a cross-layer
management approach and provide functionality for manipulating other services like routing, etc. Informa-
tion extraction which is ultimately the goal of the sensor network applications built using these models is
supported by the services provided by the particular middleware approach. Approaches include the use
of virtual machines which in many cases are application-specific but reduce the amount of code that has
to be transmitted and therefore reduces the cost of communication, as well as modular programming ap-
proaches which allow easier and more efficient reprogramming of sensor nodes [117]. Some agent-based
middleware will be described below.

Mate

Virtual machines (VMs) provide one middleware solution to the problems posed by wireless sensor net-
works. In WSNs the greatest drain on energy resources is the cost of communication, so if the traffic
needed to reprogram motes could be reduced this could lead to a longer network lifetime as well as the
ability to reprogram more frequently. Mate is a middleware approach that abstracts high-level operations
into virtual machine bytecodes (see figure 2.3). As a result a VM program can be very short, bytes long
instead of kilobytes. Mate, therefore, is a virtual machine designed for sensor networks [65]and forms the
basis for many agent-based information gathering applications. For this reason it is evaluated here.

Mate is a bytecode interpreter, running on TinyOS and provides a high-level interface for creating small
(<100bytes) but complex programs. Mate is focused on energy conservation in transmission of code and
breaks code into small sections called capsules (referred to as agents by some), each 24 bytes long.
Programmers write applications and the system injects them into the network using certain algorithms
that minimize energy and resource usage. The small size of the modules makes it easier to distribute
into the network. Mate specifically targets the constraints of limited bandwidth and power by allowing
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Figure 2.3: Construction of a Mate virtual machine in compiling and running a generated program taken
from [77]

adjustments or reprogramming of capsules before they are issued to the network.

Mate is a general architecture that allows a user to create a wide variety of virtual machines. A user builds
a Mate VM in three steps [105] :

1. The user selects a language that defines a set of VM bytecodes representing the basic functionality.

2. The user selects the execution events. Each event has its own execution content which runs when
an event is triggered.

3. The user selects the primitives to be used. These are operations that provide functionality beyond
that of the selected language.

A set of files are generated after these steps have been executed. Some will build the VM which will run
on the motes, others a scripter program with information on the language and primitives selected. The
user can now construct programs in the scripter which will be compiled down to the VM-specific binary
code. These bytecodes are then issued to the network and processed by a VM there which will execute
it.

To reprogram motes, the user needs only add one mote with the new capsule to the the network. When
a mote hears a new capsule it immediately starts forwarding it until every mote in the network has been
updated.

The advantages of Mate, therefore, are the simplicity of programming for the sensor network as well as
the ease with which the network can be reprogrammed. The authors have identified future work as being
the creation of propagation algorithms for larger programs, security and scripting languages that can be
compiled to a Mate VM.
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Figure 2.4: The Agilla programming model taken from [34]

Agilla

Agilla is a mobile agent middleware based on Mate that allows quick deployment of adaptive applications
[33, 34]. Instead of creating capsules which are flooded throughout the network, Agilla allows the user to
create mobile agents which can be injected into the network. Agents are dynamic and intelligent, and can
coordinate and collaborate locally or through remote invocation. These agents can clone themselves and
move from node to node as they perform tasks. Agilla affords more flexibility because it allows applications
to decide how agents in the system should migrate and spread in the network while maintaining their code
and state.

The Agilla Model

Each node can have a maximum of four agents and addressing is done using the geographic location
of nodes instead of IDs. Agilla can therefore be used in running applications over geographic regions
and to allow geographic routing for any multi-hop interactions [33]. Inter-agent coordination in Agilla is
facilitated using a tuple space and an acquaintance list which are maintained on each node. Each node’s
tuple space is shared by local agents and remotely accessible. Global tuple spaces are not supported
due to the energy and bandwidth constraints, rather separate local tuple spaces are maintained by each
node and agents can access remote tuple spaces using special instructions provided in the middleware.
Each node also maintains an acquaintance list containing the location of all one-hop neighbours and local
agents can access it via a number of provided functions. Figure 2.4 shows the programming model for
the Agilla system.

[34]used Agilla to successfully deploy fire and tracker agents in a fire tracking application and demon-
strated the reliability and efficiency of the exercise in this case study [33]

The Fire Tracking Application
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Background : a fire starts in a region of the network and as it spreads tracker agents crowd round it
repeatedly cloning themselves until a perimeter is formed. Once that perimeter is formed a fire fighter
is informed. The fire fighter injects a guidance agent who is responsible for guiding the fire fighter along
a safe path to the fire. The study focused on the tracker agent, leaving the guidance agent and the
development of a safe-route algorithm to future work.

Fire Agents

Two types of fire modelling agents were used, static fire agents and dynamic fire agents. Static agents
simply insert a fire tuple into the local tuple space and then repeatedly blink a red LED (visual indicator of
network state). These agents are used to create fires of different shapes. The dynamic agent models a
spreading fire. It inserts a fire tuple upon arrival at a node, blinks the red LED a number of times, clones
itself onto a random non-burning neighbour and repeats the blinking. The cloning and blinking process is
repeated until every node is on fire. The rate of spread can be controlled by the number of times a node
blinks between cloning operations.

Tracking Agents

A fire tracking agent is responsible for discovering a fire and forming a boundary around it. The tracker
agent inserts a tracker tuple when it arrives at a node. Other tracker agents will use this tuple to check
whether a neighbouring tracker agent is still present on the node. If the node a tracker agent is on catches
on fire the tracker agent dies. A reaction is registered when this occurs, the tracker agent will turn off all
LEDs, remove its tuple and stop functioning.

The life cycle of a tracker agent is as follows:

It repeatedly checks whether any of its neighbours are on fire. If there are none, it moves to a random
neighbour and repeats the check. If, however, a neighbour is on fire it enters a tracking mode and lights
up its green LED and repeats the following. It determines the locations of all neighbours that are on fire
and for each non-burning neighbour within a certain distance of the fire clones itself to those nodes. This
process is repeated until the fire dies. Periodically checking for neighbours close to the fire allows the
agent to adjust the perimeter. Once a fire was started, a tracker agent was injected next to it. This allowed
the investigators to focus solely on the efficiency of perimeter formation and not on fire discovery as well.

The experiment was successful in a number of ways. First, it demonstrated the use of Agilla in deploying
complex applications. Second, it showed that multiple applications could share the network at the same
time (fire-simulation and tracker application). Third, it showed that mobile agents can be used to success-
fully program WSNs. Experiments on a 26-node MICA2 network showed that tracker agents each 101
bytes long were able to form a perimeter around a static as well as a dynamic fire. It was also evident that
the efficiency of perimeter formation, in the case of static fires, depended to a great extent on the amount
of agent parallelism in the system. The authors have identified areas of future work aimed at allowing new
instructions to be added to the network after deployment and also allowing the instruction set to be cus-
tomized depending on the agent being deployed. [33]describes the experiment and its results in greater
detail.
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Figure 2.5: Architecture of Impala system taken from [120]

Impala

Impala can be considered another mobile agent-based middleware approach. Its middleware architecture
allows a user to create modular, adaptable and maintainable applications for WSNs. The adaptation
facilities allow changes to be made at runtime in an effort to improve energy-efficiency, reliability and
performance of running applications. The idea is that given the need for long-term management of a
sensor application, a middleware layer that can update and adapt applications dynamically, switch to
new protocols easily at runtime is a big advantage. Impala, therefore, is a middleware layer that acts
as an operating system, resource manager and event filter upon which applications can be installed and
executed [120]. It was specifically designed for a wildlife monitoring project, ZebraNet, also detailed in
[120].

System Architecture and Functionality

The system architecture is depicted in figure 2.5. The architecture’s upper layer contains all application
protocols and programs for ZebraNet. In the lower layer are three middleware agents: Application Updater
(AU), Application Adapter (AA) and Event Filter (EF). The AU receives and transmits software updates to
the node via the wireless transceiver, the AA adapts the protocols to different conditions at runtime in a
bid to improve energy-efficiency and performance and the EF collects and sends events to the system for
processing.

A program module is compiled into binary code before it is injected into the network. Linking is performed
by the updater on every node and when all modules in an update have been received the module is
linked to the main program. Modules are linked independently. Agents work autonomously making the
network more fault-tolerant and better able to self-organize. It is not suitable, however, for resource-limited
systems.
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Impala uses an event-based programming model where the AA, AU and applications are programmed
as a set of event handlers called by the EF when appropriate events occur. The EF controls various
operations and starts a number of processing chains including timer, send, done data and device events.
Based on different scenarios such as improving energy efficiency or performance, the AA will adapt a
particular application. The AU is then responsible for effecting software updates while being cognizant of
such issues as resource or bandwidth constraints and node mobility. If, for example, the radio transceiver
on a node was to fail, the EF would call on an appropriate handler in the AA. The AA would determine
the impact of that failure and decide whether an updated or new application that takes into account these
issues should be issued to the network. The AU would then be responsible for carrying out the software
update itself.

SensorWare

Although not strictly considered mobile agent architecture by some, SensorWare [15]is based on a script-
able lightweight run-time environment suited for nodes with energy and memory constraints. It is formally
called an active sensor framework (ASF) where mobile scripts less than 180Kbytes are used to make the
network programmable and open to users.

The difficulty in designing an ASF has been identified as determining how to accurately define the ab-
straction of the run-time environment. Any abstraction would have to result in compact code, resource
sharing, multiple users being able to access the system and portability to different platforms. With these
in mind they designed a node abstraction that allows multiple users access to the modules on a node
while still being able to create new modules.

The authors focused on defining a framework that allowed the description and deployment of distributed
algorithms for wireless ad-hoc sensor networks. SensorWare’s language model can effectively express
these algorithms while simultaneously shielding the user from low level details while allowing sharing of
node resources among several concurrently running applications or many users. The language model
focuses on the properties of efficient algorithms for sensor networks while application development for a
real network is underway. Figure 2.6 shows the architecture of the SensorWare system.

SensorWare is also quite effective at dynamically deploying the distributed algorithms represented in the
language. Given that the nodes are memory-constrained and cannot store every application in local mem-
ory the method of dynamic deployment has to be effective. Rather than each node being programmed
by the user the SensorWare approach gets the nodes themselves to program their neighbours. The user
injects the program into the network and the program is autonomously distributed to the nodes that should
receive it. SensorWare is described in detail in [14].

TinyLIME

Unlike many of the examples described above that use a single controlling processor or sink node for data
collection and processing, TinyLIME instead promotes a distributed approach. Multiple mobile clients or
agents are distributed with the ability to receive data only from the sensors that they are directly connected
to. The clients can share this locally collected data through their wireless interconnections [28]. TinyLIME
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Figure 2.6: Architecture of sensor nodes running SensorWare taken from [15]

is built on the original Linda in a Mobile Environment (LIME) architecture [84]and deployed on Crossbow
motes. All base stations run an instance of moteAgent, a LIME agent that among other functions main-
tains data freshness and historical information on recent sensed values. TinyLIME also supports data
aggregation both over values sensed by multiple sensors and those sensed by a single sensor.

2.2 Query-based Approaches

Many researchers have taken the view that the sensor network can be considered a database from which
information has to be requested and retrieved. The reasons for this are as follows: first, the network is a
collection of data albeit that data is dispersed across multiple nodes. Second, data needs to be retrieved
from the network, and like a conventional database one needs to be able to query the network for what is
desired and get a response. Third, the nodes in the network are of interest primarily in as far as the data
they generate, this can also be termed a data-centric view of the WSN.

Many of the sensor network databases use a query language similar to the Structured Query Language
(SQL) for constructing queries.

SQL is the most popular language used for creating, modifying and retrieving information from relational
databases. It consists of a number of clauses including SELECT - FROM - WHERE and GROUPBY clauses
which allow selection, join, projection and aggregation respectively. SQL-type queries constructed for
WSNs are quite similar to those of traditional SQL both syntactically and semantically. The FROM clause,
for example, can be used to either specify sensors or data stored in tables. The GROUPBY clause allows a

Cogent Computing Applied Research Centre—Report COGENT.002

28/2/2008

28



SELECT statement to collect data across multiple records and group the results by one or more attribute
values. In the WSN querying context, for example, records can be grouped by the node’s id or by locations,
etc. if these are attributes retrieved in the query.

In traditional database systems, data is accessed via an application or directly via a front end. Such
applications insulate the user from the inner workings of the database system while allowing easy and
meaningful queries to be applied to it in retrieving the necessary information. In a similar way, the sen-
sor network can also be interfaced using a suitable application. The application would act as a query
processor-type interface to the network taking into account the power and computation resource limita-
tions on the devices in the network. According to [114]the challenge in query processing is not in pro-
cessing data as quickly as possible but rather in figuring out a way to effectively respond to queries while
transmitting as little data as possible. Several researchers have noted the benefits of this query-processor
interface approach.

[12]describe a view of the network as a database with two methods for processing queries issued to the
network: warehousing and distributed approaches. With the warehousing approach the processing of a
query is separated from the interaction with the network itself. Essentially, the data is extracted and stored
at a centralized location for processing. Queries in this case are pre-defined and usually ask for aggregate
historical data, for example, "for each rainfall sensor, display the average level of rainfall for 1999" [11].
This model really mirrors a client/server approach to data collection as is found in a traditional distributed
network [110].

There are two main disadvantages to this approach, however. First, it is not well suited to requests for
continuous data, either because it is not possible to retrieve the required data from the node or because
data is not retrieved frequently enough within the network to be able to answer a query [11]. Second is
the high energy consumption that occurs when transmitting large quantities of data from the node to the
centralized database and even more so in the case of a continuous stream of data, making the process
very energy-inefficient [11, 12].

Alternatively, [11, 13, 12]propose a view of the network as a set of distributed databases where the
composition of the query in effect determines what data is retrieved. Such queries have the advantages
of efficiency because only what is required is actually retrieved, as well as flexibility since various queries
can be formulated depending on what information is needed. This approach also takes advantage of the
processing power on the node itself and where possible processes queries or parts of queries on them.

[40]note that data generation and routing in the sensor network can be seen as similar to the concepts
of data storage and query processing in traditional databases and so also view the sensor network as a
database. They examine the challenges in implementing the network as such and identify the need for
robustness of data access given the possibility of node failure and noise that can affect readings. The idea
is that by creating a standard querying interface that allows less restrictive query semantics, approximate
results can be obtained which can help in producing an energy-efficient implementation of the ’sensornet
database application’. [40]are also of the view that query optimization is closely linked to routing and they
propose an adaptive approach that takes into account the volatile nature of data and communication in
the network.
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Figure 2.7: A sensor network running the Cougar system executes a simple aggregate query taken from
[37]

2.2.1 COUGAR

The COUGAR approach has been proposed in [11, 13, 12, 132]and more fully described in [133]. It
builds on the Cornell PREDATOR object-relational database system [111]and models each sensor in the
network as an abstract data type while signal processing functions are modelled as abstract functions
returning sensor data. The network is viewed as a system where each node is a ’mini database’ holding
part of the data contained by the whole. COUGAR allows the issuing of declarative queries for information
requests and uses a query optimizer to plan an in-network processing strategy. Queries in Cougar are
SQL-based and are posed to a virtual table called sensors with one row per node per instant in time and
one column for every attribute. (The same model is used in TinyDB and is described in section 2.2.5).

A query proxy layer is placed on each node and interacts with both the routing and application layers in
the system. A query optimizer is placed on a gateway node and distributes the query processing plans
after it receives the queries from the user. COUGAR uses catalogue information and query specification
to create the query plan which describes not only the flow of data between sensors but how information
is to be computed on individual sensors. Once the plan is complete it is sent out to all relevant nodes.
During execution, data is returned to the gateway node. In addition, a query proxy can inject queries into
the network from arbitrary or specified nodes as it performs high-level services. Figure 2.7 shows how
the system executes a simple aggregate query. COUGAR is especially useful for executing continuous
queries.

A big advantage of COUGAR is that it shields the user from needing to have any knowledge of the under-
lying network, or how data is generated and processed. A second advantage is that it increases efficiency
in terms of energy consumption since in-network processing is allowed thereby reducing the amount of
data that has to be sent back to the gateway node [31]. There are other architectures which promote
this distributed approach to query processing, for example, IrisNet, described in [85], SINA which is dis-
cussed in Section 2.2.2 and TinyDB which is detailed in Section 2.2.5 below. Both TinyDB and Cougar
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Figure 2.8: Model of a sensor network and SINA middleware taken from [24]

follow a very similar query processing model and address the resolution of both simple and aggregate
queries. They both, however, do not facilitate the processing of other types of complex queries such as
spatio-temporal or queries which target only a subset of the network.

2.2.2 Sensor Information Networking Architecture (SINA)

Like COUGAR, the SINA architecture described in [24]promotes a distributed database query interface
that emphasizes in-network processing and reduction in power consumption in the network. It views
the network as a collection of datasheets (a spreadsheet) with each datasheet containing the attributes
relevant to the node it describes. A cell in this scheme represents an attribute and the collection of
datasheets form what is called an associative spreadsheet or spreadsheet database representing the
network. Each cell is therefore referred to using an attribute-based naming method.

SINA also makes use of clustering of low-level information in the network to increase efficiency. Clusters
are formed from aggregations of sensors based on their power levels and proximity. Recursive aggrega-
tion can also be used to produce a ’hierarchy of clusters’. A cluster head within a cluster can then be
elected to perform key functions like information filtering, fusion as well as aggregation [24]. Figure 2.8
shows a model of a network with the SINA middleware.

SINA uses the sensor programming language Sensor Query and Tasking Language (SQTL) which serves
as the programming interface between applications and the middleware. SQTL is a procedural scripting
language built from Structured Query Language (SQL) and messages written in the language can be
interpreted and executed by any node in the network, although messages can target specific nodes if
required. SQTL also supports the generation of information as a result of the occurrence of or change in
some phenomena (events). Three types of events are supported by SQTL. The first is an event generated
when a message is received by a node, the second is an event triggered periodically by a timer, and the
third is an event triggered by the expiration of a timer.

SINA modules run on each node in the network and allow querying as well as monitoring of events. Nodes
are aggregated to form clusters and elected cluster heads perform filtering, fusion and aggregation tasks.
The user issues a query and the SINA architecture selects the most suitable methods for information
gathering and distribution based on the type of query issued as well as the current status of the network.
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A node receiving the query will interpret it and request information from neighbouring nodes in evaluating
it.

A number of information gathering mechanisms are employed to help reduce resource consumption and
increase response quality. These are: sampling operation, self-orchestrated operation and diffused com-
putation operation, described in detail below.

1. Sampling Operation - for some applications a query may need to target the entire network in
eliciting information of interest. Responses from all nodes in a network may result in response
implosion [107], however, the effect can be reduced if nodes are able to make decisions on whether
they should respond or not. SINA implements this ’decision-making’ capability by assigning each
node a response probability which determines whether they respond or not.

2. Self-Orchestrated Operation - in networks with a small number of nodes it is sometimes necessary
that all nodes respond in order to improve the accuracy of a result. SINA uses what is called self-
orchestration in an effort to reduce the problem of response implosion mentioned before. Here
each node suspends its response transmission for a particular period of time to help reduce the
likelihood of collisions occurring as could happen if nodes transmitted simultaneously.

3. Diffused Computation Operation - this method is used to implement aggregation functionality
in the network. Each node is first assumed to have knowledge of its immediate neighbours and
aggregation logic already programmed into the SQTL scripts is used to perform aggregation before
routing the result to a designated node.

SINA is therefore particularly suited for aggregate and queries for replicated data in a cluster-based net-
work configuration but does not address other complex queries like spatial or temporal queries which may
also be suited for processing in a cluster-based configuration.

2.2.3 Data Service Middleware (DSWare)

Like SINA and Cougar, DSWare [113]is a data-centric middleware approach to providing information re-
trieval services within a WSN. DSWare, however, is aimed at handling real-time events and integrates
a number of real-time data services while providing a database-like abstraction. In this way it can be
considered another database-like approach adapted to sensor networks. It provides services for reli-
able data-centric storage and implementing alternative methods for improving real-time execution perfor-
mance, as well as reliable data aggregaton and decreased communication which are aimed at conserving
the limited resources available within the network. Its architecture separates the routing layer from the
DSWare and network layers as DSWare provides components for improving power-awareness and real-
time-awareness of routing protocols (see figure 2.9).

There are five services/components available in this middleware approach and these are shown in figure
2.10.

1. Data Storage - this component allows storage of location-linked data so that future queries for
similar data would not mean having the query re-issued or flooded through the entire network. In
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Figure 2.9: DSWare architecture, taken from [113].

Figure 2.10: DSWare Framework taken from [113].
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DSWare data lookup is implemented using a hashing function that maps data to physical storage
nodes via a unique identifier while robustness is facilitated by using replicating needed data in
several physical nodes which can then be mapped to a single logical node. Queries targeting that
data can be directed to any one of these nodes in an effort to avoid collision and sustained overload
on a single node.

2. Data Caching - this service provides copies of data that is requested often and spreads it through
the network using the routing path. This serves to accelerate execution of the query while reducing
communication aimed at accessing data for query processing.

3. Group Management - this component facilitates cooperation among nodes to accomplish more
complex tasks. In some cases, for example, requested information requires multiple sensors com-
bining their values to calculate a result. The group facility therefore can create a group when a
query is issued. Nodes receiving some information on this group can decide whether they match
the particular criteria described for that group. The group then manages the values of relevant sen-
sors in accomplishing the given task after which the group is dissolved. In some cases, the query
itself may expire before the group can be dissolved.

4. Event Detection - DSWare is based on event detection, an event being an activity that can be
monitored or detected in the environment and is of interest to the application. An event is pre-
registered depending on the application and can be classified as either atomic events (events that
can be determined based on the observation made by sensor) or compound events (events than
cannot be determined directly but rather need to be inferred from other atomic or ’subevents’).
Like COUGAR, DSWare uses statements in a SQL-similar language for registering and cancelling
events. After parsing the statement defining the event, DSWare generates the query execution plan
and calls on the methods required to register, execute and cancel the event.

5. Data Subscription - this service is used to aid in more efficient data dissemination. If multiple
nodes request the same data the subscription service puts copies at intermediate nodes which
can then be accessed by the requestor nodes. This helps in reducing communication and helps
conserve resources within the network.

6. Scheduling - this component provides a real-time scheduling mechanism as the default method
with the option of adding on an energy-aware mechanism if the first has already been successfully
implemented. All components of DSWare are scheduled using this component.

DSWare, because of its emphasis on providing event detection services and the mechanisms it provides
for data caching, group management and data subscription, is particularly suited to aggregate queries
as well as queries for replicated data. These aggregate queries, however, are simple aggregates over
an attribute and do not include more complex aggregate queries where data from multiple clusters, for
example, could be combined to resolve such queries.
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Figure 2.11: Fjords query environment taken from [67].

2.2.4 Framework in Java for Operators on Remote Data Streams (Fjords)

The Fjords architecture presented in [67]shows how processing multiple queries can be managed over
multiple sensors while allowing more efficient resource usage and keeping query throughput high. The
focus in the research is on creating the underlying architecture that will support the processing of multiple
queries over sensor data streams.

The architecture comprises operators configured for streaming data and Fjord operators called sensor-
proxies whose function is to serve as a mediator between the query processing plan and sensors. Data is
allowed to flow into the Fjord from the sensor and then pushed into the query operator. Query operators
are not active pulling in data but rather wait till data is sent to them from the sensors. The fjord, in addition
to combining streaming and fixed data also processes multiple queries and combines them into a single
plan. Figure 2.11 shows the query environment.

The Fjords architecture is therefore suited to continuous queries and addresses a number of issues im-
portant to query processing. It does this in two ways. First, by using proxies, non-blocking operators and
query plans which allow streaming data to be pushed through operators that pull from data sources, it
allows merging of the both stream data and local data. Second, by letting proxies serve as mediators
between query plans and sensors it allows query processing while at the same time taking into account
power, communication and processor restrictions in the network.

The work here is similar to the COUGAR project in that they both focus on processing of streams of
sensor data, however, COUGAR although it does incorporate in-network processing in the form of data
aggregation, it does not focus specifically on energy efficiency and the resource constraints on sensor
devices but rather on modelling the streams of data using abstract types. Fjords, however, look more
closely into improving efficiency for processing of data streams. Although a viable approach for continuous
queries it does not address complex queries or even aggregate type queries to any great extent and is
more concerned with managing simple query processing over multiple sensor data streams.
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2.2.5 TinyDB

All the approaches to query processing described above have one thing in common: they view query pro-
cessing in the network as a modified version of that in traditional databases. In essence, each node in the
network is seen as a generator of named data against which queries can be issued. [71]describe a dis-
tributed database approach that attempts to improve energy consumption by applying varying techniques
for aggregation and optimization within the network. This aggregation service is called Tiny Aggregation
TAG) (section 3.3.3.1) and is designed specifically for TinyOS [50]motes. TinyDB has been one of the
more widely used and popular query processing systems and considerable work has gone into extending
its capabilities both in terms of the types of queries that can be issued as well as improving its operation
by integrating different routing protocols. TinyDiffusion [109]is one such example. It has been widely used
in a number of real-life deployments as well as inspired the research into other query processing systems
and hence will be discussed in full in this section.

TinyDB uses acquisitional query processing (ACQP) as described in [72]for in-network query processing.
In terms of practical applications ACQP focuses on the location and cost of accessing data as a way of
reducing power consumption. There is no assumption made that data exists at a particular location rather
queries are only issued where it is known that data exists.

TinyDB can therefore be considered an ACQP engine, a distributed query processor that runs on all nodes
in the network. TinyDB was designed to be deployed on the Berkeley Mica mote platform which runs the
TinyOS operating system (Mica motes are arguably one of the most popular of WSN hardware platforms.)

Query Syntax

Queries in TinyDB are quite similar to SQL with the FROM clause being used to either specify sensors or
data stored in tables (called materialization points).

Sensor tuples are stored in a table (sensors) with one row per node per instant in time and one column
representing each attribute. An attribute could be light, temperature, sound, etc. Records in this table are
stored for a short period usually and only ’acquired’ when needed to resolve a query. An example of a
query could be:

SELECT nodeid , light

FROM sensors

SAMPLE PERIOD 1s FOR 10s

This query states that each node should return its own id and light reading from the sensors table once
per second for ten seconds. The results are either returned to the user or logged. The sample period is
used to indicate when data collection should begin.

The sensors table is an unbounded, continuous data stream of values and can only be sorted or used
in joins via a specified window. TinyDB allows creation of windows via a CREATE statement where a
storage point can be defined for example,

CREATE
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STORAGE POINT recentlight SIZE 8

AS (SELECT nodeid, light FROM sensors

SAMPLE PERIOD 10s)

This statement specifies a node that will be used to store a stream of data. That data can be accessed
by other queries and can be used in joins with other storage points on the node or joins with data in the
sensors table. (In relational algebra a join allows one to establish links between data in different relations
or tables by comparing attribute values within them).

Time Synchronization

TinyDB adopts the Timing-Sync protocol presented by [36]which attempts to provide network-wide time
synchronization in the sensor network. The algorithm proceeds in two stages.

The first, the Level Discovery Phase , establishes a hierarchical topology for the network and occurs at
the point of network deployment. The root node is assigned a level 0 and initiates discovery by broadcast-
ing a level_discovery packet. This packet holds the identity and level of the sender. Neighbours receiving
the packet, assign themselves a level which is one more than the level of the node from which they re-
ceived the packet. These nodes then broadcast their own level_discovery packet to their neighbours.
Once a node has been given a level it ignores any further packets it may receive as a way of minimizing
congestion that occurs with flooding. The process continues until every node is assigned a level and
results in a hierarchical structure with only one root node at level 0.

The second phase is the Synchronization Phase . Here a two way message is used to synchronize two
nodes. Given two nodes A and B, A sends what is called a synchronization_pulse packet to B. This packet
contains the level number of A and the value T1 which is the time measured by its local clock. B receives
this packet at a time T2 which is equal to the time T1 plus the clock drift between the two nodes as well
as the propagation delay time. B then sends back an acknowledgement package at T3 which contains
the level number of B and the times T1, T2 and T3. A receives this acknowledgement packet at T4 and
can use these four time values to calculate clock drift and propagation delay. Node A can then correct its
clock so that it synchronizes to B. In this sender-initiated approach the sender synchronizes its clock to
that of the receiver.

The time synchronization process begins with the root node first sending a time-sync packet after which
receiving nodes initiate the message exchange with the root node as described above in the synchroniza-
tion phase. Once the nodes receive acknowledgement from the root node they adjust their clocks to that
of the root node. This process is carried out until all nodes are synchronized with the root node.

Aggregation Queries

TinyDB supports aggregation of data which in turn allows reduction of data prior to transmission. The
main difference between such queries in TinyDB and SQL is that the output to a query is a stream of
values for the former while it is an aggregate value for TinyDB. Each aggregate record will have a <group
id, aggregate value> pair and is time-stamped with an epoch number, all aggregates used to compute
a complete aggregate record share the same epoch number. The aggregate operators allowed are the
same as that allowed in a normal relational database system, for example AVG, MAX, MIN which compute
the average, maximum value and minimum values respectively for the attribute they are applied over.

Cogent Computing Applied Research Centre—Report COGENT.002

28/2/2008

37



Temporal Aggregates

The TinyDB system acknowledges that aggregates over values within a common sample interval are not
the only type of aggregate values that a user may want. In some cases a user will need to perform some
type of temporal calculation. For example, users of a habitat monitoring system may want to monitor the
temperature as a frost moves through a geographical area. This can be done by measuring the maximum
temperature over a period of time and reporting that temperature at set intervals. In TinyDB this can be
implemented as a sliding window query, for example:

SELECT WINAVG(TEMP, 60s, 5s)

FROM SENSORS

SAMPLE PERIOD 1s

The above query would report the average temperature over the last 60 seconds every 5 seconds with a
sampling rate of once per second.

Event-Based Queries

TinyDB also supports event-based queries which are generated either by another query or by some part
of the operating system, the language provides an EVENT clause for that purpose and the code that
generates the event is compiled into the node.

The EVENT and STORAGE POINT commands were added to the original TinyDB SQL-like query lan-
guage to allow more than just basic passive querying for simple environment data. It allows sensors to
also detect and initiate automatic events in the case of the EVENT command and to store a streaming
view of recent data in the case of the STORAGE POINT command [49]. An event in TinyDB is generated
either explicitly using the EVENT clause or via another query or even a lower-level part of the operating
system.

Continuous Queries

Continuous or lifetime-based queries are also supported using the LIFETIME clause as well as nested
queries and offline delivery queries which allow data to be logged for non-real time delivery. Materialization
points are used to implement offline logging.

Query Optimization

Queries in TinyDB are first parsed at the base station and then optimized to select the ordering of joins,
selections and sampling. The optimizer determines the lowest power consumption which takes into ac-
count not only the cost of data acquisition but also processing and radio communication. Data acquisition,
however, is the main source as it includes actions like sampling of sensors and transmission of query
results. Query optimization, therefore, is focused on reducing the number and cost of data acquisition.

Once a query has been optimized it is issued into the network in a binary format, where it is instantiated
and executed.

Query Dissemination and Routing

TinyDB uses semantic routing trees (SRT) to help determine whether a query is forwarded or not. Query
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1.

Figure 2.12: TinyDB architecture taken from [69]

dissemination and routing will be discussed later in more detail in Chapter 3.

Query Processing

After a query has been optimized and disseminated it is executed by the query processor. Execution
follows a simple sequence of sleep, sampling, processing and delivery. Nodes sleep for as much time in
an epoch as possible to conserve power and wake up to sample sensors and deliver results. The nodes
are synchronized so parent nodes can ensure that child nodes are awake to process messages. Results
are sampled and filtered based on the plan provided by the optimizer and then routed to the aggregation
and join operators further up the query plan. In terms of data delivery TinyDB allows prioritizing through
three schemes, naïve, winavg and delta for simple selection queries. The naïve scheme uses the first-in
first-out (FIFO) queue processing technique to empty the queue, and drops tuples if they do not fit in it.
The winavg scheme also uses FIFO but instead of dropping tuples, averages the two results at the top of
the queue to make space. In the delta scheme, a tuple is assigned an initial score determined relative to
the most recent in time and processes the highest score tuple first. If the queue is full the lowest score
tuple is dropped. Figure 2.12 shows the TinyDB architecture.

In summary, the TinyDB approach does allow quite a good deal of flexibility in the types of queries that can
be processed and shows increased efficiency in terms of power consumption using a number of query
optimization techniques. Some further work needs to be done on optimization of multiple queries as these
are not addressed as well as implementing more sophisticated data delivery prioritization techniques. The
authors stress, however, that with TinyDB using the ACQP method it is essential that data delivery, query
language and optimization techniques take into account the underlying hardware capability and semantics
in order to increase the likelihood of successful deployments.

Add-ons aimed at simplifying the deployment and development of applications for wireless sensor net-
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works, are also being developed. The Tiny Application Sensor Kit (TASK) is built on top of TinyDB for
that purpose [17]. This kit contains a relational database used for storage of sensor readings, a server
to act as a proxy for the network on the internet as well as a front-end that facilitates data selection and
recording. Other architectures with a similar purpose also exist, for example jWebDust described in [21].

Although useful, like the other query-based approaches in use TinyDB has its drawbacks. The queries
that can be issued are limited to those that target ’low level’ sensed values on nodes in the network or
those requiring the computation of simple aggregates like average, maximum, and minimum over some
attribute. It does not allow the creation of nested queries or even nested, aggregate queries. In addition,
the query language used cannot easily express spatio-temporal characteristics which are an important
aspect of the data generated in WSNs. Therefore, there is still room for improvement and expansion in
a query processing system that follows the same model but able to issue and process more powerful
queries.

2.2.6 Active Query forwarding (ACQUIRE)

Common to all of the query-based approaches described above is the clear distinction between the dis-
semination phase when the query is sent out and the response stage when results are sent back to the
querying node. ACQUIRE described in [108], does not distinguish between these two stages but rather
issues what is called an active query.

An active query, in addition to the simple queries for an attribute or attributes, also includes nested queries.
Each subquery can be a query of interest in a different variable or value. The active query is propagated
through the network node to node. At any point in time, an active node (the node carrying the active
query) uses data from a set of neighbouring nodes within a look-ahead of x number of hops and tries to
resolve the query or part of the query if it can. The number of hops used can vary, but has been analyzed
experimentally to determine what the most effective value is. The experiments in effect measured the
average number of nodes from which new information is obtained during query forwarding based on
different values for x and set that as the effective look-ahead.

Query Forwarding

Let us assume that a query Q with S sub-queries is issued by a node n. The look-ahead value is set to x
which means that each sensor can request information from sensors within x hops from it. On receiving
the query, the node does a number of things.

First, it checks whether its local state is up-to-date and if it is not will send a request to sensors within
x hops; this request is then forwarded hop by hop. The sensors receiving the request will forward the
information they have to the active node n. Second, using this information n resolves the part of the query
that it can and selects a node to forward the query to. Selection of a node to forward to can be random or
use other information that would most likely lead to further resolution of the query [108]. The idea is that
as the query moves through the network it gets progressively smaller as it resolved piece by piece. Once
the query is completely resolved the active query becomes a completed response and is routed back to
the original querying node. The path it follows can either be the reverse path or the shortest path to the
querying node. Figure 2.13 gives an illustration of the ACQUIRE mechanism at work.
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Figure 2.13: Illustration of the ACQUIRE mechanism given a one hop lookahead. At each stage of the
active query propagation the node carrying the query using information gained to partially resolve the
query, taken from [108].

Analysis of ACQUIRE has been restricted to networks exhibiting a regular grid topology. Given these
restrictions, however, ACQUIRE worked better than flooding-based querying (FBQ) mechanisms like Di-
rected Diffusion as well as had a 60-75% savings in energy consumption when compared to Expanding
Ring Search (ERS) [108]. In ERS, a querier first requests information from all sensors x hops away where
x is initially equal to one. If the query is not completely resolved at this stage it will send a request to
x+1 hops away and so on. ACQUIRE is most suited to complex one-shot queries for replicated data and
needs to be analyzed on more realistic networks where the topology is irregular or dynamic.

The reported evaluation of ACQUIRE is further limited as it uses mathematical modelling to analyse the
performance of the mechansim in terms of energy costs. It does not address implementation. Further,
the complex queries although including nested queries do not include queries where spatial or temporal
characteristics may be of interest.

2.2.7 Agent Sensor Queries Language (ASQue)

[83]sets the basic framework for the Agent Sensor Queries Language (ASQue) which aims to allow the
easy construction, execution and processing of queries within an ad-hoc sensor network. ASQue is
specified using a form of first order logic and as it is meant to be the only application level interface to
the hardware within the network a number of restrictions are imposed on the language. First, it has to
allow a portable implementation suitable for multiple WSN architectures; second, it has to be energy-
efficient in terms of its implementation; third, it has to eliminate the generation of error messages and
unnecessary query responses. In effect, the language is designed in such a way that its algorithms are
not unnecessarily resource intensive.

[83] describes the abstract syntax of ASQue which consists of only two sentences, a query sentence and
a response sentence. The language is simple given the resource, power and communication bandwidth
limitations of the network and its design specifically addresses the idea of eliminating runtime checking
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and the desire to ease the implementation of static analyses.

A query in ASQue has the following structure:

query(q_recipients,

interested_parties,

query)

where q_recipients evaluates to the set of sensors which should receive the query, interested_parties
are those sensors which should receive responses to the query and query is the query itself. To keep
ASQue simple and self-consistent each of these components (and those of responses) are statements in
first order logic (with equality).

A response in ASQue is a two-tuple:

response(r_recipients,

response)

where r_recipients are the nodes to which the response is addressed and response is the response
itself. Again, both are statements in first order logic with equality.

Of critical importance with the ASQue querying mechanism is the need to issue ’correct’ queries. This is
not only in an effort to reduce resource wastage but needed because of the lack of runtime checking. With
no runtime checking, however, comes the need for a user of the language to be confident that queries
constructed are indeed correct and meaningful. It is critical that the accuracy of queries between parties
be assured and that a ’trusted’ relationship exists between the host issuing the query and the sensor
nodes receiving it for processing. Ideally, sensor network developers should be able to formally prove
certain properties of a query before issuing it in a deployed network. Such properties may include type
safety, bounded resource use, an absence of deadlocks and livelocks, and so on.

In addressing these needs, the work on the ASQue mechanism focused on formal specification and vali-
dation of the language and a compiler was put forward as the first stage in achieving that goal. [29]details
the specification and validation of a parser for the language through design of a parser for the language.
The development of ASQue as an applicative language for query-based systems was seen as a viable
approach for a number of reasons.

First, it promotes the need for the information extraction mechanism to display ease of use and to clearly
express the user’s requirements, a view supported by many of the query-based mechanisms in use today.
A language based directly on a well-understood logic has the advantage of being simple to write and
understand (for humans) and symbolically manipulate (for computers) [30].

Second, given the limitations of the network, including those of resource, communication bandwidth and
power, the language is designed to eliminate the need for runtime checking as a way of maximizing
efficiency in utility of sensor network resources. Eliminating runtime checking in turn motivates the need
for sound analyses at compile time.

Third, with no runtime checking there is the need for a user of the language to be confident that queries
constructed are indeed correct and meaningful. It is critical that the accuracy of queries between parties
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be assured. Without this assurance, issuing queries could be risky in terms of potential resource wastage
and using the language under those circumstances could not be justified. The language was designed
with the idea that verification and validation would be done at compilation time in an effort to address
these issues.

2.3 Macroprogramming Approaches

In the applicative query approaches described above, the user must have some knowledge of what type
of queries or operations are to be issued as well as what raw data needs to be targeted in order to retrieve
the information. Although information is retrieved, in many cases, the user still has to make sense of what
it means and whether it is relevant or not. For example, a user could issue a query in TinyDB requesting
the average temperature over the network for a particular period of time. Once the results are received,
however, the user would then have to look at this ’information’ in deciding whether it indicates that a fire
has started. If it does, the user then has to decide what to do next, for instance, issue additional queries.
The ability to create a ’program’ where events are anticipated and response (further queries) issued is not
allowed in the system.

Macroprogramming approaches to information extraction aim to treat the wireless sensor network as a
whole by directly specifying global behaviour instead of programming individual nodes. It attempts to ad-
dress the issues raised above in the form of a global program that is defined in a high level language that
can capture operations going on in the network at a global level. A number of systems have been devel-
oped which incorporate global abstractions and in some cases couple them with node-level abstractions
in creating useful macroprograms. In this section some of the more popular macroprogramming systems
will be examined.

2.3.1 Node-level Abstractions

The underlying principle of macroprogramming is the creation of a global program that can capture net-
work level operations. These macroprograms ultimately have to target node level data in order to function
globally. A number of node-level abstractions have been proposed in the literature for modelling node level
data and are used by macroprograms to target the data within the network. The data is not accessed on
a low level, node by node basis but through this abstractions that provide access via logical ’collections’ of
nodes. The logical node-level abstractions proposed are usually based on one or more attributes within
the WSN. This can be a dynamic attribute like a sensed value (temperature for example) or a static at-
tribute like geographic location (in the case of stationary nodes). Following is a description of some of the
more popular node-level abstractions put forward in the literature.

Hood

[127]describe a neighbourhood abstraction called a hood (which is defined by a set of criteria for selecting
neighbours) and a set of variables to be shared within the hood. Hoods are mainly defined geographically
with nodes being included in hoods based on the number of hops from a node. For example, a hood
could be a one-hop or two-hop neighbourhood, over which temperature readings are shared or a one-hop
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Figure 2.14: Component model for an application with two neighbourhoods and two shared attributes
taken from [127].

neighbourhood over light and temperature readings. A node can therefore define multiple neighbourhoods
over different variables.

Whitehouse uses a broadcast/filter mechanism to allow data sharing and neighbourhood discovery. Shared
attributes are broadcast and receiving nodes cache any attributes of interest from valuable neighbours.
A neighbour’s value is based on how the neighbourhood has been defined. For example, a node may
define a routing neighbourhood that caches location information of valuable routing nodes [127]. Once
a neighbourhood has been defined and attributes broadcast, interested observers add the broadcasting
node to its neighbour list and cache the attribute or attributes of interest. Figure 2.14 shows a model for
an application with two neighbourhoods and two shared attributes.

Abstract Regions and Region Streams

[125]propose abstract regions, spatial operators used to hold local communications in regions which can
be defined in terms of radio connectivity or geographic location. A region in that sense would serve as an
identifier for neighbouring nodes who can then share data, identify each other, and reduce data among
them. Nodes could then be manipulated via their common interface. An abstract region could therefore
be defined as a relationship between a node and its neighbours and the main aim of this work is to move
away from the need to construct low-level mechanisms for routing and data collection and instead focus on
a higher level interface that is flexible enough to allow a user to implement queries. Such a system would
not, for instance, have to consider routing, data dissemination or state management in order to function
effectively, however it would still allow a programmer to create applications that can adjust to changing
network conditions as well as adjust energy consumption to improve accuracy and latency.
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Figure 2.15: The semantic streams query processing model taken from [128].

2.3.2 Semantic Streams

Semantic streams, a system proposed by [128]allows a user to issue queries over semantic values di-
rectly without identifying what data should be targeted or what operations should be used on that data. It
allows the user to interact with the sensor network using declarative statements, for example, "I want the
ratio of cars to trucks in the parking garage". There is no need to construct code to actually check the data
for the existence of cars or trucks rather components referred to as inference units are used to facilitate
interpretation of sensor data. This is in direct contrast to other approaches that issue queries over raw
sensor data like TinyDB and Cougar, and is of interest as it is similar in principle to the work proposed on
complex queries in this research.

The Programming Model

The semantic streams framework uses the semantic services programming model which contains two
main elements, inference units and event streams. An event stream is simply a flow of asynchronous
events, each of which represents some real-world entity (for example, in the car park query given earlier,
a car detection has properties such as the location at which it was detected, its speed and direction).
An inference unit is a process that operates on an event stream. It infers semantic information about its
environment and either adds it as a property to an existing event stream or generates a new one. Figure
2.15 shows the semantic streams model within its service-based architecture.

As a stream moves from a sensor through inference units its events acquire new semantic properties. A
more detailed example, a vehicle detector service, follows.

The Query Language

Each inference unit is specified using a first-order logic description of the semantic information it needs
in its input stream and that it adds to its output streams as well as any relationships between the two.
A markup language (the Semantic Streams markup and query language) is used to construct a logi-
cal description of that semantic information. A number of predicates are used to describe sensors and
services.

sensor( <sensor type>, <region>) - the sensor predicate defines the type and location of each sensor.

service( <service type>, <needs>, <creates>)

needs( <stream1>, <stream2>, ...)
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creates( <stream1>, <stream2>, ...) - the service, needs and creates predicates describe a service, the
semantic information that it needs and creates. In query processing these are treated as rules and their
pre- and post-conditions.

stream( <identifier>)

isa( <identifier>, <event type> )

property( <identifier>, <property> ) - the stream, isa and property predicates describe an event stream
and the type and property of its events.

An example of a sensor declaration is as follows:

sensor( magnetometer, [ [ 60,0,0 ], [ 70,10,10 ] ] )

This defines a magnetometer that covers a three-dimensional cube defined by the pair of 3-D coordinates.

An example of a service would be:

service( magVehicleDetectionService,

needs( sensor(magnetometer, R) ),

creates( stream(X ), isa(X, vehicle),

property(X, T, time), property(X, R, region)))

This vehicle detector service uses a magnetometer to detect vehicles and generates an event stream with
the time and location in which the vehicles were detected.

Once a set of sensors and services have been declared the user can begin to issue queries. An example
of a simple query would be:

stream(X), isa(X, vehicle)

This query would result in true if a set of services could be composed to generate events X that are known
to be vehicles. All known possible service compositions would be generated. To constrain the result more
predicates could be added. For instance,

stream(X ), isa(X, car )

property(X, [[10,0,0], [30,20,20]], region)

This would restrict the result to cars found in the region described by the pair of 3-D coordinates given.

Query Processing

An inference engine is used to determine which sensors and services will provide the required semantic
information. The inference engine employs the backward-chaining algorithm [93]using the pre-conditions
and post-conditions of the services. An attempt is made to match each element of the query to the
post-condition of the service; if this is successful the pre-conditions are added to the query. Once all
pre-conditions have been matched to actual sensor declarations (without pre-conditions) the process ter-
minates. In other words, the process terminates once all inference units’ requirements have been met by
physical sensors. The variant of backward-chaining used in service composition creates an instance of
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each service and reuses any existing instances whenever possible. A description of a real-world applica-
tion of the semantic streams framework is described fully in [128].

In the semantic model described, all services and their descriptions are maintained in a central reposi-
tory or query server. Resource usage is optimized because the inference engine reuses services when
possible, reuses resources and operations and the query language used allows great flexibility in how the
query processor executes queries. The language also allows the user to specify constraints. When a
user issues a query as an event stream the query planning engine generates a task graph which is then
assigned to a set of nodes in the network. The service runtime on each node then accepts the graphs
and instantiates services as required, resolves any conflicts between tasks and available resources and
then executes the query.

One major limitation of the system is the semantic markup language used. Although suitable for simple
examples it cannot capture more complex applications. Another drawback of the system is that the query
processor cannot reason at runtime and so two applications which may possibly have to access the
same device, for instance, would not be able to run simultaneously. It does not address sensor network
issues that are not semantic transformations. For example, routing data between nodes in a sensor
network would not change the semantics of the data being routed. Semantic Streams, can not differentiate
between different routing algorithms and so cannot take advantage of their features if needed.

2.3.3 The Regiment Macroprogramming System

Regiment, proposed by [90]is a functional programming language for sensor networks. Its data model is
based on the concept of region streams, described in Section 2.3.1, where sensor nodes are represented
as streams of data that can be grouped into regions for the purpose of in-network aggregation or event
detection. Collections of nodes, therefore, can be represented both spatially and temporally. A region
stream is used to describe a collection of nodes with a logical, topological or geographical relationship.
For example, a programmer may be interested in nodes which fall within certain 3D coordinates. The
corresponding region stream would represent all sensor values for those nodes.

Operations allowed on region streams include fold which aggregates values across nodes in the region
to an anchor node and map which applies a function over all values in a region stream. A fold requires
inter-node communication while a map does not.

An example of a simple Regiment program is as follows:

let aboveThresh (p,x) = p>threshold

read node= (read_sensor PROXIMITY node, get_location node)

in centroid (afilter aboveThresh (amap read world ) )

Regiment’s syntax is similar to Haskell [10]where functional applications are written as f x y. Regiment, as
is the case with other functional programming languages, allows functions to take functions as arguments.

In the above example amap is a function that takes as an argument, the function read and applies it
to every value in the region stream world. afilter filters out any values that do not match those
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represented by the aboveThresh function.

The example program creates a region stream over the proximity sensor value of all nodes in the
network. Each node’s location is also included and any values below a threshold given by aboveThresh
are omitted. The centroid function computes the spatial center of mass of the set of sensor readings so
that we can determine the location of the device that generated the readings.

The Regiment compiler converts the high level program into node-level code that targets an abstract
machine model called the token machine. This is an intermediate language that links token handlers to
a token name which represents a task to be executed by a sensor node once it receives a token of that
name. A token may be generated locally or through a radio message. The token machine language
described by [88]elaborates on these concepts and defines the Token Machine Language which is based
on an abstract machine model called Distributed Token Machines (DTMs). Typed messages with a small
payload (a fixed size buffer) are referred to as token messages and used by DTMs for communication.
Each token has an associated token handler which is executed when a token message is received by
a node. DTMs, in addition, allow for concurrency, state management and communication. The aims of
TML are to provide abstractions for key requirements in the sensor network including data dissemination
and communication and provide a framework within which complex algorithms, such as those that allow
in-network aggregation, can be implemented.

[89]describe the Regiment Macroprogramming System which extends the work done on the Regiment
language and token machine interface. It uses ’signals’ which represent attribute values for nodes, for
example, the temperature read by a sensor, and groups signals into regions which are then used as a
programming abstraction upon which different operations can be performed (aggregation for instance).
Region membership is not static and may vary over time, due to changes in sensed values, node or
communication failure or new nodes being added to the network. Key here is that the system abstracts
away details of storage, communication and data acquisition from the user and allows the compiler to map
global operations on regions and signals to local network structures [89].

The Regiment system has been evaluated in a number of simulated chemical plume detection macropro-
grams with a network size of 250 nodes over an area of 5000 x 5000m. The results demonstrated the
flexibility of the system in maintaining good communication performance [89].

2.3.4 Kairos

In contrast to some programming approaches that focus on providing high level abstraction for local node
behaviour in a distributed computation, the Kairos macroprogramming system [41] focuses on abstrac-
tions for specifying global behaviour. This distributed computation encompasses the entire network but
uses a centralized approach. The abstraction considers the sensor network as a collection of nodes
that can be tasked at the same time from one program. The programming model is based on shared-
memory-based parallel programming models over message passing architectures and three program-
ming abstractions are made available in the system. Figure 2.16 shows the architecture of the Kairos
macroprogramming system.

Programming Abstractions
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Figure 2.16: The Kairos programming architecture taken from [41].

Kairos provides three abstractions for manipulation by the programmer. The first is the node abstraction
where programmers are allowed to manipulate individual nodes or lists of nodes. Nodes have integer-
based identifiers and are represented by a node datatype which makes available operators like equality,
ordering and type testing. There are also functions made available for manipulating lists of nodes.

A second abstraction is the set or list of all one-hop neighbours of a specified node which is made available
using a get_neighbours() function. This abstraction is quite similar to the region and hood abstractions
and it reflects the natural construct of radio neighbourhood of the nodes in the network.

The third abstraction is remote data access which allows a programmer to read from variables at a named
node using a variable@node construct. In Kairos only a node may write to its variable although multiple
nodes may have read access.

Programming Mechanism

A distinguishing characteristic of the Kairos system is that a programmer writes a single centralized pro-
gram representing the distributed computation. First, the program is preprocessed to produce annotated
source code which is then compiled into a binary. During this stage, the Kairos pre-processor identifies
and translates remote data references to calls to the Kairos runtime. The binary can then be distributed
to all nodes in the network using a code distribution facility. Although the initial program is a global level
one, after compilation a node-level version is created that details what an individual node’s functions are,
when and what data remote and local it manipulates.

When a copy of the node-level program is instantiated and executed on a node, the runtime exports and
manages variables that are owned by a particular node but are referenced by remote nodes.
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Figure 2.17: System architecture, taken from [62].

Kairos has been used to implement programs for a variety of problems from routing tree construction to
vehicle tracking [41].

2.3.5 Knowledge-Representation for Sentient Computing

An interesting approach is proposed by [62]called a scalable knowledge representation and abstract rea-
soning system for Sentient Computing. Sentient Computing promotes the view that an application can be
made more aware by perceiving the environment and reacting to changes in it. A gap exists, however,
between the level of abstraction in the knowledge of the sentient world such a system requires in order
to function and the low-level data produced by sensors in the environment. [62]propose the creation of a
deductive component that would interact with the low level data, perform some type of reasoning function
in order to deduce a higher-level abstract knowledge. This knowledge can then be used by the applica-
tion layer. The deductive knowledge base layer therefore is really a domain specific language component
positioned as a type of middleware layer between the application and hardware layers. A diagram of the
system architecture is displayed in figure 2.17.

Knowledge Representation

An event in this context is defined as an occurrence of interest taking place instantaneously at a specific
time. The Sentient environment refers to the physical environment. The current logical state of the
Sentient environment includes all known facts about the sentient environment from an initial event to a
terminal event. These events can include any events of interest to the Sentient Application layer.

The Sensor Abstract Layer (SAL) keeps a low-level view on the current logical state as sensors in the
environment update it through sensed events.
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Figure 2.18: Interaction between DAL and SAL, taken from [62].

The Deductive Abstract Layer (DAL) maintains a high-level or abstract knowledge of the current logical
state through its interaction with the SAL.

The two layers use a monitor-callback communication scheme to interact. The application layer issues
a monitor call which causes the SAL to filter through to the DAL those low-level changes that affect the
abstract knowledge in the DAL. The DAL, therefore, does not have to monitor all the data and is updated
at a much lower rate than the SAL. This is depicted in figure 2.18.

Both DAL and SAL were described using first order logic and queries which are quite similar to SQL SE-
LECT statements are used by the application layer to retrieve the stored knowledge about the Sentient
environment. Experiments conducted with a prototype implementation showed that the two-layered archi-
tecture where the low-level and high-level interactions are separated (SAL and DAL) was more efficient
than a single-layered one for a number of reasons [62]. First, queries executed in the DAL were of a
simpler form with fewer conditions so used less computational resources. Second, the knowledge update
rate triggered by assert or retract commands in the DAL is lower than that of the SAL making DAL more
computationally efficient. Experiments with more complex queries have not been carried out.

2.4 DISCUSSION

The three approaches to information extraction surveyed show systems and techiniques with varying
degrees of ease of use, flexibility, informational complexity and expressiveness. While the querying ap-
proaches are easier for a user to manipulate they are restricted by the lack of expressiveness of the query
languages they provide for requesting information. This in turn restricts the type and level of information
that can be retrieved. Although it is clear that simple queries for attributes and simple aggregates are pos-
sible and extensively demonstrated in the deployments to date, informational query-based systems that
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go beyond that (for example spatially and temporally aware queries) are practically non-existent. Query-
based systems are also limited as they do not allow users the flexibility to target smaller areas of interest
within the network but in effect force the user to task the entire network in order to get a response, an
issue in terms of energy efficiency. An advantage however is that these systems have been extensively
used, the languages used familiar to users of sensor network systems and are relatively easier to design
and implement when compared to other information extraction mechanisms.

In contrast, the agent-based approaches are more expressive and flexible in terms of what functions can
be performed and the ability they incorporate to make decisions while in the network. Agents can act
autonomously, multiple agents can run on a node at the same time, and multiple applications can co-exist
in the network (this can be a problem with many query-based and macroprogramming systems). Mobile
agents can move, clone themselves and can act to deal with unexpected changes in the environment.
Agent-based systems, however, are hindered by the difficulty they present for non-expert users to design
and program. It is also apparent that despite the many agent-based techniques and models proposed
in the literature, actual deployments have been minimal and restricted to very small networks (less than
10 nodes) with agents at most just pieces of mobile code with minimal autonomy or decision-making
capability.

The Macroprogramming approach appears to be one solution to the problem of the limitations of query-
based systems while at the same time promoting the expressiveness inherent in agent-based systems.
Some researchers consider macroprogramming an extension to query-based applicative approaches and
attempt to adhere to the ease of usability mantra of query-based systems, while at the same time providing
users the ability to access higher level information. The reality, however, is that the systems are not
nearly as intuitive as many of the SQL-based querying systems and require a learning curve for the
programmer. In addition, the approach seeks to eliminate the need for low-level programming on the
node but in reality has to provide node-specific abstractions which undermine rapid program development.
Finally, the high abstraction level although advantageous on the one hand in terms of shielding the user
from the underlying workings of the network ( radio communication and network topology, for example)
presents a challenge when constructing compilers that need to cater not just for computation but node
level communication as well. Macroprogramming therefore presents similar challenges to the agent-based
approaches.

Overall, the approaches to information extraction examined highlight that trade-offs must be made be-
tween ease of use and expressiveness coupled with flexibility (for instance in terms of decision-making
capabilities within the network) in selecting a suitable information extraction system. Clearly, the query-
based and macroprogramming approaches are useful in a number of applications but raise a number of
challenges as outlined above. There is a definite gap between the ease of use provided by the more pop-
ular query-based mechanisms and the expressiveness of the global and node level abstractions provided
by macroprograms as well as the flexibility of agent-based systems. For purposes of this research, and
indeed for any applied research in WSNs, the idea of usability and utility are paramount. To that end, the
development of a declarative query-based system is put forward as being the most viable option. Given
the limitations already described above a number of features have to be incorporated. In order to make
the querying approach more attractive, the development of a query language that allows a user to more
richly express high level information requests that can target the full breadth of collectable information
presented by sensors in the network is promoted. Complex queries are proposed as suitable constructs
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that can allow the expression of spatio-temporal characteristics and requests requiring more involved
in-network interactions to generate information. A second objective is to incorporate within this query
processing system useful elements that will aid the processing of these complex queries. Promoted is the
use of abstractions already employed in some macroprogramming approaches to facilitate resolution of
this higher level information requests. This hybrid approach, it is anticipated, will retain the simplicity and
ease of use of the traditional query-based approaches while simultaneously allowing the inclusion of use-
ful logical abstractions provided by macroprogramming approaches to facilitate dissemination, processing
and resolution of more powerful queries than those available in query processing systems today.

Cogent Computing Applied Research Centre—Report COGENT.002

28/2/2008

53



Chapter 3

Architectures,Algorithms and Processing
Techniques

Within an application or WSN deployment, the information extraction approach used is influenced to
a great extent by the type of architecture the WSN exhibits. In the literature, particularly prior to the
widespread use of formal WSN design methodologies, the word architecture was used as a wrapper
for a number of interests at different levels of the WSN protocol stack ( for example, application level
designs, hardware configuration, routing and MAC layer protocols.) These designs were then put forward
as all-inclusive WSN architectures, whether query processing or agent-based, without separating out the
concerns at various layers. Practitioners designing a system usually implemented network lower level
protocols that would allow for their particular application requirements to be met. There was therefore a
tight coupling of application-specific components to network and lower level protocols.

In this chapter, a distinction is made between a number of concerns that impact the design of a WSN
processing system and these are described in the next three sections.

The first part of Section 3.1 reviews some common WSN topologies found in existing or proposed WSN
systems and details their evolution as application needs have changed. In many systems the efficiency of
the information extraction method used is influenced to a large extent by the routing method implemented.
In many cases routing is incorporated into the information extraction mechanism itself or vice versa.
The second part of Section 3.1 investigates some of the routing protocols that drive many of the WSN
applications in use. Particular attention is paid to those that have been used in query processing systems
in the literature and how they impact the generation of information within the WSN. With this in mind, at
the end of the section, a suitable group of protocols for the system under development in this research is
identified and a network model for the research work is put forward.

Section 3.2 investigates a number of candidate query processing architectures, identifies their key features
and makes the case for the query processing architecture proposed for the complex query processing
system under development in this research.

Finally, Section 3.4 investigates some popular information processing techniques used in information
extraction systems, particularly query-based systems. At the end of the section techniques applicable to
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Figure 3.1: Typical protocol stack for a WSN.

the system under design within this research program are identified.

3.1 WSN Topologies and Routing Protocols

Figure 3.1 shows a diagram of the typical protocol stack for a WSN. Energy and bandwidth constraints
mean that all layers of the networking protocol stack have to be energy-aware. At the physical and
data link layers this involves using energy-aware MAC protocols, low duty cycling and power-aware radio
communication. At the network layer, the main concerns are energy-efficient data routing, that is, setting
up routes in the network and relaying data from sensor nodes to a gateway [2]. Energy efficiency is
important in maximizing the lifetime of the network.

A number of topologies sometimes incorporating underlying routing protocols have therefore been put
forward specifically to address these issues. Topologies and protocols have further evolved as a result of
changing application needs. Some key topologies are described in the next section.

3.1.1 WSN Topologies

The most basic WSN topology is the centralised, sink-based topology sometimes referred to as a flat
or single-tier architecture where nodes in the network are homogeneous, that is, identical in terms of
hardware complexity and battery power [18, 60], and last but not least, bandwidth management.

Data collected by the nodes are directed toward the sink or base station (usually the only ’node’ more
powerful both computationally and in terms of energy capabilities) using single or multi-hop communica-
tion [56]. Figure 3.2 shows a diagram of a typical flat WSN topology. This configuration brings a number
of challenges particularly if there are a large number of nodes. These include management of energy
consumption, energy optimization, routing, information gathering and general management of the sen-
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Figure 3.2: A typical flat WSN architecture, taken from [3]

sor nodes themselves [18, 60]. The University of California at Berkeley’s Redwood forest deployment
[38]is one example of a WSN system exhibiting a flat architecture. The 33 node deployment used TASK
[17], a self-contained sensor network system based on the TinyDB query processor [71]to monitor the
microclimate (temperature, relative humidity and solar radiation) of a redwood tree over a 44 day period.

Whilst centralised, sink-based topologies are relatively simple to support and implement, they do not fulfil
a topical requirement of WSN designs: scalability. Scalability has been described as one of the key design
requirements both for conventional communication networks as well as wireless sensor networks. As the
number of nodes increases with a flat topology, however, the sink node may become overloaded leading
to increased latency as well as severe energy usage [2]. As a result of the apparent problems posed
by flat networks, hierarchical heterogeneous architectures were proposed. The simplest example of this
type of network consists of two layers: the first contains groups of homogeneous nodes, called clusters,
connected to a dedicated micro-server or cluster head [56]. Cluster heads are sparsely distributed and
serve as aggregators of data and managers of nodes within their individual clusters. They also serve as
communicators both to a gateway or sink node and with other cluster heads in accomplishing application
goals. Figure 3.3 shows an example of a hierarchical architecture.

The introduction of cluster heads with special functionality (usually supported by enhanced hardware)
gives the hierarchical structure some advantages over the flat topology particularly with respect to energy
consumption.

Note: In this respect, multihop communication has been identified as a more favourable strategy over
single hop, given that energy consumption is directly proportional to the square of the distance [57].
Hence, there is potentially more energy conserved with multiple short hops from node to sink, for example,
as opposed to a direct long hop from a node to the sink [22]. A problem occurs, however, with the nodes
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Figure 3.3: A hierarchical, heterogeneous WSN architecture, taken from [134]

closest to the sink since they are under heavier traffic and more likely to have their energy drained more
quickly. High energy consumption can also be a problem if clusters where multihop communication is
used are large.

Cluster heads provide additional functions like caching and forwarding of data to the required destination
as well as performing data aggregation and fusion in order to decrease the number of transmissions to the
sink or gateway. This is of particular importance in data gathering networks. It has been shown that for
some applications, using a hierarchical structure can bring about significant improvement in performance
in terms of reliability, longevity and flexibility of the network [56]. The Great Duck Island habitat monitoring
application [73]is one example of a deployment that used a hierarchical architecture.

Building on the basic two-tier hierarchical model, varying multi-tier architectures have been put forward
to capitalize on the apparent advantages. An example proposed by [43]consists of three layers where
nodes in a sensor layer sense the environment, pass that data to a forwarding layer whose purpose it is
to facilitate communication between other forwarding nodes and nodes within the highest tier, the access
layer. Nodes in the access layer communicate with the network backbone in transferring information.

Another three-tier architecture is the "data mule" architecture [112]where agents are used to periodically
collect sensor data and deliver those to wired access points when within range. Finally the SENMA
architecture [78]proposes a novel two-tier architecture where the upper layer consists of mobile access
points that are used for data acquisition from homogeneous sensors within the sensor layer. Sensors
communicate with mobile agents who periodically move within radio communication range eliminating the
need for multihop communication. This architecture, because of the reduction in multihop communication,
showed a significant improvement in energy efficiency.

Cogent Computing Applied Research Centre—Report COGENT.002

28/2/2008

57



3.1.2 Routing Protocols for WSNs

Given the unique characteristics of WSNs the underlying routing protocol used is an important consider-
ation when looking at information extraction. In many cases the information extraction mechanism and
how efficiently it works depends to a great extent on the routing method used. In some cases the routing
mechanism itself includes techniques for query dissemination and data aggregation as in Cougar [133]and
ACQUIRE [108]. Routing is therefore an important aspect of information extraction in WSNs.

Many routing protocols are currently being used in a variety of wired and wireless networks [103]. Although
protocols can be classified in different ways, for example, based on the network structure or perhaps on
the protocol operation [4]many follow the address-centric (AC) model where routes are found and followed
between pairs of addressable nodes. In mobile ad-hoc networks, AC protocols are used widely (MANETS)
[63]. Here each source independently sends data along the shortest path to a sink. This path is usually
based on the initial route a query took to get to that source node. Although MANETs are similar to WSNs in
that they both involve multi-hop communication, their routing requirements are quite different for a number
of reasons.

First, communication in a WSN comes from multiple data sources to the sink instead of just between a
pair of nodes. Second, redundancy in sensed data is common in WSN since data is being collected by
multiple sensors which may be sensing the same phenomena, a fact which data-centric protocols take
into account in devising optimal routes. This is not a major consideration in MANETs. Finally, in WSN
the major constraint is energy making it essential that data communication rates be made as efficient as
possible, much more so than in MANETs.

Given these reasons among many others, the traditional end-to-end protocols used for MANETS are
not appropriate for WSNs. Some alternative protocols propose a different model, the data-centric model,
where sources send data to a sink, but the content of the data is examined and some processing (whether
aggregation or fusion) is executed on that data en-route to the sink. The result in using such protocols
is that a better transmission/information ratio is achieved. In the next section some data-centric routing
protocols will be examined in more detail.

The TinyDB Model for Query Dissemination and Routing

In TinyDB, a query is first broadcast to all nodes in the network from the root or base station. A node
receiving the query will then decide if the query applies to it and/or if that query needs to be broadcast to
its child nodes in the routing tree. A semantic routing tree (SRT) is maintained which contains information
on the child nodes and will help in determining whether a query needs to be forwarded down the routing
tree or not. If a node is aware that its children cannot answer a request for data, it does not forward the
query.

A SRT is constructed in two phases. First, a SRT build request is flooded through the network until all
motes have received it. The request will include the attribute name, A, over which the tree should be built.
As the request moves through the network individual nodes may have more than one possible choice for
a parent node. If a node does not have children it chooses a parent node p from its collection of possible
parents and forwards a parent selection message to p. If a node has children it forwards the request

Cogent Computing Applied Research Centre—Report COGENT.002

28/2/2008

58



to them and waits for a reply. It records the value of A for each child and when it has heard from all
its children selects a parent, sending a parent selection message as described before. This message,
however, will include the range of values for A which the node and its children cover. The parent node will
record this information and choose a parent in a similar way. This process continues until the root node is
reached.

As an example, we consider a query q with a predicate over an attribute A arriving at a node n. Consider-
ing that the routing tree has already been established, n checks to see whether any of its children values
for A are in q’s range of values for A. If that is the case, the node prepares to receive results and forwards
q. If there is no overlap between those A value ranges n does not send q on. Irrespective of the state of
its children, n will also determine whether the value of A applies locally and if it does will start executing .
If it does not q is ignored.

According to [71], SRT allows more efficient query dissemination and collection of query results in cases
of constant attributes. In cases where attributes are highly correlated in particular areas of the routing
tree, SRT can reduce the number of nodes required to disseminate queries and forward results.

Directed Diffusion

[54]propose and describe directed diffusion (DD), a data-centric protocol for requesting and retrieving
data in the network. In directed diffusion data is named [47]using attribute-value pairs and a request is
sent into the network as an interest for named data. As a result, gradients are created within the network
and serve to draw data matching those interests. These are referred to as events and they start to move
towards the instantiators of interests along different paths.

Directed Diffusion takes into account a number of challenges. First, the need for scaling to larger networks
with not just hundreds but thousands of sensors and second, the awareness that sensors can fail, lose
power or may be unable to communicate due to other factors. The mechanism, therefore, has to be robust
enough to withstand those challenges particularly reducing energy consumption within the network.

Naming

Tasks or requests in DD are represented as lists of attribute-value pairs. For example, an animal tracking
task could be described as follows where rect represents a subregion within which the request is to be
analyzed:

type=four-legged animal

interval=20 ms

duration= 10 seconds

rect=[-100,100,200,400]

This describes an interest for data matching the attributes indicated. If a sensor detected an animal
matching the attributes it could generate data that looked like the following:

type=four-legged animal
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instance=elephant

location= [125,100]

intensity=0.6

confidence=0.85

timestamp=01:20:40

Each attribute in this naming scheme has a range of values, for example type as used above represents
mobile objects in the area of interest (vehicles, animals, etc.). The value of the type attribute in the interest
described above would be any corresponding to a four-legged animal.

Interests and Gradients

A named task, like the one described in the example above, is called an interest. An interest is injected
into the network from a base station or sink node. The interval value will determine the event data rate.
In the above example the data rate would be 50 events per second and the task is recorded by the sink.
After the time specified in the duration value has elapsed, the sink will no longer retain a record of that
task’s state.

For each active task, a sink node will periodically broadcast an interest message to all of its neighbours.
Initially, the interval attribute will be quite large and the data rate for response low as the message is more
of an exploratory broadcast aimed at determining whether any nodes can respond.

Each node maintains an interest cache and each item in that cache is distinct. Two interests are distinct
if the type or interval differ or if the rect attributes are disjoint. An entry in the cache has a timestamp
indicating the time the last matching interest was received. Each entry also has gradient fields each with
a data rate field requested by the specific neighbour initiating the interest. The data rate field is derived
from the interval attribute of the interest.

When a node receives an interest it checks the cache to determine whether a matching entry exists. If
not, it creates an entry in the cache, instantiates its attributes based on the information in the received
interest and then sets up a gradient towards the neighbour from which the interest was received. This
gradient will have the specified event data rate found in the received interest. When a gradient expires it
is removed from the interest only when all gradients for a particular interest have expired will the interest
itself be removed from the cache. A recipient node may resend the interest to some of its neighbours
but may suppress the interest if it recently sent a matching interest. In the simplest case the interest is
re-broadcast to the node’s neighbours. In this manner interests are diffused throughout the network.

Data Propagation

In addition to processing interests as described above a node will also instruct its sensors to start col-
lecting data. When a data message is received from neighbours the node checks the interest cache to
determine whether a matching entry exists. If it is not found that data message is dropped. If a match is
found, the node will check the data cache associated with the matching interest entry. If a match for that
data message is found in the data cache, the data message is dropped. If no match is found the message
is added to the data cache and the data message resent to the neighbouring nodes.
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Reinforcement

When an interest is first injected into the network it specifies a low event-rate notification. If matches are
detected low-rate events (one per second) are sent towards the sink. Once the sink starts receiving these
events it reinforces one in an effort to draw higher data rate events. This is usually done by using some
type of data-driven rule, for example a rule may be to reinforce any neighbour from which a previously
unseen event is received.

Reinforcement is achieved by the sink resending the original interest but this time with a higher data rate.
A neighbouring node receiving this interest will observe that it already has a gradient to this neighbour
and that the data rate specified is higher than that in its cache. This node will then reinforce at least one
of its neighbours by checking its data cache, identifying, for instance the first node from which it received
the last event matching the interest.

The aim of reinforcement, therefore, is to promote optimal data paths for data propagation using interest
transmissions to nodes considered worthy of reinforcement.

Directed diffusion is especially suited to continuous queries and shows better energy efficiency than omni-
scient multicast and flooding schemes [54]. When average dissipated energy was calculated as a function
of network, for some sensor networks using DD average dissipated energy was 60% of that observed with
omniscient multicast. The effectiveness of the data aggregation and caching techniques for improving ef-
ficiency are examined further in [63]. The authors have identified that future work would look at examining
its efficiency under other scenarios such as congestion.

Some work has been done in both using directed diffusion and adapting it to specific application and
application scenarios.

[39]designed and implemented a sensor database system using TinyDB [71]as the front end of a system
interacting with a network running directed diffusion. As is the case with directed diffusion, queries were
injected into the network as interests and replies sent back as data messages. No networking code was
necessary as the system relied entirely on the protocol for routing queries and replies.

[136]proposed the Geographic and Energy Aware Routing algorithm (GEAR) which uses energy-conscious
neighbour selection techniques to route packets to a target area. This protocol, they suggested, could be
used in conjunction with DD to make it more energy-efficient. The idea is that by eliminating the initial
interest flooding that occurs and routing interests to the target region instead, significant energy savings
could be made.

Finally, [46] proposed a new version of DD that seeks to minimize the effect of flooding in large net-
works. With DD interest messages are disseminated throughout the network setting up gradients. Their
approach, however, eliminates the exploratory phase and sends data immediately along a preferred gra-
dient. This gradient is determined to be the first neighbour from whom a matching interest was received.
In this version of DD no reinforcement occurs, rather, the lowest latency path is implicitly emphasized.
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Rumor Routing

In contrast to directed diffusion in which initial flooding of a query toward an event is required, [16]propose
the rumor routing algorithm aimed at providing an alternative between query flooding and event flooding
protocols. It aims to lower energy consumption by minimizing the number of hops required for transmitting
information in long-range transmissions. Data is retrieved based on the event observed rather than on
any available geographic information.

Each node in the network maintains a list of its neighbours and an events table containing information on
all the events that a node is aware of. An event is described as an abstraction, encompassing anything
from a set of sensor readings to the processing capabilities of a node. When an event is witnessed the
node adds it to its events table and generates an agent.

Agents are used to create paths leading to an event once it occurs. An agent is described as a long-lived
packet with travels through the network distributing information about local events to distant nodes. Each
agent carries a list of all events it has encountered as well as the number of hops to the event. When the
agent arrives at a node it informs that node of all events that it has encountered. Conversely, if the node
has information on any events that an agent does not have the agent’s list is updated as well. There is
therefore synchronization of the two lists. The agent also contains an event table and synchronizes it with
every node it visits. Since query target events, a query, once it arrives at the node, will be routed along
these agent-generated paths if they match the event of interest. Queries target events and so any node
may generate a query. If a node has a route to the target event it will forward the query along that route. If
a route is not known the query will be forwarded to a random neighbour where it will again check if a target
even is in that node’s event list. If the event is not found the query is again forwarded on randomly. This
process continues until the node that has observed the desired event is reached or the query expires.
If the node originating the query determines that it has not reached a destination, it can retransmit it,
terminate transmission or flood the query as a last resort.

Simulations show that the rumor routing algorithm is more energy-efficient than flooding-based algorithms
in delivering queries to events in large networks particularly where geographic information is not available.
Where a time to live (TTL) of 1000 was used with a small number of agents, 31, the rumor routing
algorithm successfully delivered more than 98% of all queries with an average cost of 92 cumulative hops
per query, approximately 1/40 that of a network flood. In addition, the algorithm can be tuned to support
varying delivery rates, route repair and query/event ratios and handles node failures effectively. However,
it is shown to work well only where the number of events is small but still has to handle the overhead
needed to maintain agents and event tables.

Information-Driven Sensor Querying (IDSQ) and Constraine d Anisotropic Diffusion Routing (CADR)

[26]propose the IDSQ mechanism for dynamic querying of sensors and CADR for routing of data in WSNs,
in an effort to reduce bandwidth consumption. IDSQ allows selection of sensors able to provide the best
information among all available sensors while CADR routes the query to an optimal destination. This is
an instance of where the querying and routing mechanisms are closely linked.

Other approaches to querying and data routing like directed diffusion [54]use the distance values between
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nodes in determining a cost of communication in terms of number of RF hops, to determine what routing
path should be taken. IDSQ, however, uses both communication and information costs to decide on a
path. CADR then routes the query to the optimal destination following an information gradient, optimal
destinations are computed using a composite object function in conjunction with a number of algorithms.
This method can be more energy-efficient and energy-aware than directed diffusion [26].

Other Approaches

[8]propose new algorithms that focus on query dissemination and information retrieval on a hierarchical
network architecture. Although similar to the distributed query processing environment of TinyDB, there
are some differences. First, the architecture supports XML and is therefore open to web-based monitoring
applications. Queries are constructed using the XQuery language [20]and routing trees can be built
concurrently and support either the same or different queries. Another difference is that queries are
maintained in data packets and trees are constructed parallel to dissemination of the query.

[59]developed an analytical model of an energy-constrained, data-centric information routing protocol that
uses game theory to model intelligent sensors. They called their approach sensor-centric as they take
the view that the sensors in a routing game would act to maximize their own payoffs. Nodes acting like
intelligent agents would have to cooperate to determine optimal routing paths. Payoffs here are described
as benefits to the network brought about by the sensor’s action less individual costs. In modelling data-
centric routing they not only use data-centric techniques like aggregation and attribute-based naming but
also consider the importance of the data itself in selection of data transfer paths. In their view popular
data items which represent successful query matches should be routed preferably via more reliable paths
as opposed to less important data. They do this by attaching a number value to the data retrieved from a
sensor and use this value to reason about what path that data should take.

3.1.3 Discussion

Although protocol development is beyond the scope of this research, it is important to have an aware-
ness of what protocols are used within the query processing systems in use and their impact on the
information extraction mechanism. Data routing, for example, is an important consideration when look-
ing at information extraction as it affects the overall efficiency of the mechanism. For purposes of this
research, a suitable cluster-based routing protocol that facilitates the implementation and testing of the
logical abstractions (the main focus of the research) will be incorporated into any experimental network
setup.

The choice of architecture for a WSN system appears to depend strongly on the application requirements.
Pure data collection applications tend to work with hierarchical topologies with cluster heads aggregating
and relaying data as it is generated. In such systems information processing requirements are simply
sense data collection or at most calculation of aggregates. This is not always the case, however, as
some WSN systems like the redwood forest deployment [38]which for the most part exhibit a flat topology
are also used for data collection. In such systems energy conservation is either not a major concern or
techniques for optimising query processing are incorporated to minimize energy consumption.
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Figure 3.4: A database-based query processing architecture taken from [32].

For the work in this project a cluster-based toplogy (single or multihop) will be the primary focus as such
topologies appear to be more amenable to the logical region-based query processing approach proposed
for investigation. Region leaders can be considered somewhat similar to clusterheads in terms of func-
tionality therefore enabling a mapping of the logical construct to the network construct. It is expected
that regions, in this type of architecture will be easier to implement and test experimentally. The network
model proposed for this research has a hierarchical topology, randomly deployed sensors and will use a
cluster-based routing protocol that allows dynamic cluster formation. The cluster-based protocol selected
will also support both inter-node communication and communication with the external world. The network
model is described in greater detail in Chapter 4.

3.2 Query Processing Architectures

3.2.1 Database-Type Architectures

Database-type query processing systems are some of the most popular put forward in the literature.
[32]propose a generic database-based query processing architecture for sensor networks (see figure 3.4)
and describe the components they feel are required at each layer to make the architecture practical .

Application Layer : at the base station this layer provides an interface for posing of queries to the sensor
network. These queries can be represented either as an SQL-type message or even a SOAP-like web
service. The application layer in the base station is designed to communicate with the TCP/IP stack and
so query results can be easily accessed by an internet-based host.

Database Layer : on the base station, the database layer serves the application layer by receiving queries
from it and returning results to it. The database layer on the base station contains a number of components
including:

• Parser - creates the query tree based on the query received from the application layer.

• Catalog Manager - maintains the relational schema, location and distribution of sensors and moni-
tors nodes’ status, for instance, node power levels and node connectivity.
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Figure 3.5: A high level view of the query processing architecture used in Cougar andTinyDB.

• Query Optimizer - generates the optimized query execution plan.

Due to resource limitations, the database layer’s function at node level is much more limited. It receives
the query tree either from the base station or another node and may need to further optimize the tree
based on local catalog information. The database layer returns results in the form of relations1.

Transport Layer : this layer provides for efficient end to end communication. At the base station it should
be able to communicate with TCP entities on internet hosts although alternative methods may be needed
for nodes since nodes are address-less.

Network Layer : this layer should provide energy-efficient and data-centric routing algorithms. The routing
decisions made should be based not only on the current network conditions but also the given query
execution plan.

Example Systems

Query processing systems like TinyDB [71]and Cougar[133] are just some of the database-type systems
put forward in the literature. They all follow to varying extents the architecture put forward by [32]. The
query processing architecture is similar for both, consisting of server-side software running at a base
station and responsible for parsing and delivering queries into the network, as well as collecting the
results as a stream out of the network.

The architecture of the TinyDB system, both server-side and node-side, is illustrated in figure 3.5. Archi-
tecturally the query layer sits between the application and network layers in the case of the server side
component (base station) and sits on top of the network layer at node level. Like in figure 3.4 the appli-
cation layer allows the construction and posing of queries with the database layer, here referred to as the
query layer, below parsing the query, constructing query execution plans and delivering the results to the
network. The query layer at the server side also collects the results for presentation to the application
layer.

The query layer houses a number of components some of which have already been described in the
architecture put forward by [32]and are illustrated in figure 3.6.

1A relation represents information as tables consisting of tuples or rows made up of attributes or columns. In the context of a
sensor network, a relation can be a static table that is stored to disk or a virtual table where its state is continuously changing.

Cogent Computing Applied Research Centre—Report COGENT.002

28/2/2008

65



Figure 3.6: A detailed view of the query processing architecture of TinyDB and Cougar taken from [37]

The query layer is the backbone of the query processing system and provides a number of critical func-
tions:

1. The first is the processing of the query itself. The query layer uses sophisticated techniques like
catalogue management, query optimization to abstract the user from the physical details of the
network in processing queries.

2. The second is to perform in-network processing to reduce communication given the need to pre-
serve resources like energy and bandwidth. To do this the query layer generates different query
plans with different tradeoffs for requirements such as accuracy, energy consumption and latency.

3. With both TinyDB and Cougar, the query layer interacts with the routing layer to facilitate in-network
processing. With traditional routing, the network layer on a node will automatically forward packets
to the next hop towards the destination with the upper layers, completely unaware that data packets
are moving through the node. In implementing in-network aggregation, for example, the query layer
needs to be able to communicate with the network layer when it wants to intercept packets destined
for the sink or leader node. In the processing system described above, filters are used to first
access the packets then modify and delete if necessary before passing on to the next hop onto the
destination. The routing mechanism used in TinyDB is described in detail in Section 3.1.2.1.

Although they can probably be implemented on both hierarchical and flat network topologies, these
database type approaches have so far been implemented on flat networks.
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3.2.2 Middleware Architectures

Another approach to query processing in WSNs is that of query-based middleware systems. Two of
the more popular are DSWare and SINA described in Section 2.2.3 and 2.2.2 respectively. Although
also inspired by database systems in that they use SQL-based languages for construction of queries,
these systems are considered middleware approaches as they also provide services that go beyond
database query processing systems. Architecturally, these middleware approaches are similar to the
database approaches described in section 3.2.1. In both cases, the middleware layer sits between the
application and network layers and in addition to providing facilities for query processing, supplies the
services necessary for ensuring adequate WSN functionality. A diagram of the DSWare architecture is
displayed in figure 2.9 in Section 2.2.3 and the SINA middleware architecture is depicted in figure 2.8 in
Section 2.2.2.

In the case of DSWare the application layer allows the construction of SQL-based event type queries
which are then registered, parsed and execution plans generated. The underlying DSWare middleware
layer is then responsible for registering and executing these events. The DSWare layer also interacts with
the routing layer for improving network functioning, for example, improving power awareness.

SINA also comprises a middleware layer that sits above the network layer and provides an application
programming interface to the middleware layer via SQTL scripts. The middleware layer runs on all nodes
in the network and like the database approach it selects the most suitable distribution of the query based
on the current network status and the type of query being executed. In addition to query processing
functions, SINA also provides services for accessing sensor hardware and communication and supporting
changing network topology (for example, sink mobility).

Both DSWare and SINA promote processing of aggregation-based queries and are suited to cluster-based
topologies.

3.2.3 The Proposed Architecture for a Distributed Complex Q uery Processor

The architecture described in section 3.2.1 forms the basis for the complex query processing architecture
put forward in this research. The two part architecture consists of server-side software which is accessed
by the user and used for constructing and posing declarative-type queries and node-side software which
is in effect the distributed complex query processor (DCQP). A key component of the architecture will be
the Region and Query Management Layer which will be responsible for not only query processing but will
have additional tasks related to the creation, maintenance and update of regions within the network.

A number of factors influenced this selection. First, a key feature of the distributed complex query pro-
cessor (DCQP) proposed is ease-of-use and familiarity for users. An SQL-based, database-like approach
is therefore preferred. Although attractive, a middleware approach was not selected as the aim with the
DCQP is to create a system that is separated as far as possible from network level configuration issues.
The idea is that the system will sit on top of a functioning network. Second, the need for in-network
processing for resolution of complex queries dictates that a query layer that allows in-network processing
of queries is essential. The approaches above have shown that distributing the query layer to all nodes
and providing functions for query processing and optimization are effective. The DCQP query layer there-
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fore, will allow the formulation of query execution plans, dynamic optimization of these plans based on
the attributes of interest and node state as maintained by the regions. Third, the DCQP architecture will
incorporate a query layer that is decoupled as far as possible from the underlying layers. The idea here
is to make the system as portable as possible by not strictly linking it to any particular routing protocol, for
example, but instead identifying features that would make particular protocols more suitable than others.
Routing protocol selection to support the region abstraction was discussed in Section 3.1. The DCQP
architecture is described in greater detail in Chapter 4.

3.3 In-Network Processing Techniques for WSNs

Experiments have shown that the major part of power consumption costs is due to communication rather
than computation [48, 70, 94]. [72]describe in-network processing as the pushing of operations, par-
ticularly selections and aggregation of data, into the network to reduce communication. [133]describe it
as the moving of computation from outside to inside the network in an effort to reduce energy consump-
tion and improve network lifetime. The main goal in effect is to reduce communication in exchange for
some form of computation within the network. In-network processing techniques are therefore accepted
as being essential to improving energy efficiency in gathering information within the WSN and critical to
any system that has improved network lifetime and energy efficiency as goals. The two most common
in-network processing techniques used for reducing communication in WSN systems are packet merging
and partial aggregation [37]. In addition, a number of other widely used techniques exist. These are
discussed below.

3.3.1 Filtering

Filters are constructs used within the network (on nodes) to assist in processing [47]. A filter registers
what kind of data it handles through matching and is triggered each time that type of data enters the
node. Once it has been activated, the filter can manipulate the data by, for example, determining whether
it is forwarded on or even generating a new message. Filtering is sometimes used in conjunction with
data aggregation. [47]proposed using a filter to detect concurrent detections of four-legged animals from
different sensors. It could then record what the desired interval was and ensure that only one response per
interval, suppressing responses from other sensors. [130]take advantage of event properties of monitoring
queries, and carry out data filtering during in-network processing.

3.3.2 Packet Merging

Packet merging, described by [37]combines a number of smaller records into a few larger ones in a bid to
reduce the number of packets needing to be transmitted and in turn reducing the cost of communication
as the cost of transmitting several smaller packets is greater than transmitting just one large packet. The
Cougar query processing system described in section 2.2.1 is an example of a system that uses packet
merging for reducing communication in processing some types of aggregate queries.
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3.3.3 Partial Aggregation

Partial aggregation refers to the computation of intermediate results as readings are received by the
node. Communication is reduced as this combined partial result is transmitted on instead of all individual
records. Aggregation can be achieved in various ways based on the type of correlation that exists in the
WSN. This may be spatial correlation due to physical proximity of nodes and therefore similarity in the
readings, temporal if there is little variation in the sensed attribute based on the sampling frequency and
finally, correlation in the data itself due to overlap in sensor coverage [102].

Tree-based Aggregation

In tree-based aggregation one node is designated the root node. A broadcast message is sent out with
data on the ID of the node sending the message and its depth in the tree. In the case of the root the
depth would be zero. When nodes receive this message they assign themselves a level by adding one
to the value in the message received and assign the ID in the message as their parent. Broadcasting
of the message continues until all nodes within range have received it and assigned themselves a level
and parent. TinyDB (section 2.2.5) is one query processing system which uses a tree-based aggregation
service called TinyAGgregation and this is described in more detail below.

Tiny AGgregation (TAG)

TAG is an aggregation service designed for TinyOS motes and is described in detail in [68, 37]. It is
designed specifically for issuing and processing aggregate queries.

First, an aggregate query is constructed using a SQL-like declarative language as in the TinyDB system.
For example:

SELECT AVG(volume), room

FROM sensors

WHERE floor=6

GROUP BY room

HAVING AVG(volume)>threshold

EPOCH DURATION 30s

The EPOCH DURATION clause here specifies the amount of time (in seconds) nodes wait before acquiring
and transmitting samples. Queries use a table called sensors which is an append-only relational table.

The query is then injected into the network from a base station. Operators in the network implement the
query and use the underlying routing protocol to distribute it. In returning a response, data is routed back
via a routing tree that is rooted at the base station. As it flows from node to node readings are combined
or aggregated according to an aggregation function and irrelevant data discarded.

There are a number of advantages to the TAG approach. First, a reduction in the number of commu-
nications needed to calculate aggregates when compared to aggregation that occurs at one centralized
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location. Second, as data moves up the tree back to the base station nodes usually are required to trans-
mit a maximum of one message. This is in direct contrast with centralized aggregation methods where the
number of transmissions increases dramatically as data moves towards the root node. This can of course
lead to a decrease in the lifetime of the network as battery power is quickly drained. Third, it allows ag-
gregation even in networks where connectivity is intermittent or disconnections occur since disconnected
nodes can reconnect by listening to other nodes’ partial state records as they flow up the tree. This is
possible since the partial state record includes information on the query that was issued.

TAG, therefore, presents a simple interface, flexible naming and generic operators for constructing ag-
gregate queries and is not application specific as with other approaches using aggregation like Directed
Diffusion [54]and Greedy Aggregation [55]. Further, it separates the logic of aggregation from routing
details so that the focus is squarely on the application and leaves routing decisions to the system. This
is in contrast to Directed Diffusion which puts aggregation mechanisms within the routing layer. The TAG
approach allows a stream of aggregate values that change as sensor readings and the underlying network
layout change and does this in an energy-efficient and bandwidth-efficient way.

TAG, however, does have limitations as it does not allow joins and cannot respond to events that occur
within the network. The authors have indicated that future work will focus on developing an efficient way
of aggregating the results of those event-based queries across nodes before transmitting that information
to interested nodes.

Cluster-based Aggregation

In some cases nodes are in close physical proximity to each other and queries may need to retrieve
information based on this spatial correlation. For example, a query may want to determine the average
humidity over a particular area. Typically, clusters are formed consisting of nodes in close proximity based
on some metric, for example, signal strength. Clusterheads are elected and act as the data aggregator
and router for cluster members. SINA and Cougar, already discussed in Section 2.2.2, are examples
of query processing systems that incorporate cluster-based aggregation in processing aggregate type
queries.

3.3.4 Discussion

Given the importance of considering in-network processing when developing efficient WSN applications,
this section examined some of the more popular techniques used. Data aggregation is most widely
used, with the type of aggregation incorporated dependent on the network topology and to some ex-
tent the type of queries being issued. Systems that incorporate in-network processing and are there-
fore information-generating systems (as opposed to simple data gathering) have tended to be built on
cluster-based topologies. In heterogeneous configurations, cluster heads can be configured to be more
computationally powerful and are conducive to supporting data aggregation. There have, however, been
information-generation systems based on flat topologies which allow tree-based aggregation. Where
scalability is an issue, however, and where in-network processing is computationally intensive, reported
systems have had the tendency to lean towards a cluster-based configuration, this being more energy
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efficient and practical in creating a system with an extended lifetime.

Clustered networks have the advantage of conveniently allowing aggregation at the clusterhead and are
most effective in networks that are static and where the cluster structure stays unchanged for a consider-
able period. With dynamic clusters, however, problems can occur with energy expended in continuously
updating nodes in order to keep the clusters consistent with the underlying network topology. Tree-based
aggregation is simple and useful but can lead to problems. Given a node failure in the network, for exam-
ple, a packet lost at a given level of the tree can lead to all data being aggregated up that node’s sub-tree
being lost as well. This can lead to incomplete data making its way up the tree particularly if nodes only
have one route to the sink and connectivity gaps occur.

With regards to this research, a cluster-based strategy will be used initially; however, further work may
require that more efficient tree-based routing protocols be incorporated within regions (clusters), if neces-
sary, to improve query processing within individual regions.
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Chapter 4

Monitoring Applications

Military applications were the motivation for much of the initial research into WSNs with the Defense
Advanced Research Projects Agency (DARPA) providing funding for a variety of projects from early 1990s
to the present day. Today, however, the use of WSNs has expanded to encompass a large number of
application domains. A particular group of WSN applications, denoted as monitoring applications, make
up a large proportion of the WSN systems being deployed today. Though most monitoring systems are
generally characterized by the need for attributes of interest to be observed, sensed and then relayed to
a user, most WSN applications of this type show very little genericity in design. Rather, the WSN systems
deployed are application-specific, with designs intimately linked to the particular application requirements.
The next sections will identify some of the common types of monitoring application and describe examples
of each, highlighting the information gathering model used in each example.

4.1 Habitat and Environmental Monitoring

Habitat and environmental monitoring form a particular set of monitoring applications that have grown over
recent years. This is in part because of the great benefit they claim to provide to science and education
as well as the fact that funding for improving science education is a priority. There are a number of WSN
deployments in this category.

On the environmental side, the ARGO project [6]uses a sensor network to monitor the salinity and tem-
perature of the upper ocean. The aim of the project is to generate a quantitative model of the changing
state of the upper ocean while monitoring ocean climate patterns over the short to longer term. The data
gathered is expected to act as input to ocean and ocean-atmosphere forecast models for data assimila-
tion and model testing. Nodes are dropped from aircraft and cycle between the surface and a depth of
about 2000m every ten days collecting data. When nodes rise to the surface, data collected by nodes are
individually transmitted to a satellite.

The Great Duck Island project [73]is an example of a habitat monitoring application where a WSN was
deployed to monitor the breeding behaviour of small birds called petrels. Scientists are interested in the
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usage patterns of nests as well as the environmental changes in and outside of nests during the breeding
season. Measurements are taken of humidity, temperature, pressure and light level. Nodes are clustered
with each cluster connected to a base station via a long-range antenna. Sampling is done every minute
and readings are sent directly to the base station which connects to a database via a satellite link.

Another environmental monitoring application is the GLACSWEB project [75]which uses a sensor network
to monitor sub-glacier environments in Briksdalsbreen, Norway. Holes are drilled at different depths in the
ice and sensor nodes carrying pressure, temperature and tilt sensors are deployed in them. The nodes
communicate with a base station on top of the glacier which measures supra-glacial displacements. The
collected data is transmitted via GSM with no information processing occurring within the network itself.

For all of the applications above, raw sensed values are sent via base stations or servers to a user and
processing occurs at that point.

4.2 Agricultural Monitoring

Increasingly, WSNs are being used to monitor conditions that affect plant growth. These networks are
used in precision agriculture which aims to improve crop yields, reduce pollution and monitor the general
health of crops. Variables monitored include temperature, soil moisture, humidity and light and are usually
referred to as micro-climate variables. The Climate Genie system [86]is one such commercial example
and is used to monitor vineyards. Nodes are spread over the vineyard in a wireless mesh configuration
and are equipped with sensors for measuring temperature, moisture and light. The data gathered is sum-
marized (aggregates that reflect grape quality and vitality) within the network and sent via Wi-Fi, cellular or
satellite to servers for viewing anywhere using a web browser. This system therefore incorporates some
level of in-network processing although limited to the calculation of aggregates which are used in decision
making by the observer.

Another system was developed to monitor in realtime field conditions including leaf moisture, soil temper-
ature, soil moisture and CO2 [51]. Field monitoring servers (FMSs) similar to web servers were deployed
in rice paddy fields, collected data automatically and transmitted the data for permanent storage in publicly
accessible databases. Real-time data was made accessible via a web browser. Like the habitat and envi-
ronmental monitoring applications described in section 4.1, raw sensed values are sent to the databases
for storage and analysis occurs from that point on.

4.3 Structural Health Monitoring

Structural health monitoring (SHM) refers not only to the state of health of a given structure whether a
building or bridge, for example, but also the detection of changes that may affect the structure’s health in
the future. There are two types of SHM systems:

• Systems that monitor disaster response after some catastrophe has occurred, for instance, an
earthquake and
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• Systems for continuous health monitoring which may check for signs of stress, monitor vibrations,
wind, etc.

Disaster response systems are still a young area of WSN research. [131]describe a centralized WSN for
structural-response data acquisition called Wisden. Wisden collects structural response data from a multi-
hop network and relays and stores it in a base station. [66]also proposed a wireless monitoring system
aimed at detecting damage to civil structures after a disaster (such as an earthquake) has occurred. In
other research, technology developed by the CodeBlue project [27]is being used in the AID-N project [1]at
Johns Hopkins Applied Physics Laboratory in developing systems aimed at disaster response.

For continuous, structural health monitoring applications the focus is on high sample accuracy with mini-
mal distortion, high frequency sampling, time synchronization of readings and efficient data collection as
opposed to energy efficiency through reduced power consumption. [118]describes a SHM system de-
ployed on the Golden Gate Bridge. 64 nodes were deployed over a 4200ft long length and measurements
taken of ambient structural vibrations. All collected data were relayed to a base station for analysis.

4.4 A Motivating Scenario

A WSN application frequently put forward is that of forest fire detection and monitoring [116].This appli-
cation is attractive because forestry is a major industry in many parts of the world, and forest fires are a
major cause of loss of wood (in the USA the annual average loss to fire is 17,000 km²). Early warning of
a fire event and the manner in which it spreads are hence necessary.

Currently, MEMS chemical sensors are available which can detect the volatiles produced in the early
stages of a fire. Other useful information to firefighters would be air temperature and wind direction, for
which sensors are easily available. These sensors may be readily interfaced to an existing wireless sensor
node, indicating that such a system is easily feasible, at least in terms of the hardware required.

In theory, however, any practical forest fire detection system is likely to exceed the scale of present WSNs
by a considerable margin (the largest WSN deployment to date, ExScal [7]fielded just over 1000 nodes).
Without detailed knowledge of the application domain it is difficult to make sensible ’guesstimates’ of
system requirements. Even with a conservative estimate of 10m from the source of the fire being adequate
for detection of preconflagration gases, this still equates to coverage of 100 nodes per hectare. For even
a small forest (for example, Wyre Forest, Worcestershire, UK which covers 2634 hectares) this means in
excess of 200,000 nodes.

Consider now a proposed deployment in which the sensor nodes are equipped with two types of trans-
ducer, an ’electronic nose’ to detect the pre-conflagration gases and infra-red pyro-electronic sensors,
which can detect the head of a fire.

In this situation, the initial detection of a possible fire will most likely come in the form of an event from the
electronic nose. It is likely that this will be at some distance from the real seat of the fire, the gases being
borne on the prevailing wind from the fire to the sensor. The next task is, therefore, to localise the fire.
To do this the infra-red sensors are used to construct a heat map of an area surrounding the node which
generated the original alarm.
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Given the scale of the network envisaged in this theoretical scenario, it is difficult to see how such a search
could be achieved efficiently using a conventional centralised query mechanism. For each detection cycle,
200 000 readings must be returned to the sink and processed. Following detection of the nascent fire,
new queries must be generated and directed to the nodes in the area to be mapped. Finally, those nodes
need to return the infrared data required for the map. A more efficient proposition would be for the initial
event to be detected within the network, with the subsequent queries for the map data being generated
locally, without returning data to the host.

A number of deployments have tackled some of the very issues described above but for practical rea-
sons, the deployments have taken very different approaches to those proposed in the scenario described
above. The FireWxNet system [45]a wireless sensor system aimed at monitoring weather conditions in
wildland fire environments is one such example. The system monitored a variety of weather conditions
that influence fire behaviour with an aim to using them to predict fire behaviour. The application, as is the
case with most monitoring applications, was driven by a list of requirements acquired through consultation
with both fire fighters and fire researchers. The implemented WSN system was deployed in the Bitterroot
National Forest in Idaho (USA) and consisted of 3 sensor networks totaling 13 nodes, 5 wireless access
points, 2 web cameras and 5 long range links.

The deployment was distinguished by the rugged environment within which the WSN had to function as
well as the sparseness of the deployment itself. The authors note that sparse coverage was a deliberate
choice aimed at strategically placing nodes to cover as much meaningful terrain with as few nodes as
possible. Rather than scale, the focus was on creating an extremely robust design which included not
just robust equipment but robust routing protocols as well. Once the system was launched, a number of
challenges were encountered particularly given the harsh deployment environment but the system overall
was a success. During its operation, over 80,000 data were streamed realtime, with operations applied
post-collection to transform that data into usable information.

This real-life deployment presents a marked contrast to the motivating scenario and approach described
above: the problems are well characterized given the input of domain experts; there is quite detailed
knowledge of the application domain and what the corresponding WSN application requirements are.
However, on-the-ground challenges usually mean compromises have to be made and as a consequence
real-life monitoring systems so far, rarely aim to deploy such large quantities of nodes as put forward in
the motivating scenario here.

The FireWxNet example highlights the limitation of the vast majority of monitoring applications today.
They are limited in that they are conceptualized, designed and implemented as primarily data collection
systems. In-network processing is absent and the systems can be considered automated to the extent
that there is little user interaction. In essence, events are defined, queries may be deployed for sensed
readings and all data is simply relayed to a centralized location for further analysis. Very few systems
look beyond this simple sense-and-send model to incorporate some sort of analysis, in-network, prior
to communicating results. Granted, with some systems it is difficult to define beforehand what events
or processes may be of interest and these applications by their nature have to be more exploratory at
least at the pilot deployment stage, with feedback influencing subsequent iterations. However, with some
applications, as in the FireWxNet example, the problems are better characterized and therefore more
amenable to some more sophisticated analysis or processing within the network. This could make the
application not only more useful but more efficient as well.
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Hence, the view put forward in this research is that in many of monitoring applications (the fire monitoring
scenario being only one example) it is possible to define high level information requirements that could
incorporate in-network processing techniques in resolving the requests. Besides the efficiency benefits in
terms of reduced transmissions, this approach could transform a data collection system to an information
generating system, extending the application scope while still fulfilling the basic application requirements.

As an example, an informational fire monitoring system would allow the processing of high-level queries
aimed at tracking the fire. The queries would need to allow the expression of spatial and temporal charac-
teristics and the querying system would need to support a level of autonomy in terms of some in-network
decision-making by the nodes given the impracticality of streaming all data back to the sink. Such a sys-
tem would perhaps allow a user to zoom in on particular problem spots and query for even more detailed
information on-the-fly. Complex queries are proposed as extremely suitable for use in the scenario above
as well as other monitoring application scenarios and a degree of autonomy is introduced through the
implementation of in-network logical abstractions for query processing and resolution.

4.5 A Distributed Complex Query Processor

In achieving the goals of successful in-network processing and resolution of complex queries, a number
of requirements for the proposed query processor have to be addressed. In Section 3.2 of Chapter 3, a
number of candidate architectures were investigated as a starting point for a distributed query processing
system that incorporates best practices for in-network processing and resolution of complex queries while
at the same time allowing the incorporation of novel techniques and strategies for the types of queries
proposed. The next subsections describe in more detail the design choices and assumptions made and
give reasons for these selections.

4.5.1 The Network Model

Key to the research work is the creation of logical regions within the network. These regions constitute a
critical component in making a decision on where a query should be disseminated, how the query should
be processed within and between regions and where the complex query will be ultimately resolved. The
regions will have one ’leader node’ each which acts as a manager, data aggregator and communicator
to a gateway as well as other region leaders when needed. This role is remarkably similar to that of
clusterheads in network-level clusters [56]. Additionally, like some clusters, regions should, and are likely
to be in the approach proposed here, dynamic. Consequently, it makes sense that these logical region
leaders map to physical clusterheads. These requirements, therefore, directly influence the choice of
network model for the proposed work.

First, the network model proposed has a hierarchical topology. Sensors are randomly deployed and the
transmission range is identical for all devices. For simplicity, an ideal MAC layer is assumed and node
death considerations are not taken into account at this stage. Also assumed is that a route has been
established between nodes in the network and the gateway1 node. To facilitate region-based routing, a

1Gateway node here is defined as the node from which a query is disseminated and through which results are acquired.
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Figure 4.1: The proposed network model.

cluster-based routing protocol that allows dynamic cluster formation and supports inter-node communi-
cation and communication with the external world, is selected. Two possible choices identified so far are
the Hybrid Energy-Efficient Distributed Clustering protocol (HEED) presented by [135]and which focuses
on scalable data aggregation and increased network lifetime; and a dynamic clustering algorithm (DCRR)
presented by [9]in which cluster heads are dynamically selected in the region where an event occurs
according to their residual energy. Figure 3a gives a pictorial description of the network model.

4.5.2 A Distributed Complex Query Processing Architecture

Section 3.2.3 introduced the architecture proposed for the DCQP. It consists of server-side software which
is accessed by the user and used for constructing, posing and parsing of declarative-type queries and
node-side software which is in effect the distributed complex query processor (DCQP) implementing query
processing functions in-network.

Server-side Software

This component will host an application layer which will allow the construction of queries with an un-
derlying Region Query Management Layer which will be responsible for parsing of these queries and
dissemination to the network. Additionally, the server-side software will allow the receipt of query results
for both presentation purposes and for persistent storage. Figure 4.1 shows the server-side architecture.

A key output of the research work will be the creation of a system that will allow the user to either specify
new logical regions as a component of a query being constructed or make use of regions already in

Gateways are not fixed; any node could potentially become a gateway at some point in time.
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Figure 4.2: DCQP Server-side architecture.

Figure 4.3: DCQP Node-side architecture.

existence within the network. This will involve the extension of a SQL-based query language to incorporate
the region construct and the development of an associated parser for the language. The region abstraction
will be a part of the query language used, and is essential to query dissemination as well as the creation
of query execution plans.

Node-side Software

This component will also host a region query management layer which will from an architectural stand-
point sit above the network layer (see figure 4.2). The node-side component is really a distributed query
processor hosted by all nodes in the network.

The region query management layer will deal with query reception, dissemination, processing and delivery
of results. In addition, this layer will need to manage the logical regions which are implemented as part
of the complex query. This functionality will be implemented as a region management component of the
query management layer itself.
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Region management will include the creation, maintenance and updating of region information on each
node within the network. This may involve, for example, a region leader upon receipt of a query, informing
its members of a new attribute of interest; or perhaps the termination of a previously posed query along
with its associated regions; or the handing-off of a region leader’s duties to a backup leader when the
node’s energy level falls below a certain threshold. Once a query is received, execution plans are cre-
ated dynamically based on the required region formation or existing regions which need to be accessed.
Region management is therefore an integral part of query plan formulation and query optimization. The
query plan is then executed. Once results have been acquired these are communicated to the server-side
component.

As in the Cougar system described in Section 3.2.1, the query management layer may have to interact
with the routing mechanism in the network layer in order to enable in-network processing which is a key
feature of the region-based query processing approach proposed. This interaction, however, is anticipated
to be minimal since a cluster-based routing protocol which maps the logical regions to physical clusters is
proposed as a way of minimizing intrusion into the network layer by the query management layer. Figure
4.3 shows diagrammatically, the proposed complex query processing system architecture.

Initial simulations have already been conducted to assess the feasibility of the approach proposed in this
work and are discussed in Chapter 5. Future work will identify a number of queries within the complex
query category and processing of these using the proposed techniques will be analysed first in simulation.
Based on the results, an integrated software/hardware implementation and deployment will be attempted.
This will involve testing both the in-network processing techniques themselves as well as the construction
of the queries using an identified and suitably modified query language.

4.5.3 Proposed Implementation Approach

The complex query processing system will be implemented on a suitable hardware platform which in the
first instance will be the Gumstix [42]. The devices are currently accessible and the research will be aided
by the creation of a gumstix-based testbed which will be up and running by the end of March 2008. The
platform will support various communication methods including Bluetooth, Wifi and Zigbee, and will allow
the implementation of a suitable routing protocol required to support the implementation of regions and
processing of region-based queries.

The software will consist of a query processing system which will be housed by each node in the network.
These will interact with sensor data acquisition services already handled by the underlying platform and
data routing services. Each node will be responsible for maintaining data such as:

• a list of its one-hop neighbours.

• queries which it has received and have to respond to.

• attributes of interest specified in those queries of interest.

• regions it may be a part of and

• a path to its region leader(s).
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Figure 4.4: A detail view of the functions provided by the complex query processing system.
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A region management service will also be running on nodes in an effort to update region information
periodically as well as remove expired region data if necessary.

Two categories of complex query will be addressed in the implementation.

The first is an event-based reactive query which will form part of a monitoring system and will focus on
dynamic, autonomous region formation as a result of event triggering. The idea here is that an event
occurs and queries are issued as a result.

The second will be a continuous mapping query which aims to produce condensed maps for delivery to
an end user. Such a query will be initiated by the user and will lead to further queries issued by the user
for more fine-grain detail perhaps based on a smaller area within the network. Initial investigation of this
type of query is presented in Chapter 4, Section 4.1.
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Chapter 5

Experiments and Results

As a first step in the research, the feasibility of using in-network abstractions for complex query pro-
cessing was examined. Two sets of experiments were carried out. The first examined the feasibility of
region-based query resolution in comparison to a number of popular alternative techniques. These were
all implemented and tested in simulation, and the efficiency of the in-network abstraction approach anal-
ysed against results where centralized and in-network aggregation approaches were used. The second
experiment analysed the region-based approach vis-a-vie a real-life WSN deployment. In that deployment
some in-network processing was carried out with all processed data being transmitted to a sink node. The
experimental setup was duplicated in simulation and a number of metrics for comparing efficiency of the
processing approach used in the field as opposed to the region based approach was carried out. These
experiments, their results and analysis are presented in this chapter.

5.1 The Simulation Environment - SenSor

All simulations presented in this chapter were carried out using SenSor [82, 81], an in-house WSN simu-
lator. Sensor is a scalable Python based package that allows prototyping of WSN algorithms.

The simulator allows a user to separate out the concerns of a simulation. For instance, a simulation of a
communication protocol may require that packets be realistically modeled whereas for a fault management
system packet design is irrelevant and can be described in less detail. Sensors are modeled as a pool
of concurrent threads with each sensor being able to gather and process data from the environment and
locate and communicate with its neighbours. Figure 5.1 shows a screenshot of a SenSor simulation in
progress. A full description of the simulation environment and its capability has been presented in a
number of publications [82, 81]. The full text of these publications is included in Appendix A.
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Figure 5.1: SenSor Simulator

5.2 Comparison of Query Processing Methods - Simulation Sce nario and
Setup

As described in Section 4.4, the particular class of WSN-based monitoring applications motivates this
research work. The forest fire detection and monitoring application described is one such example as
it requires in-network information extraction for extending and improving the monitoring system beyond
the literature reported state-of-the-art. This motivating application formed the basis for the preliminary
simulations performed with the aim of investigating the feasibility of in-network abstractions for complex
query processing.

The assumption is that a wireless sensor network has been deployed to monitor a forest where events of
interest have been pre-defined and are triggered if pre-conflagration gases are detected above a defined
threshold. In the simulation, this threshold is set at an arbitrary value and a gas detection event is triggered
at a randomly selected node once the simulation starts. Subsequently, a query is issued to attempt to
generate a map of the fire if indeed the fire exists.

The simulations were allowed to run until a response to the query was returned to the sink. In general,
the simulations aimed to answer two questions:

1. Is it possible to use in-network abstractions (regions) to facilitate query processing?

2. How does the region-based approach compare in terms of cost against the centralized and in-
network aggregation approaches currently in use?

Query resolution is simulated using three approaches: region-based resolution, spanning tree-based
in-network aggregation and centralized resolution. These are described in sections 4.3, 4.4 and 4.5 re-
spectively. Question (1) above was investigated in three stages. First, schemes for region establishment

Cogent Computing Applied Research Centre—Report COGENT.002

28/2/2008

83



based on an attribute of interest were devised and implemented. Second, management of the established
regions was designed and enabled in the simulation using elected region leaders. Third, query processing
was coordinated within regions and not network-wide (as would be the case with the other approaches).
Question (2) which in essence addresses the feasibility of the region-based approach involved conducting
a quantitative comparison of the region-based approach with the commonly used spanning-tree aggrega-
tion and centralized approaches. This was done by measuring and comparing the efficiency of the three
approaches in terms of the number of data messages (data packets) transmitted in the resolution of the
posed query.

For all simulations, a number of controls were maintained:

1. The number of nodes for each simulation set was consistent (networks with 50, 100 and 150 were
assessed for each querying approach). Nodes were scattered randomly over a two-dimensional
plane measuring 600*600 units.

2. The number of runs was constant for each individual simulation (5). (Since sensors were randomly
placed, the communication cost measurements differed among runs.) Multiple runs where an aver-
age could be taken were seen as a way of keeping the experiment’s results as realistic as possible.

3. All nodes were initialized with an equal and consistent amount of energy.

4. Radio broadcast range was set at a 20 unit radius.

5. Each node’s location was unique within the two-dimensional plane.

6. The same routing protocol was used for all simulations. Energy usage as a result of the protocol
in use was not considered, rather, only the energy expended in query resolution (again this was
measured in terms of the number of messages sent during query resolution was measured). Note
that future work will involve an informed choice of the most appropriate routing protocol energy-wise.

7. Gas and temperature readings for all nodes were randomly generated using the same random
number generator.

The results of the simulations are described and analysed in Section 5.3.

5.2.1 Region-based Querying

In order to simulate the region-based approach, the network is divided into logical regions based on a
node’s location within the 2-D simulation area and the regions used to facilitate query processing. In
the simulation, regions are manually configured prior to query dissemination and processing, a constraint
which will have to be relaxed in future work, particularly when examining dynamic region formation based
on event detection. For purposes of the simulation a number of assumptions are made:

1. The cost of region setup is ignored at this point but its effect will be considered and analysed in
future work.
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Figure 5.2: Code snippet of node software structure.

2. Regions are static for the duration of the simulation; however, the aim for future work is to investigate
the use of dynamic regions which may change while query processing is occurring. Although not an
issue in this simulation, since nodes are stationary and regions are based on geographic location,
in cases where regions are established over an attribute that is changing with time like temperature,
for example, the need for facilitating and managing dynamic regions becomes critical to query
processing.

3. Each node is a member of a maximum of one region. Again, future research will have to investi-
gate nodes as members of multiple regions which can be an issue in facilitating multiple queries
simultaneously or processing complex queries containing multiple attributes of interest.

From an architectural standpoint, this simulation focused on performing preliminary investigations into the
region formation and maintenance features of the node-side software proposed and described in Chapter
3, Section 3.3.3. A code description of the nodes included a number of data structures for storing and
maintaining the information required for both region formation and region operation and maintenance.
Figure 5.2 shows a code snippet of the node’s structure.

The region-based querying approach demonstrated in simulation comprises two phases. These are the
Region Setup and Querying phases.

Region Setup Phase

Region Discovery and Formation

An initial message is sent from the sink to the network. This message contains region setup information
identifying a node as being in a particular region. A node receiving the message sets its region ID attribute
and forwards the setup message on. Once all nodes within broadcast range have received the message
the leader election phase begins. Visually, node colour is used to differentiate regions in the simulator.
Nodes which are outside broadcast range and do not receive the setup message are not considered in
the region formation process. Figure 5.3 shows a sequence diagram of the region discovery process.
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Figure 5.3: Region discovery and formation

Figure 5.4: Leader Election.

Although all nodes are identical, for simplification nodes in the diagram are named to more clearly identify
its role during the simulation.

In the simulation, region setup occurs prior to a query being issued. This approach is seen as useful in
applications where long term monitoring of established attributes of interest is the objective of the WSN
deployment. Future work will investigate query-based region setup where regions are distinguished as
part of the query itself with an indicated region life if necessary.

Leader Election

Once a node has established its region membership it issues a leader election message. A naïve selection
method was used to elect region leaders where a node receiving an election message set itself as leader
if no leader existed for the particular region. That node then sends a registration message to the sink and
issues a leader advertisement message to the network. This message contains the leader’s ID and the
region ID for which it is the leader. Figure 5.4 shows a sequence diagram of the leader election process.
Again all nodes are identical but for clarity of a node’s role during the process, nodes are named in the
diagram.

Alternative leader election schemes need to be investigated perhaps those based on relevant node char-
acteristics such as energy level, processing power, etc.
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Figure 5.5: Leader Advertisement

Leader Advertisement

A node receiving a leader advertisement message sets its leader attribute to the leader ID in the message
if they are part of the same region. Once a node has set its leader attribute it sends a registration message
out to the leader along the reverse path of the advertisement message. Figure 5.5 shows a sequence
diagram of the leader advertisement process.

At the end of the Region Setup phase:

1. There is at least one region established based on nodes’ 2-D locations within the simulator window
and hop distance between nodes.

2. All nodes within broadcast range are part of a region.

3. Each region has elected a leader.

4. Each region leader has a path to the sink, a list of its region members and a path to each member.

5. Each region member knows its leader and has a path to that leader.

Querying Phase

A gas event is simulated as a task running on nodes within the simulation. The node to first detect this
’event’ immediately sends an alert message to its region leader. The leader now begins gathering the
necessary data on the distribution of the gas in the vicinity of the event. The region knows the location of
its members, so it sends a query to the subset of nodes within one hop of the node which detected the
event. It also queries those nodes about the temperature detected in those areas.

Nodes send their gas and temperature data to the region leader for analysis. The leader decides whether
the data indicates that a fire has started or not. For simplicity, in the simulation this was done using simple
over the threshold, maximum temperature and gas readings. If the results indicate that a fire has been

Cogent Computing Applied Research Centre—Report COGENT.002

28/2/2008

87



Figure 5.6: Region-based Querying
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detected, the leader queries further (2 hops and then 3) to try to determine how far the fire has spread.
If there is no fire detected by this initial query, the leader still queries further (2 hops) to make sure that
there is indeed no fire.

The region then either sends a simple ’FALSE ALARM’ message or a ’FIRE DETECTED’ response con-
taining the gas and temperature distribution over the area covered by the answering nodes (this represents
a temperature/gas map of the area) to the sink. The leader continues to monitor its region for further de-
velopment if a fire has been indicated and waits for input from the sink. If no message is received from the
sink within a certain period of time it stops querying for gas and temperature data. In the simulation, once
a response was sent to the sink, no other messages were sent to the region leader. Figure 5.6 shows a
sequence diagram illustrating this phase of the simulation.

In future work, the idea of the sink issuing further queries will be investigated as well as the problem of a
fire having spread to areas under survey by nodes not in the region where the event was initially detected.
This would involve some form of inter-region communication or the sink needing to issue queries to the
region leader of such a node.

The number of messages generated in getting the query to relevant region members, processing the
query and sending that data back to the leader, and also sending a response from the leader to the sink
was measured.

The results are presented in figures 5.11, 5.12 and 5.13 and discussed in section 5.4.

5.2.2 In-network Aggregation Simulation

This simulation represents the class of query-based systems that incorporate in-network processing via
aggregation of data up a spanning tree of the network, to the root (sink node). The following assumptions
are made:

1. The network discovery phase has already occurred and a spanning tree of the entire network has
been established.

2. The cost of establishing the spanning tree is ignored.

As is the case with the region-based simulation above, a gas event is simulated and the node detecting it
immediately informs the sink by sending to it an alert message. The user cannot specify any geographical
information so all data generated has to be sent from node to parent until it eventually reaches the sink.
All data is sent to the sink.

The sink, upon receiving the alert message, issues a query for the gas and temperature readings. When
a node receives the message it forwards to its parent node a packet containing the gas and temperature
readings. Data is aggregated (packet merging) wherever possible as messages move up the tree, and
sent in the same data packet.

Once the sink has received this aggregate data, analysis is performed to determine if the data indicates a
possible fire or not. Again, as is the case with the region-based approach a simple method of calculating
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Figure 5.7: Querying with in-network aggregation

the maximum temperature and gas readings was carried out. If the results indicate a fire the sink could
issue further queries, for example, a continuous query for monitoring the temperature and gas readings
over the area covered by the network for a particular period of time. However, for purposes of the sim-
ulation once a response was sent to the sink the simulation was terminated. Figure 5.7 illustrates this
process.

The cost of query resolution was measured by counting the number of messages generated in sending
data as a result of the query back to the sink. Multiple runs on 50-node, 100-node and 150-node networks
were carried out. The results are presented in figures 5.11, 5.12 and 5.13 and discussed in section 5.4.

5.2.3 Centralised Simulation

This simulation represents the basic warehousing approach where all data is sent directly to the sink for
analysis. The assumption is that the network discovery phase has already occurred.

As before, a gas event is simulated and the node detecting it immediately informs the sink. Similar to the
in-network aggregation approach, all data generated has to be sent back to the sink for analysis. Each
node in the simulation knows a path to the sink node as a result of network discovery.

The sink upon receiving the message issues a query for the gas and temperature readings. When a node
receives the message it returns to the sink a packet containing the gas and temperature readings. The
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Figure 5.8: Centralized Querying

message reaches all nodes within broadcast range with nodes subsequently responding to the sink. Once
the sink has received the data, analysis is performed to determine whether the data indicates that a fire
has started or not. Figure 5.8 illustrates the centralized querying process.

Again, as is the case with the region-based and aggregation approaches a simple method of calculating
the maximum temperature and gas readings was carried out. If the results indicate a fire the sink could is-
sue further queries, for example, a continuous query for monitoring the temperature and gas readings over
the area covered by the network for a particular period of time. However, for purposes of the simulation
once a response was sent to the sink the simulation was terminated.

The cost of query resolution was measured by counting the number of data messages generated as a
result of the query and sent back to the sink. Again, multiple runs on the 50-node, 100-node and 150-
node networks were carried out. The results are presented in figures 5.11, 5.12 and 5.13 and discussed
in section 5.4.

5.3 Acoustic Monitoring using Region-based Querying

Habitat monitoring (already described in Chapter 4, Section 4.1) is already a rich area of research in
the area of WSNs particularly because of the benefits to science and education. Within this group are
applications based on acoustic sensing, which are concerned with event detection and classification as
well as monitoring and localization. Bioacoustics research is a specific example and acoustic sensing in
that context can be used to help scientists acquire acoustic data which can can then be used to distinguish
between animals, species and census counts.

The processing required for such applications usually involves complex signal processing operations and
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Figure 5.9: Map of VoxNet deployment area

therefore present a number of challenges and requirements that are not evident in traditional monitoring
systems. The challenges include the heavy computation needed due to very high data rates and the need
for development of specific algorithms to facilitate online processing of very large amounts of data.

One such acoustic monitoring application, VoxNet focused on creating a system that allowed the detection
of marmot alarm calls. The work was informed by the requirements of scientists and their desire to be able
to detect these marmots in the field and then localize their positions. These calls, therefore, were used
to help determine the location of the animal at the time the call was detected, relative to known burrow
locations. Although for some systems simple recording and offline analysis of the data fulfills application
requirements, in the case of this bioacoustic monitoring system it was important that the system produce
timely results. The acoustic event detection and localization application consisting of eight nodes was
deployed over an area of about 9800 sq metres (2.4 acres). A gateway node was then positioned about
200m away from the nearest node. A map of the deployment is displayed in figure 5.9

5.3.1 Localisation of Acoustic Signals - the VoxNet approac h

Once an acoustic signal is detected by a node it is timestamped and an attempt made to determine the
location of the sound. The localization algorithm used, the Approximated Maximum Likelihood algorithm
(AML) [5]functions as follows:

1. A stream of audio is processed through a ’fast path’ detector to identify possible alarm calls.

2. The algorithm then estimates bearing to the caller from multiple points.

3. The algorithm then fuses those estimates to produce an estimate of the sound location.

The algorithm was expressed as a WaveScript program which is a logical dataflow graph of stream oper-
ators connected by streams. Once the program runs on these input streams results are streamed back
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to data storage components, in this case the gateway or sink node. This execution of the WaveScript
program constitutes the extent of in-network processing with the result being an estimate of the direction
of arrival (DOA) of the acoustic signal. Timestamped, DOA values are then sent on by nodes detecting
acoustic events to the sink. In some cases, depending on time availability, AML may not be executed on
the node to produce DOA estimates and instead streams of raw detections are sent instead. The size of
a DOA packet is 800 bytes as compared to 32KB for a raw detection.

In the application a minimum of 3 acoustic signals or DOA estimates are needed to localize a sound. At
the sink, these DOA estimates along with the timestamps are used to determine, first, whether the signals
are indeed from the same acoustic event and if they are, they can be combined to determine the location
at which the sound occurred.

For purposes of this work, metrics from the VoxNet deployment representing the number of data packets
transmitted in localizing one event, the number of hops over which these were sent as well as the total
distance traveled were used. A comparison was then made between the real-life deployment results and
the results of the simulations incorporating in-network, region-based processing.

5.3.2 A Region-based Approach to Acoustic Signal Localizat ion

The author maintains that an approach that incorporated in-network processing using the concept of
dynamic regions would be just as effective, if not more, than sending all raw data or partially processed
data, that is, DOA estimates, back to the gateway or sink for analysis. In this set of experiments, given the
limitations of the simulator, estimation of query processing times and generation of random events were
not possible. Instead, metrics not dependent on time like packet size, hop count and number of packets
transmitted were used to compare the efficiency and feasibility of the approach as compared to that taken
in the VoxNet application in the field.

5.3.3 Simulation Scenario and Setup

For all simulations, a number of controls were maintained:

1. The deployment of nodes in the simulator mirrored the actual real-life deployment topology. Nine
nodes including the sink were positioned in the simulation window at the same relative locations as
they were positioned in the actual deployment (see figure 5.9.)

2. All nodes were initialized with an equal and consistent amount of energy.

3. Radio broadcast range was set at a 200 unit radius (a unit corresponding to a meter). This was the
broadcast range of nodes in the VoxNet deployment.

4. Each node’s location was unique within the two-dimensional plane.

5. A list of acoustic events, the ID of nodes which should detect these events and the intervals at which
these events are to occur was defined prior to the start of each simulation. Lists contained between
3 and 5 events.
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Region Based Query Resolution

A continuously running, event detection task (referencing the event list) is implemented on all nodes. At
each time interval (a system clock tick), each node checks the event list. If an event for that node exists
and the current time matches the scheduled event an acoustic event is triggered.

The detecting node logs the time of the event and checks if it has any related inquiries in its ’inquiry
cache’. An inquiry indicates that another node has previously detected a possibly correlated event and
has requested and is possible awaiting a response. If a node with an inquiry message in its inquiry cache
detects a related event (that is, it is within the valid time slot) it sends a response to the node that sent
the inquiry. If the node detecting the event does not have any inquiries, it sets itself as a region leader
and sends an inquiry message to its one hop neighbours. This inquiry message contains the ID of the
node that has detected the event and the event’s timestamp. A node receiving this message registers
the inquiry if it has not had an event that matches that inquiry. A matching or related event is one that
falls within a timeslot which was determined practically through using the simulator. If the node detecting
the event does have an inquiry, it checks to see if its event has occurred within the valid time slot1 and a
’DATA’ message is transmitted to the node who sent the inquiry message (the region leader). Any event
occurring out of the valid time slot will not be sent to the region leader in response to its inquiry message.

The region leader upon receipt of a DATA message, records that message and if it has already received
the minimum (3) required or more sends the result to the sink via a RESULT message. In the simulation, if
the region leader has already received 3 messages it still waits for a period of time before sending a result
on. The reason is that the greater the number of messages the better the accuracy of the measurement
(this is also the model used in the VoxNet system.) The time a region leader waits again was determined
through use of the simulator although in the real life deployment this value was determined experimentally
and is referred to as a fuzz factor.

The simulation was allowed to run until either a result was sent to the sink or if the time for detection of
a particular event had elapsed. For example, an insufficient number of detections (less than three) were
detected within the valid timeslot. The results of this simulation in comparison to the in-the-field results
are analysed in section 5.4.

5.4 Results and Analysis

5.4.1 Efficiency of Region-based Querying

The results obtained indicate that regions can be used to support in-network query processing. In an-
alyzing how much more efficient, if at all, the region-based approach is as compared to the in-network
aggregation and centralized approaches, energy efficiency is evaluated using one parameter, that is, the
number of messages generated in returning a query response to the sink.

The results of running a number of 50-node simulations indicate that on average region-based query pro-

1A time range is used to indicate whether two or more signals are correlated and therefore considered as relating to the same
acoustic event. This is referred to as the valid time slot.
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Figure 5.10: Region-based approach to processing of acoustic data.

Figure 5.11: Comparison of number of messages required for query resolution in a 50-node network.
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Figure 5.12: Comparison of number of messages required for query resolution in a 100-node network.

cessing resulted in an almost 86% decrease in the number of transmissions over the centralized approach
and a 68% decrease on average over the approach using in-network aggregation.

For a 100-node simulation the results were equally impressive with over 91% reduction over the central-
ized approach and an almost 65% decrease when compared to the simulation using in-network aggre-
gation. For a 150-node simulation the results for the region-based approach were more marked when
compared to the centralized approach with over 95% reduction in the number of messages while there
was an over 45% decrease when compared to the simulation using in-network aggregation.

The results although showed that the efficiency of the region-based querying approach increased as the
size of the network increased when compared to the centralized approach, going from 86% to 91% to 95%
for a 50, 100 and 150 node network respectively. In comparison to the in-network aggregation approach,
however, this was not the case. Although communication was less, the relative percentages showed an
overall decrease, going from 68% to 65% to 45% for a 50, 100 and 150 node network respectively. It would
have been interesting to run these algorithms on even larger networks in determining whether this trend
would continue, however, the limitation of the simulator used made this impossible at this time. Based on
these results, however, although feasible, the scalability of the region-based approach is an issue to be
considered and examined more closely in future work.

5.4.2 Effectiveness of Region-based Querying

Again, the results obtained indicate that regions can be used to support in-network query processing and
are a viable approach in the context of a real-life deployment scenario. In analyzing the effectiveness
and feasibility of the region-based processing approach compared to that used in the VoxNet application
a number of measures were taken. First, the number of data packets was measured and along with the
packet size was used to calculate the total data transmission required for query resolution. This was
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Figure 5.13: Comparison of number of messages required for query resolution in a 150-node network.

done in multiple runs for cluster/region sizes of 3 and 4 nodes in the case of the VoxNet and region-
based approaches respectively, and an average taken. In addition, the average total data transported
was calculated for the VoxNet system in scenarios where all raw data was sent to the sink and also in
cases where in-network processing for DOA estimation was carried out.

The results, displayed in figure 5.14, clearly indicate that in terms of data transmission savings the region-
based approach exhibits an advantage over the query processing approach used in the VoxNet system.
This was evident even when some in-network processing was carried out. For a 3 and 4 node region
there was approximately a 28% and 38%, reduction respectively in the amount of data transmitted over
the VoxNet approach with in-network processing. The decrease is even more marked with figures of 61%
and 67% for the VoxNet processing approach with no in-network analysis.

The simulation again confirmed the feasibility of the approach although a number of issues need to be
investigated in future work. One, as identified before, is the scalability of the approach. In this simulation
the network was quite small (9 nodes) and the regions created as a consequence also limited in size. An
interesting exercise for the future would be to investigate the approach using larger regions and also to
test the region query processing algorithm in the field.
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Figure 5.14: Total amount of data transmitted in query resolution
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Chapter 6

Conclusions and Future Work

An extensive literature review has shown the absence of complex query mechanisms in the query pro-
cessing systems in use today. The review did highlight, however, applications in which these queries could
be used along with in-network processing to both extend and improve WSNs’ deployment value.

The research work so far has demonstrated the need for the complex queries described in the report
and the feasibility of using the proposed logical abstractions (called regions) to facilitate query processing
in WSN systems. The results of preliminary experimentation showed that ultimately the region-based
approach was more energy efficient than the currently popular approaches to in-network query process-
ing. Further, an architecture for a distributed complex query processing system has been developed
and preliminary experiments have already begun on investigating processing techniques and developing
particular aspects of the proposed system.

The preliminary experiments have produced promising results but also highlighted a number of areas that
have to be considered and investigated in future research work before progress can be made. A number
of these are described below.

The work put forward has already indicated that the region construct is part of the query itself and drives
both query dissemination and processing. The simulations looked at query processing where regions had
already been implemented. Future work will have to investigate the issues involved in query-based region
setup.

In the simulation, all regions created were static for the duration of the simulation; the use of dynamic
regions which can change while query processing is occurring needs to be investigated as well. This
becomes extremely important in cases where regions are established over an attribute that is changing
with time like temperature.

Although not considered at this point, the cost of region setup and its effect will need to be considered
and analysed in future work. Combining it with cluster formation to reduce energy consumption is perhaps
one approach.

For simplicity, the simulation only considered a scenario where a node could only be a member of a
maximum of one region. The research, however, will have to investigate nodes as members of multiple
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regions. This can be an issue in facilitating the processing of multiple queries simultaneously or process-
ing complex queries containing subqueries with additional attributes of interest.

In the simulation, once a response was sent to the sink the querying process terminated. In future work,
the idea of the sink issuing further queries will be investigated as well as inter-region communication and
how it can be facilitated.

In terms of a query language for region-based processing, a candidate SQL-based language has already
been identified. Future work will seek to amend and extend the language to allow the construction of the
queries of interest identified in the report.

Finally, candidate queries have already been identified as ’test cases’ for a prototype implementation of
the DCQP. A number of measures have already been identified for testing and evaluating the success of
the system.
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