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Abstract 

The description of oxygen self-diffusion over a range of temperatures and pressures is 

important in PuO2 for nuclear fuel applications.  Although there are limited 

experimental studies describing oxygen self-diffusion in PuO2, recent molecular 

dynamics studies extend the temperature range significantly.  In the present study 

elastic and expansivity data is used in the framework of a thermodynamic model 

(known as the cBΩ model) to derive the oxygen self-diffusion coefficient in PuO2 in 

the temperature range 1800 K to 3000 K. In the cBΩ model the defect Gibbs energy is 

proportional to the isothermal bulk modulus (B) and the mean volume per atom (Ω).  

The derived results are in good agreement with the most recent experimental and 

molecular dynamics data. Importantly, the present study extends the applicability of 

the model to nuclear fuel materials for the first time, where point defect parameters 

and behaviour are difficult to determine, particularly at the temperatures considered 

here. 
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1. Introduction 

 In recent years nuclear energy is being reconsidered as a way to meet future 

global energy demand while limiting greenhouse gas emissions.  The custodianship of 

spent nuclear fuel – typically called nuclear waste – is a daunting political and 

scientific challenge that stands as a barrier between the promise of nuclear power and 

its successful technical utilization.   

The primary component of conventional commercial nuclear fuel is UO2.  

This can be mixed with other actinide oxides (for example ThO2 and PuO2) to form 

mixed oxide fuel (known as MOX fuel) [1-3].  The renaissance of the nuclear industry 

will require consideration of alternative nuclear fuel cycles and the sustainable 

utilization of spent fuel in so-called “closed fuel cycles”. Up to 95% of nuclear waste 

is burnable actinides. Hence, nuclear waste is a significant source of energy; in fact 

some would argue that it is more appropriate to be called “strategic fuel reserve” than 

“waste”, particularly if the issues surrounding non-proliferation can be successfully 

resolved. Detailed and accurate scientific knowledge of various waste components 

and their chemical and metallurgical properties is required in developing the safe 

utilization of waste for fuel purposes in appropriate proliferation-resistant 

technologies.  

Additionally, the consideration of fuels based on thoria with high corrosion 

resistance, high melting point, and higher thermal conductivity (as compared to UO2-

based fuels) is of significant interest given the abundance of thorium in some 

countries [4-6]. The Th-U fuel cycle can lead to lower concentrations of long-lived 

transuranic elements and is perceived to be more proliferation-resistant, but there are 

still numerous unresolved issues that need to be clarified [7-9]. 
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The association of the defect Gibbs energy (gi) and bulk properties in solids 

has been considered by the community for over 60 years, leading to a number of 

models [10].  Importantly, Varotsos and Alexopoulos [11-13] described gi as being 

proportional to the isothermal bulk modulus B and the mean volume per atom Ω, with 

c being the constant of proportionality (referred to hereafter as the cBΩ model).  In 

previous studies the cBΩ model has been used to describe the defect processes in a 

number of materials [14-19], however it has not previously been employed to 

investigate oxygen self-diffusion in PuO2.   

 As oxygen self-diffusion in PuO2 is vacancy-mediated the cBΩ model can be 

applied as it is typically employed in systems with a single diffusion mechanism.  

Here we use the cBΩ model to derive relations for the association of the oxygen self-

diffusion coefficients in PuO2 with the isothermal bulk modulus and the mean volume 

per atom.   

 

2. Methodology 

 The activation Gibbs energy (𝑔act) in a crystal with a single diffusion 

mechanism can describe the diffusion process by the sum of the Gibbs formation 

 (𝑔f) and the Gibbs migration  (𝑔m) processes.  The activation entropy  𝑠act and the 

activation enthalpy  ℎact are given by [14,15]: 

 sact = −dgact

dT
� 𝑃                                                              (1) 

 hact = gact + Tsact                                                         (2) 

The diffusion coefficient D is defined by: 

   𝐷 = 𝑓𝑎02𝜈𝑒
−𝑔

𝑎𝑎𝑎

𝑘𝐵𝑇                                                              (3) 
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Where  𝑓 is the diffusion correlation factor (which depends upon the diffusion 

mechanism and crystal structure), 𝑎0 is the lattice constant, 𝜈 is the attempt frequency 

and 𝑘𝐵 is Boltzmann’s constant. 

In the present study we consider the cBΩ model in which the defect Gibbs 

energy gi is related to the bulk properties of the solid via the relation [11-13]: 

gi = ciBΩP                                                                      (4) 

Combining Eqs. (3) and (4) the following relation is obtained: 

  𝐷 = 𝑓𝑎02𝜈𝑒
−𝑐

𝑎𝑎𝑎𝐵Ω
𝑘𝐵𝑇                                                         (5) 

  𝑐𝑎𝑎𝑎 is a constant that can be considered to be temperature- and pressure-

independent at a first approximation [14,15]. If the pre-exponential factor 𝑓𝑎02𝜈 can 

be calculated using Eq. 5, and by using a single experimental diffusivity D1 value at 

a temperature T1, 𝑐𝑎𝑎𝑎 can be derived (single experimental measurement method 

[14,15]).  This 𝑐𝑎𝑎𝑎 can thereafter be used to derive the diffusivity Di at any 

temperature Ti using Eq. 5, provided that the elastic data and expansivity are known 

for Ti.  It is important to note that the cBΩ model can encapsulate anharmonic effects 

exhibited by the temperature decrease in B and by the thermal expansivity.  

  

3. Results and discussion 

The main reason to employ atomic-level simulation modelling on nuclear 

materials is that their properties are difficult to determine directly, particularly under 

operating conditions [20-28].  Recently, Cooper et al. [26] introduced a comprehensive 

potential set that describes the thermomechanical and thermophysical properties of 

AmO2, CeO2, CmO2, NpO2, PuO2, ThO2 and UO2 in a wide temperature range (300-

3000 K).  The potential model by Cooper et al. [26] introduces many-body interactions 

using the embedded atom method and successfully describes the elastic constants of the 
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actinide oxides.  Importantly, it reproduces the Cauchy violation and the bulk modulus 

over a wide temperature range [26].  The efficacy of this model has been demonstrated 

to calculate the diffusion and defect process in CeO2, PuO2, ThO2 and UO2 [27-29].  

The method of the single experimental measurement [14,15] described above 

is not unique and a drawback is that  𝑐𝑎𝑎𝑎 is influenced by errors in the B, Ω, and D1 

values.  These errors can be very significant if only one set of values is considered. 

Other methods have been used in previous studies to calculate  𝑐𝑎𝑎𝑎 such as the 

compensation law [30,31] and the “mean value” method [17,18].  In the present 

study, to avoid errors in the pre-exponential factor and the molecular dynamics 

uncertainties, the mean value method is considered.  The cBΩ model requires the 

expansivity and the isothermal bulk modulus data, and given the limited available 

experimental data the calculated values of Cooper et al. [26,29] were used here.  These 

values are reported in Table 1 alongside the molecular-dynamics-derived oxygen self-

diffusion coefficients in PuO2 [26,29].   

In the mean value method linear behaviour of ln𝐷𝑀𝑀
𝑃𝑃𝑃2 versus 𝐵Ω

𝑘𝐵𝑇
 verifies the 

validity of the cBΩ model with the slope of the line being (refer to Eq. 5).  Figure 1 

reports the oxygen self-diffusion coefficients (adopted from [27]) in PuO2 with 

respect to 𝐵Ω
𝑘𝐵𝑇

.  It can be concluded from Figure 1 that a single cBΩ relation cannot 

describe the whole temperature range considered, as there is a change in behavior at 

about 2400 K.  This is consistent with the superionic transition for PuO2 which was 

calculated to occur near this  temperature at the MD study of Cooper et al. [29] The 

superionic transition is effectively the transition between the fully crystalline low 

temperature and the superionic high temperature behavior, and occurs at a higher 

temperature for ThO2 (above 3000 K) as compared to UO2 (around 2650 K) [27,32]. 

From Figure 1, in the temperature range 1800-2400 K the oxygen diffusion 
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coeficients derived by the cBΩ model, 𝐷𝑐𝑐Ω
𝑃𝑃𝑂2, of PuO2 with respect to the isothermal 

bulk modulus and the mean volume per atom is given by:  

𝐷𝑐𝑐Ω
𝑃𝑃𝑂2 = 1.621𝑒−

0.3047𝐵Ω
𝑘𝐵𝑇  ∙ 10−3𝑚2𝑠−1                                       (6) 

From Figure 1 the superionic high temperature regime (2500-3000 K) can 

also be described by the cBΩ model but with a different pre-exponential and  𝑐𝑎𝑎𝑎 

factor:  

               𝐷𝑐𝑐Ω
𝑃𝑃𝑂2 = 2.234𝑒−

0.0604𝐵Ω
𝑘𝐵𝑇  ∙ 10−8𝑚2𝑠−1                                        (7) 

Figure 2 is the Arrhenius plot for oxygen self-diffusion coefficients in PuO2 

calculated by molecular dynamics [29] and derived by the cBΩ model using Eqs. (6) 

and (7).  The linearity and excellent agreement between the molecular dynamics [29] 

and the cBΩ model testifies the efficacy of the model to describe PuO2.  The 

discrepancies observed at the lower end of the temperature range can be attributed to 

the calculation of the diffusivities by molecular dynamics. 

Here we have established the validity of the cBΩ model for PuO2 and in a 

recent study for UO2 and ThO2.  In future work we will aim to use the cBΩ model to 

progress to the understanding of the diffusion and thermophysical properties in 

mixed oxide fuels.  Additionally, other defect properties such as formation entropies 

and enthalpies can be calculated for a range of temperatures and pressures, 

complementing the available literature.  

  

4. Conclusions 

1. This study has applied the cBΩ model, for the first time, to the study of transport 

properties of nuclear fuel materials, namely PuO2. The defect Gibb’s energy is related 

to the bulk properties of the material, specifically the bulk modulus and the mean 
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volume per atom. The method has been used to calculate the rate of oxygen self- -

diffusion in PuO2. 

2. There is excellent agreement between results obtained from molecular dynamics 

simulations and the derived oxygen self-diffusion coefficients in PuO2 in the 

temperature range 1800-2400 K.  It was shown that the cBΩ model adequately 

describes oxygen self-diffusion in PuO2 by considering two regimes, above and 

below the high-temperature superionic transition between the fully crystalline low 

temperature and superionic high temperature behaviour. 

3. The cBΩ model can therefore be applied to calculate defect volumes, formation 

and migration enthalpies and entropies over a range of temperatures and pressures.  

The findings presented could be relevant to the broader goal of advancing 

proliferation-resistant technologies in order to harvest the energy potential of spent 

fuel (i.e., nuclear waste). 
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Table 1. Derived and molecular dynamics [27] self-diffusion coefficients in PuO2, 

elastic and expansivity data [26] used in the cBΩ model. 

  

T 

/ K 

B 

/ 1011Nm–2 

Ω 

/ 10–30m3 

𝐷𝑀𝑀
𝑃𝑃𝑃2  

/ m2s–1 

𝐷𝑐𝑐Ω
𝑃𝑃𝑃2

 

/ m2s–1 

𝐷𝑐𝑐Ω
𝑃𝑃𝑃2 − 𝐷𝑀𝑀

𝑃𝑃𝑃2

𝐷𝑀𝑀
𝑃𝑃𝑃2  

% 

1800 137.46 13.80 1.59 × 10–13 1.28 × 10–13 –19 

1900 132.83 13.88 7.88 × 10–13 8.08 × 10–13 3 

2000 128.20 13.94 3.80 × 10–12 4.42 × 10–12 16 

2100 123.57 14.03 1.63 × 10–11 1.97 × 10–11 21 

2200 118.94 14.12 6.78 × 10–11 7.78 × 10–11 15 

2300 114.31 14.21 3.37 × 10–10 2.76 × 10–10 –18 

2400 109.68 14.32 9.71 × 10–10 8.69 × 10–10 –11 

2500 105.05 14.38 1.53 × 10–9 1.59 × 10–9 4 

2600 100.42 14.46 1.99 × 10–9 1.94 × 10–9 –3 

2700 95.79 14.53 2.40 × 10–9 2.34 × 10–9 –3 

2800 91.16 14.60 2.80 × 10–9 2.79 × 10–9 0 

2900 86.53 14.68 3.29 × 10–9 3.29 × 10–9 0 

3000 81.90 14.75 3.75 × 10–9 3.84 × 10–9 2 
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Figure 1. The oxygen self-diffusion coefficients in PuO2 with respect to 𝐵Ω

𝑘𝐵𝑇
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Figure 2. The Arrhenius plot for oxygen self-diffusion coefficients in PuO2 

calculated by molecular dynamics [27] and derived by the cBΩ model.  The dashed 

line roughly divides the part where the superionic regime is applicable (described by 

Eq. 7) to the part where the material is fully crystalline (described by Eq. 6). 
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