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Linkages between climate and mental health are often theorized1,2 but remain poorly quantified.3 In1

particular, it is unknown whether suicide, a leading cause of death globally,4 is systematically affected2

by climatic conditions. Using multiple decades of comprehensive data from both the US and Mexico,3

we find that suicide rates rise 0.7% in US counties and 2.1% in Mexican municipalities for a 1◦C4

increase in monthly average temperature. This effect is similar in hotter versus cooler regions and has5

not diminished over time, indicating limited historical adaptation. Analysis of depressive language6

in >600 million social media updates further suggests that mental wellbeing deteriorates during7

warmer periods. We project that unmitigated climate change (RCP8.5) could result in a combined8

9-40 thousand additional suicides (95% CI) across the US and Mexico by 2050, representing an9

change in suicide rates comparable to the estimated impact of economic recessions,5 suicide prevention10

programs,6 or gun restriction laws.711

Climate is increasingly understood to influence many dimensions of human health,1,8, 9 affecting health12

outcomes ranging from vector-borne disease mortality to rates of cardiac arrest.9,10 These relationships have13

been shown to occur through direct physical stress or insults to the body (e.g. heat-stroke or cyclone-caused14

drowning), changes in disease ecology (e.g. seasonal flu or malaria), and/or changes in socio-economic15

conditions that support human health (e.g. drought-induced famine). Recent work has also demonstrated16

that social conflicts between individuals, which cause intentional injuries and mortality, are particularly17

responsive to changes in temperature, perhaps due to changes in underlying economic conditions or altered18

individual-level aggressiveness.1119

Potential linkages between climatic conditions and mental health are also increasingly hypothesized.3 How-20

ever, unlike other key health outcomes, there remains limited quantitative evidence linking temperature to21

suicide and related mental health outcomes.12,13 Determining whether or not suicide responds to climatic22

conditions is important, as suicide alone causes more deaths globally than all forms of interpersonal and23

intergroup violence combined,4 is among the top 10-15 causes of death globally, among the top 5 causes of24

lost life-years in many wealthy regions,14 and among the top 5 causes of death for individuals aged 10-5425

in the US.15 It is the only cause of death among the top 10 in the US for which age-adjusted mortality rates26

are not declining.16 Thus even modest changes in suicide rates due to climate change could portend large27

changes in the associated global health burden, particularly in wealthier countries where current suicide rates28

are relatively high and/or on the rise.29
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Strong seasonal patterns in suicides (typically, an early summer “peak”) were recognized in the 19th century,30

but it was unknown whether this pattern was caused by seasonally-varying temperature, by other seasonally31

varying meteorological factors such as daylight exposure, or by other social or economic factors that also32

vary seasonally.17 More recent work has moved away from this seasonal focus, instead examining whether33

temperature and suicide are correlated in individual time-series for particular locations. This work has34

been inconclusive, with studies finding no effect,18,19 positive effects,20–22 and negative effects.23 These35

discrepancies are likely due in part to limited sample sizes, difficulty in fully accounting for critical time-36

varying confounds (e.g. macroeconomic conditions5), and/or differences in baseline suicide rates across37

locations that may be correlated with baseline temperature levels or seasonality. Due to the large number of38

non-climate factors that may potentially contribute to suicide rates and the potential for complex interactions39

between different possible causes—similar to the challenge of inferring whether climate is a contributing40

factor to social conflict24—reliably inferring whether temperature is a contributing factor to suicide risk41

requires adequately accounting for these potential confounds.42

Here we study the effect of local ambient temperature on rates of suicide across the US and Mexico – two43

countries that, based on current estimates,25 account for roughly 7% of all global suicides. To eliminate44

sources of potential confounding and small sample biases, we analyze the relationship between temperature45

and suicide using monthly vital statistics data for thousands of US counties26 and Mexican municipalities2746

over multiple decades (see Methods) – a drastically larger sample than has been available in past work47

(NUSA = 851, 088; NMEX = 611, 366). By using longitudinal data on many geographic units over48

time, we plausibly isolate the effect of temperature on suicide from other seasonal, time-trending, and/or49

cross-sectional factors that might be correlated with both temperature and suicide.50

We estimate the effect of random monthly temperature fluctuations on locality-level suicide using a fixed51

effects estimator, where the suicide rate in a given locality-month is modeled as a function of the temperature52

exposure during that month in that locality, accumulated precipitation over the same period, and a large53

number of flexible nonparametric controls that account for (i) all average differences between suicide rates54

across counties—such as those caused by regional poverty or gun-ownership rates; (ii) average monthly55

changes in suicide rates within each county, which allows seasonal patterns to differ across counties and56

accounts for factors such as location-specific effects of daylight exposure and holidays; and (iii) all time-57

varying confounds affecting all locations within each state simultaneously, including both gradual trends58

and abrupt shocks, which accounts for factors such as economic growth and recessions or news of celebrity59

suicides (see Methods). To ensure robustness of our findings, we measure temperature exposure during60

a given month using two different approaches: as the average daily temperature during the month or as61

the count of days during that month with average temperatures falling into different 3◦C temperature bins62

(Methods). Because the data strongly indicate an essentially linear response in daily average temperature63

using the flexible non-parametric model, we focus here on the linear-in-monthly-average-temperature model64

as our baseline. We use an identical research design to analyze a geocoded dataset of over 600 million social65

media updates on the Twitter platform28 (“tweets"), and evaluate whether warmer-than-normal monthly66

temperatures elevate the likelihood that social media users express abnormally depressive feelings in their67

language.68

Intuitively, our estimates of temperature effects derive from comparing suicide rates or depressive tweets69

between an average January in a given county to a warmer-than-average January in the same county, after70

having accounted for any changes common to all counties in a given state in that year. Whether a particular71

location experienced a hotter January than normal is plausibly random and statistically independent from all72

covariates, indicating that our temperature coefficients can be interpreted as the average causal effect of hotter-73

than-average temperatures on suicide rates. We test for the possibility that abnormally high temperatures do74
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not cause additional suicides but instead hasten suicides that would have otherwise happened by estimating75

distributed-lag models that allow for simultaneous influence of past, current, and future temperatures. If hot76

temperatures merely hasten suicides, then responses to current and lagged temperatures should have opposite77

signs and their effects should sum to zero.2978

We then assess how responses differ across decades, by income level, sex, population level, and both79

air conditioning (AC) and gun ownership rates, as well as across regions with different long-run average80

temperatures. As is common in the literature30,31 , stratifications by income, AC, time period, and baseline81

temperature allow us to evaluate whether economic development or experience with warmer conditions82

might have historically alleviated the burden of excess suicides via adaptation, a common theory in the83

broader climate-health literature10 and putative cause of observed differences in suicide seasonality across84

countries,32 but one which has received little direct empirical scrutiny.85

Finally, under the assumption that future suicide rates will respond shifts in mean temperature as they have86

responded to past to temperature fluctuations in the recent past, we construct projections for the impact of87

future climate change on suicide in the US and Mexico. We utilize output from 30 global climate models88

run under a business-as-usual emissions scenario (RCP8.5) and compute a distribution of net changes in89

excess suicides by mid-century. We then compare the estimated effect sizes from other known determinants90

of suicide to the projected impact of climate change.91

Results92

Unlike all-cause mortality, which has been shown to increase at both hot and cold temperatures around the93

world,29,33 we find in both the US and Mexico that the relationship between temperature and suicide is94

roughly linear: suicides decrease when a given location-month cools and increases when it warms (Figure95

1). We find that a +1◦C increase in average monthly temperature increases the monthly suicide rate by96

0.68% (95% CI: 0.53% to 0.83%) in the US over the years 1968-2004, and increases the suicide rate in97

Mexico by 2.1% (95% CI: 1.2% to 3.0%; Figure 3, top panel) over the years 1990-2010. For comparison,98

the average standard deviation of temperature variation over time (after accounting for seasonality) is 1.7◦C99

at the county level in the US, suggesting that monthly suicide rates rose >2% due to temperature in the100

hottest months on record. We confirm our US results using a second annually-resolved suicide dataset from101

the CDC,34 finding slightly larger point estimates for these more recent data (1.3% per +1◦C increase in102

annual average temperature). Our results contrast with past studies in the US, which have shown varied103

response.18,19, 35, 36 To our knowledge, the only comparable studies of the temperature-suicide relationship104

conducted in developing or middle-income countries during this period is ref[13] in India, which finds larger105

effects than those we report here.106

Results are robust to a large range of alternate models, including the use of more and less-restrictive fixed107

effects, inclusion of additional time controls, inclusion or exclusion of populations weights, more flexible108

functional forms for modeling the temperature/response relationship including higher order polynomials and109

splines, alternate codings for the outcome variable, and alternate methods for clustering the standard errors110

(Figure 1 and Tables S1-S3). A binned model that relates the monthly suicide rate to the distribution of daily111

temperatures within that month similarly uncovers a roughly linear relationship between daily temperatures112

and monthly suicide rates (Figures S1-S2).113
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Heterogeneous effects and adaptation114

Earlier work highlights the potential for various adaptations to lessen the health-related impacts of climate115

over time. For example, the proliferation of AC in the US is likely to have mitigated the relationship between116

temperature and all-cause mortality.30 Similarly, a broader literature highlights the potential for economic117

development to mitigate climate-health linkages, either because wealthier countries can better invest in health118

or because other aspects of development lessen environmental exposures.10119

In contrast to this literature, we find little evidence of adaptation in the temperature-suicide relationship. First,120

we find no qualitatively or statistically significant decline in the suicide-temperature relationship over our121

study period in either the US or Mexico (Figure 2, top panel). Point estimates are roughly stable in Mexico,122

and if anything trend up over time in the US, and are robust to restricting the data to only those countries123

reporting data in all years (Figure S3). Second, we find no evidence that individuals more frequently exposed124

to hot temperatures are less sensitive to their effects: effects in locations with hotter average temperatures are125

statistically indistinguishable from effects in cooler regions (Figures 3 and S2b), and state-specific estimates126

in both the US andMexico are largely statistically indistinguishable from national estimates (Figure 2, bottom127

panel). Third, income differences within countries do not mediate the temperature-suicide relationship: we128

find no significant difference in suicide response to temperature between rich and poor municipalities or129

counties. In the US, using data on county-level AC adoption from multiple waves of the US census30 and130

one Mexican census, we similarly find no evidence that higher air-conditioning adoption is associated with131

reduced effects of temperature on suicide (Figure 3); this hold true for exposure to extremely hot (>30◦C132

) days as well (Figure S2), although limited current exposure to these temperatures in counties with low133

air conditioning penetration makes estimates imprecise. Because average temperature, average income, and134

average AC penetration co-vary in the US, we estimate an additional model that interacts each covariate with135

temperature in a joint regression; we again find that none of these variables reduces the effect of temperature136

on suicide, with estimated interactions small in magnitude and not significant (Table S4).137

We also find no clear evidence of different effects of temperature on suicide by sex in either country, no138

differential effects by method of suicide in the US (data on method of suicide are unavailable in Mexico),139

no difference by county population size and, using state-level data on self-reported gun ownership in 2002140

in the US,37 no evidence that states with higher gun ownership have larger suicide responses to temperature141

(Figure 3). While there could remain other unobserved covariates that modify the temperature/suicide142

relationship, the broadly uniform structure of the temperature effects across a range of observed populations143

in both countries and the absence of evidence that these effects change over time suggest that the underlying144

mechanism linking temperature to suicide is highly generalizable across contexts and individuals.145

Temporal displacement146

We evaluate whether hot temperatures hasten suicides that would have happened anyway or trigger “excess”147

suicides that would never have occurred in a cooler counterfactual scenario. Using a distributed lag model148

(Methods), we find evidence of temporal displacement in both the US and Mexico (Figure 3, bottom panel),149

with higher temperatures in a previous month having negative and statistically significant effects on suicide150

in the current month. Summing the contemporaneous and lagged effects provides an estimate of the total151

number of excess suicides generated by hot temperatures, net of any temporal displacement.29,38 As expected,152

we find no evidence that temperatures one month in the future affect current suicide rates.153
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Depressive language on social media154

Although the absence of heterogeneous effects across subpopulations and countries suggests that the mecha-155

nism(s) linking suicide to temperature are similar across contexts, isolating specific responsiblemechanism(s)156

in our mortality data is difficult. Alternate data, however, allow us to indirectly explore certain potential157

mechanisms. One hypothesis is that high temperatures alter the mental wellbeing of individuals directly, per-158

haps due to side-effects of thermoregulation (e.g. altered brain perfusion39) or other neurological responses159

to temperature. Notably, this hypothesis is consistent with suicide responding to very short-run (e.g. daily160

or monthly) variation in temperature, as well as with the finding that depressive disorders are implicated in161

over half of all suicides.40162

If exposure to high temperatures directly alters the mental wellbeing of individuals, then this relationship163

should be observable using non-suicide outcome measures across a broad population, including individuals164

not immediately at risk of suicide. We test for such a pattern by examining whether monthly temperature165

also correlates with patterns of language on social media that express declining mental wellbeing.28 To do166

this, we collect and analyze 622,749,655 geolocated Twitter updates occurring in the US between May 22,167

2014 and July 2, 2015, noting that previous work has shown that analysis of Twitter updates can be used to168

predict variation in suicide in the US.41 Using a statistical approach directly comparable to the analysis of169

suicides above (see Methods), we find that the probability a tweet expresses “depressive" language increases170

with contemporaneous local monthly temperature (Figure 4), similar to our findings for suicide. While171

baseline estimates for the effects of contemporaneous temperature are only statistically significant for one172

coding (p < 0.01 for Coding 1, p > 0.1 for Coding 2), estimates for both codings are significant once lagged173

effects are also accounted for (p < 0.05, Figure S4). Accounting for lags, we find that each additional +1◦C174

in monthly average temperature increases the likelihood an update is depressive by 0.79% [95% CI: 0.23%175

- 1.35%] and 0.36% [95% CI: 0.05% - 0.68%] for the two different coding procedures we use. As shown in176

Figure 4, we estimate statistically and qualitatively similar effects under a variety of fixed effects and time177

controls.178

Projected excess suicides under future climate change179

To project potential impacts of future climate change on suicide, we use projected changes in temperature180

under a “business-as-usual" scenario (RCP8.5) to 2050 from 30 global climate models used in the recent181

Intergovernmental Panel on Climate Change (IPCC) 5th Assessment.42 Relative to the year 2000, the climate182

models project a population-weighted average temperature increase by 2050 of 2.5◦C [95% range: 1.3◦C183

-3.7◦C ] in the US and 2.1◦C [95% range: 1.5◦C -3.2◦C ] in Mexico. To calculate the change in the suicide184

rate due to climate change, holding other social and economic factors fixed, we multiply projected increases185

in temperature in each future year by our estimated effect of past warming on the suicide rate, accounting186

for uncertainty in both the historical suicide-temperature relationship (including temporal displacement) and187

future climate projections43 (see Methods). Given that the effects of temperature on suicide in the US appear188

to be trending up over time (recall Figure 2), we re-estimate the historical effect of temperature on suicide in189

the US using post-1990 data, and use these estimates to define the temperature response in our projections;190

for models that include temporal displacement, effects for the more recent 1990-2004 period are somewhat191

higher than for the full 1968-2004 period (0.58% increase per 1◦C versus 0.42%), as temperature impacts192

have trended up over time (recall Figure 2).193

Assuming that future outcomes will respond to a given mean temperature increase in the same way as past194
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outcomes have responded to temperature fluctuations is a common but untestable assumption in the climate195

impacts literature,44–47 but it is an assumption perhaps partially supported by the observed stationarity (or196

increase) in the temperature/suicide relationship over our study period. Under this assumption, and absent197

unprecedented adaptation, we calculate an increase in suicide rate by 2050 of 1.4% [95% CI: 0.6%-2.6%] in198

the US and 2.3% [95% CI: -0.3%-5.6%] in Mexico (Figure 5, left panel). Larger uncertainty for the effect199

in Mexico is due to larger uncertainty in that country’s regression estimates once temporal displacement200

is accounted for (recall Figure 3). Combining our estimated changes in the suicide rate with projections201

of future population change in the two countries, we estimate that by 2050, climate change will cause a202

total of 14,020 excess suicides in the US [95% CI: 5600-26,050] and 7,460 excess suicides in Mexico [95%203

CI:-890-18,300] (Figure 5). Accounting for the covariance in US and Mexico temperatures within each204

climate realization, this amounts to 21,770 [95% CI 8,950-39,260] total additional suicides when summed205

across both countries.206

Discussion207

We provide longitudinal and country-scale evidence that local suicide rates in both a developed and a middle-208

income country are robustly associated with local temperatures, findings which are consistent with recent209

work in both developed and developing countries.13,22 The remarkable consistency of the measured associ-210

ation over time and across contexts suggests that any hypothesized mechanism explaining this relationship211

must be widespread, and provides some confidence in generalizing these findings to other contexts and into212

the future. While our social media results support the hypothesis that temperature induces changes in mental213

state that follow the same pattern as suicides, and the generality of the suicide responses to temperature across214

geographic and socioeconomic strata is consistent with a common biological response, we cannot decisively215

reject other non-biologic explanations, such as that changes in temperature could affect social mediators of216

suicide.217

Nevertheless, our results do suggest that the mechanism through which temperature affects suicide is likely218

distinct from temperature’s effects on many other causes of mortality. In contrast to all-cause mortality,219

suicide increases at hot temperatures and decreases at cold temperatures; also unlike all-cause mortality, the220

effect of temperature on suicide has not decreased over time and does not appear to decrease with rising221

income or the adoption of air conditioning. The linear and stable structure of the suicide response is more222

similar to previously recovered relationships between interpersonal/intergroup violence and temperature,11223

which may plausibly have related biological origins.224

Linearity and intertemporal stability in the suicide response has important implications for climate change225

projections, as it leads to no projected reduction in suicide mortality from rising temperatures in cold regions226

and no clear indication that secular societal trends or adaptation will reduce climate sensitivities. Both of227

these conclusions contrast strongly with dominant themes in the existing climate-health literature,10 and228

along with other recent studies13 contribute needed empirical evidence on the effects of changes in climate229

on mental health.230

Our calculations suggest that projected changes in suicide rates under future climate change could be as231

important as other well-studied societal or policy determinants of suicide rates (see Figure 5 left panel). In232

absolute value, the effect of climate change on the suicide rate in the US and Mexico by 2050 is roughly233

two to four times the estimated effect of a 1% increase in the unemployment rate in the EU,5 half as large as234

the immediate effect of a celebrity suicide in Japan,48 and roughly one-third as large in absolute magnitude235
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(with opposite sign) as the estimated effect of gun restriction laws in the US7 or the effect of national suicide236

prevention programs in OECD countries.6 The large magnitude of our results add further impetus to better237

understand why temperature affects suicide and to implement policies to mitigate future temperature rise.238

Methods239

Data onUS suicides come from theMultiple Cause-of-DeathMortality Data from theNational Vital Statistics240

System (NVSS),26 which report county location, month, and cause of death for all individuals (prior to 1989),241

or those individuals residing in counties with more than 100,000 people (post-1989), representing roughly242

75% of the total US population. We calculate age-adjusted suicide rates in each county-month by combining243

cause-of-death data with US census data on age-specific populations. County-level data from NVSS are244

available beginning in the early 1960s, but data on cause-of-death using common re-codes do not begin until245

1968. After 2004, county identifiers are no longer made available in the public use data. Our suicide data in246

the US thus span the years 1968-2004.247

In the US, we combine county-level suicide data with temperature and precipitation data from PRISM, a248

high-resolution gridded climate dataset.49 PRISM data contain 4km-by-4km gridded estimates of monthly249

temperature and precipitation for the contiguous US, with daily estimates beginning in 1981, constructed250

by interpolating data from more than 10,000 weather stations. We aggregate these grid cells to the county-251

or municipality-month level, weighting by estimated grid-cell population from LandScan,50 following the252

procedure in51 for our nonlinear models. We test robustness using alternate suicide statistics drawn from the253

CDC’s Underlying Cause of Death database (available at the county-year level for the years 1999-2013).34254

Data onmonthly suicide rates inMexicanmunicipalities come fromMexico’s InstitutoNacional deEstadística255

y Geografía,27 which we match to gridded daily52 and monthly53 temperature and precipitation data (the256

available daily data from ref [52] do not contain precipitation data, thus we use the UDel data53 as our source257

of precipitation data). Our Mexican dataset spans the years 1990-2010.258

We estimate the following regression separately for our US and Mexican panels:259

yismt = f(Tismt) + γPismt + µim + δst + εismt (1)

using ordinary least squares, where i indexes localities (county or municipality), s indexes the state that the260

locality falls in, m indexes month-of-year, and t indexes year. yismt is the monthly suicide rate and Pismt261

is monthly precipitation. µim and δst are, respectively, vectors of county-by-month effects and state-by-year262

effects; the former account for other locally-seasonally-varying factors that could also be associated with263

suicide, such as day length, or seasonal cycles in other factors, such as the school year, and the latter264

account for shocks common to all counties in a given state in a given year, such as unemployment conditions.265

Regressions are weighted by average population in each county ormunicipality, with standard errors clustered266

at the i level to nonparameterically adjust54 for arbitrary within-unit autocorrelation in the disturbance term267

εismt. We test robustness to alternate clustering regimes, including clustering at the state level and two-way268

clustering at the county and year level, and find that standard errors are only modestly affected (Table S3.269

For the temperature response function f(Tismt) in Equation 1 we focus on models that are a function of270

average monthly temperature Tismt (e.g. the average temperature in January of 1996 in Santa Clara County,271

California), including linear models and higher order polynomials and spines. Estimates in the linear fixed272

effects models can be equivalently interpreted as the impact of a +1◦C deviation from normal temperature,273
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or as the effect of an absolute +1◦C temperature increase, as (e.g.) the impact of a temperature increase from274

0◦C to 1◦C is estimated to be the same as an increase from 20◦C to 21◦C . While monthly data cannot easily275

resolve sub-monthly responses to even shorter-run temperature variation (e.g. daily, as documented in past276

studies22), it more easily captures potential multi-week displacement effects that have been demonstrated in277

other weather-violence studies;55 indeed, we find displacement effects in both the US andMexico that appear278

to last months (Fig 3). A further reason for monthly aggregation is suicide data in Mexico are only available279

at the monthly level, and our source for temperature data in the US does not provide daily temperature data280

before 1980.281

We also estimate binned models where suicide is modeled as a function of accumulated exposure to different282

daily temperatures, f(Tismt) =
∑

j βjT
j
ismt, withT

j=1
ismt indicating the number of days in location-month-year283

ismt when the average temperature fell below -6◦C , T j=2
ismt as the number of days with average temperature284

in the (-6◦C ,-3◦C ] interval, T j=3
ismt as the number of days in the (-3◦C ,0◦C ] interval, and so on in 3◦C285

intervals up to a top bin of (30◦C , ∞)—indexing these bins by j. The (15◦C ,18◦C ] bin is the omitted286

category in our binned regressions, so the coefficients of interest shown in Figure S1 can be interpreted as the287

effect on the monthly suicide rate from an additional day spent in bin j, relative to a day spent in the (15◦C288

,18◦C ] bin. See ref. [51] for a derivation and complete discussion of this approach and its interpretation.289

The outcome in each regression is the monthly suicide rate, and we divide the estimate of β by the baseline290

suicide rate (the average suicide rate over the study period) to calculate percentage changes. As migration is291

unobserved in our data, our approach cannot account for potential selective migration into or out of specific292

counties – although migrants would have to differ in their suicide response to temperature for this to bias our293

results. We also note that our approach using county- or municipal-level data is focused onmaking inferences294

about average effects within these aggregate areas, and we do not attempt to draw any inferences regarding295

the risk that any specific individual within an administrative unit will commit suicide in any particular month.296

To estimate the heterogeneous responses reported in Figure 3, we estimate versions of equation 1 that contain297

interactions:298

yismt = β1Tismt + β2(Tismt ∗Di) + γ1Pismt + γ2(Pismt ∗Di) + µim + δst + εismt (2)

whereDi is equal to one if location i has a specified value for a the mediating variable of interest (e.g. above299

median income) and is zero otherwise. To estimate the year- or state-specific effects in Figure 2, we estimate300

a version of Equation 2 where temperature and precipitation are interacted with either year dummies or state301

dummies, and coefficients on these interactions are reported separately for each year or each state.302

Because looking at heterogeneity in a linear model (Equation 2 might not directly reveal adaptation to303

temperature extremes, we also estimate heterogeneous responses using the binned model, studying whether304

the effect of extreme heat exposure differs by the average frequency of this exposure or by access to air305

conditioning (Figure S2).306

To estimate the potential displacement effects of hot temperatures on future suicides, we estimate distributed307

lag models that include lags of monthly temperature and precipitation:308

yismt =

1∑
L=0

(βLTis(m−L)t + γLPis(m−L)t) + µim + δst + εismt (3)

where βL=0 indicates the effect of current month’s temperature and βL=1 the effect of previous month’s309

temperature.A finding of βL=0 > 0 and βL=1 < 0 would be consistent with displacement (hot temperatures310
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in a given month increase suicides in that month and decrease them in the following month), with the sum311

of coefficients βL=0 + βL=1 giving the overall effect of a hot month, net of displacement. These estimates312

are shown in the bottom panels of Figure 3.313

Depressive language in social media updates For the analysis of Twitter updates, we built on earlier314

work showing that certain keywords and phrases in tweets are predictive of local-level suicide.41 We coded315

tweets as “depressive” using the keywords and phrases in this earlier work, but because this approach only316

coded 0.02% of tweets in our sample as depressive, we developed an alternate approach that used a simpler317

set of suicide-related keywords to code tweets. In this latter coding, we compiled an extensive list of words318

associated with depression from various electronic sources, including more formal sources such as Crisis319

Text Line website (www.crisistextline.org), as well as from a number of suicide-related blogs found through320

Google searches (not listed here for privacy reasons). We retained words that were common across these321

sources and removed words likely to generate false positives (for example, “mom” is frequently included322

in suicidal texts). The dictionary of keywords that result from this procedure is (listed alphabetically):323

addictive, alone, anxiety, appetite, attacks, bleak, depress, depressed, depression, drowsiness, episodes,324

fatigue, frightened, lonely, nausea, nervousness, severe, sleep, suicidal, suicide, trapped. Using this simpler325

dictionary, we code 1.4% of tweets in our sample as “depressive”. We designate this approach “Coding 1”326

and the earlier-literature derived approach “Coding 2”.327

Using each of these two keyword dictionaries, we computed the total number of Twitter updates in each of328

885 Core-Based Statistical Areas (CBSA) (roughly, metropolitan areas) that contained at least one keyword329

in each day as a fraction of all Twitter updates between May 2014 and July 2015, following the approach in330

ref [28]. To reduce noise and to make estimates comparable to the suicide results, we limit our sample to331

CBSAs in which at least one Twitter update was posted on 90% of the sampling frame, and we aggregate332

up to the monthly level. Our dataset thus contains 24,780 CBSA-month observations. We then estimate the333

effect of monthly temperature on the likelihood that a Twitter update contains a depressive keyword using334

the following fixed effects regression335

yismt = βTismt + γPismt + µi + λsm + δst + εimst (4)

via ordinary least squares where i indexes CBSAs, s indexes state, m indexes month, and t indexes year.336

yismt is the proportion of tweets in a CBSA-month that contain a depressive word and Tismt and Pismt are337

the average temperature and total precipitation for that CBSA-month. µi is a vector of CBSA fixed effects,338

which we include to account for time-invariant local drivers of depressive social media use. To account for339

local seasonality in both depressive tweets and temperature, we include state-by-month fixed effects λsm (i.e.340

12 dummy variables for each state), and to account for local changes over time in either tweeting behavior or341

temperature, we include state-by-year fixed effects δst. Regressions are weighted by the average number of342

tweets in each CBSA. As in the suicide results, we report estimates of β normalized by the baseline rate of343

depressive tweets (either 1.4% or 0.02% for the two codings), such that they can be interpreted as percentage344

changes in the rate of depressive tweeting.345

We show robustness under a range of alternate fixed effects, time trends, and the inclusion or exclusion346

of weights (Figure 4, analogous to Figure 1 for suicide results), and show how depressive tweets in a347

current month respond to temperature variation in that month, earlier months, and later months (Figure S4,348

analogous to the bottom panel of Figure 3 for suicide). As in the suicide results, results are primarily driven349

by contemporaneous responses to temperature.350
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Calculating impacts of future climate change To calculate the potential impacts of future climate351

change on suicide rates, we use climate projections drawn from the Coupled Model Intercomparison Project352

5 (CMIP5). We utilize projections run under the RCP8.5 emissions scenario, in which emissions continue353

to rise substantially through 2100. We obtain data from 30 global climate models56 that publish RCP 8.5354

projections for changes in mean temperature.355

Climate projection data are processed as follows, repeated separately for each of the 30 climate models.356

Projected changes in monthly temperatures are calculated for each climate grid cell by averaging monthly357

projected temperature around 2050 (2046-2055) and monthly projected temperature around the baseline358

period (1986-2005), then differencing them. Model grids are then overlapped on the study administrative359

units (e.g. US counties) and locality-specific changes are calculated by averaging over grid cells that overlap360

the locality, weighting by the amount of the grid cell falling into the unit.361

We then combine these locality-level projections with our historical estimates of the effect of temperature362

on suicide to estimate (1) the potential percentage change in the suicide rate due to warming by 2050 and363

(2) the total number of excess suicides that could occur by 2050. The percentage change in the rate for a364

given country is calculated by multiplying the historical effect of temperature on suicide reported in Figure365

3 for that country (using the combined effects of current and lagged temperature, to account for possible366

displacement) by the population-weighted projected change in temperature between 2000 and 2050 from367

each of the 30 climate models. Excess cumulative suicides in country c due to warming between 2000 and368

2050 is then369

Yc =
2050∑

t=2000

popct ∗ (βc ∗∆Tct) (5)

where popct is the projected population in year t in 100,000s (taken from UN population projections57),370

βc is the estimated net change (lagged plus current) in the suicide rate per +1◦C increase in temperature371

(measured in deaths per 100,000/yr), and ∆Tct is the projected increase in temperature between 2000 and372

year t. Again, because temperature effects in the US appear to be trending up over time, for the US we373

estimate βc by applying Equation 1 to data from 1990 onwards. The application of future changes in annual374

average temperature (∆Tct) to monthly temperature-suicide coefficients (βc) is appropriate given the limited375

evidence over our study area that future climate change will lead to differential levels of warming across376

seasons.58,59377

We quantify uncertainty in these projections by bootstrapping the historical estimates of the suicide-378

temperature relationship (1,000 times, samplingwith replacement) and applying this distribution of estimated379

temperature sensitivities to projections from each of the 30 climate model projections to construct 30,000380

possible projections.43381

It is sometimes suggested that constructing climate change projections using coefficients from a within-382

location fixed-effects estimator is inappropriate because temporary changes in environmental conditions383

may trigger social responses that differ from the response to more permanent climate changes (see refs.384

[31,51] for a general discussion of this issue). The Marginal Treatment Comparability (MTC) assumption51385

required for such an extrapolation to be valid appears to be well-supported in this context, based on evidence386

that we recover. Our within-location estimator recovers the local slope of the temperature-suicide function387

in the vicinity of average local conditions observed in each locality, in the sense of a local first-order Taylor388

approximation. Our climate change projection then uses this local derivative to extrapolate local suicide389

rates as each locality warms and experiences the climate of locations slightly further south (or with slightly390

warmer temperatures). If the MTC assumption is violated, then once a county warms permanently, it will391
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not necessarily experience a permanent change in its suicide rate that reflects our estimates. This could occur392

for two reasons.393

First, the overall average suicide rate of counties could be determined exclusively by non-temperature factors,394

with temperature only determining the timing of when suicides occur within a given year. If this were true,395

then temporary warm events would only appear to increase the suicide rate because they cause a temporary396

surge in suicides that is offset later in the year by a reduction in suicides—a mathematical necessity required397

to keep to total suicide rate fixed at the level determined by non-temperature factors. This phenomena is398

known as “temporal displacement” or “harvesting” in the literature. As shown in Figure 3, we test for such399

behavior in the data and find some evidence of temporal displacement, but also that a portion of the suicide400

signal we observe is “additional” in the sense that they are not compensated for by delayed reductions in401

suicide rates. This causes the sum of contemporaneous and lagged effects of temperature to be positive,402

indicating that warming does lead to a net elevation of a locality’s total cumulative suicides and that average403

suicide rates are not only determined by non-temperature factors. Importantly, we account only for this404

additional effect, netting out any temporal displacement, when constructing climate change projections so405

as to avoid over-estimating projected suicides.406

A second case in which the application of the local derivative of the temperature-suicide relationship to407

future warming would be inappropriate is if the slope of the temperature-suicide relationship depends on408

average temperature, or similarly if the response of suicide to extreme heat days depends on the frequency of409

exposure to these extremes – i.e. because populations adapt to warming. Indeed, prior studies of electricity410

use60 and tropical cyclone mortality61 have shown that locations with more exposure to an environmental411

stressors respond differently than those with less exposure, indicating adaptation. Using the same test but412

in the suicide-temperature context, we check for evidence for adaptation by examining if locations that are413

warmer on average had a shallower slope in their temperature-suicide response, or if suicides in locations414

more frequently exposed to temperature extremes (e.g. days >30◦C ) were less affected by these extremes415

that locations less frequently exposed.416

We test for such behavior by estimating the temperature-suicide relationship for localities above and below417

the median temperature in both the US and Mexico (Figure 3), by estimating the local derivative for the418

temperature-suicide function for every single state in the US and Mexico separately (Figure 2), and by419

estimating the differential effect of exposure to extreme absolute temperatures for countries with less- and420

more-frequent exposure to these extremes (Figure S2). In all cases we fail to find evidence that effects421

diminish at higher temperatures: we see similar responses to temperature deviations in warmer and cooler422

counties and between warmer and cooler states, and we do not find that counties more frequently exposed423

to extreme absolute temperatures have diminished suicide responses compared to less-frequently-exposed424

locations, although estimates are somewhat noisy for cooler regions given limited exposure to extremes (Fig425

S2b). This evidence, along evidence that adoption of air conditioning has not reduced temperature-suicide426

relationships (Fig S2c) and that temperature-suicide relationships have diminished over time (Fig 2), suggest427

limited historical adaptation to either warmer-than-average mean temperatures or extreme heat exposure in428

our context.429

We note two important caveats to this adaptation analysis. First, average county-level temperature could be430

correlated with other unobserved factors that also affect suicide risk (e.g. culture), and so any comparison of431

temperature-suicide effects by climate zones risks confounding the effect of differences in average temperature432

with differences in these other unobserved factors. Although we do not find differential effects across climate433

zones or observable covariates that might plausibly matter (income, AC adoption, and population; Figure 3),434

suggesting a potentially limited role for the influence of correlated unobservables in our analysis, we cannot435
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decisively rule out the hypothesis that the effect of unobservables could exactly offset any differential impact436

of average temperature. Second, we cannot rule out that unprecedented adaptations in the future could reduce437

the temperature-suicide link in ways not observed historically. If this were to occur, then our estimates of438

excess suicides due to future warming would be too high. However, we note that there is no downward439

trend in the sensitivity of suicide to temperature during the period we observe (Figure 2), indicating that the440

emergence of unprecedented adaptations would itself be without precedent.441
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Figure 1: Effects of temperature on suicide rate. Lines show the estimated relationship between
monthly temperature and monthly suicide rate in the US (panel a; 1968-2004) or Mexico (panel b;
1990-2010), under different specifications of the fixed effects and increasingly flexible polynomials
or splines as described in the legend. Blue shaded areas are the bootstrapped 95% CI on Model
1 for each country. Histograms at the bottom display the distribution of monthly temperatures in
each sample. Fixed effects in Mexico are as in the US, except with municipality and state-month
FE in place of county-month FE.
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Figure 2: Temperature effects on suicide over time and space. a-b: Effects over time in US
and Mexico. Each dot is the year-specific effect of temperature on suicide (line is 95% confidence
interval), expressed as a percentage change above that year’s average suicide rate. The red dotted
line shows the average effect across the full sample in each country. c Effects by state. Colors
show the percentage increase in the state-specific monthly suicide rate per 1◦C increase in monthly
temperature. Histograms show the distribution of estimates across states in US and Mexico. States
outlined in black have estimates that are statistically distinguishable from the nation-wide average
estimate.
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Figure 3: Effect of variation in temperature on monthly suicide rate across the full sample in
US (black circles), Mexico (white circles) and for sub-groups in those countries. Dots are point
estimates of the effect of monthly temperature on monthly suicide (from Equation 1 or 2), lines are
95% confidence intervals. Base rates are reported in deaths per 100,000 person-months.
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Figure 4: Effect of monthly temperature on the likelihood that a Twitter update in US
metropolitan areas contains depressive keywords. Lines show the estimated relationship be-
tweenmonthly average temperature and the monthly share of Twitter updates (“tweets”) that contain
depressive language, under alternate fixed effects and time controls. (N=24,780 location-months).
Blue shaded regions are bootstrapped 95% confidence intervals on the baseline model. Grey
histograms display the distribution of monthly temperatures in the sample. The two plots show
alternative coding approaches used to identify depressive language (see Methods).
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Figure 5: Change in suicide rate, and cumulative excess suicides, by 2050 due to projected
temperature change in RCP8.5. a: projected change in the suicide rate by 2050 for US and
Mexico, accounting for temporal displacement across months (current + previous) as shown in
Figure 2. Whiskers are 95% CI that account for uncertainty in both future temperature change and
in the historical response of suicide to temperature.43 Black markers are published estimates for the
impacts of other policies/events5–7,48 displayed for comparison. b-c: distributions of total projected
cumulative excess suicides in US and Mexico over time. Black lines are median projections
with colored regions displaying the distribution of 30,000 Monte Carlo projections that resample
parameter estimates and climate models. Boxplots show median, interquartile range, and 95% CI
of projected cumulative excess suicides by 2050.
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Figure S1: Effects of daily temperature on monthly suicide rate. Connected black markers
are the change in monthly suicides rates in US (left) and Mexico (right) caused by altering the
temperature of a single day in that month (blue shaded area is 95% CI). Effects are the relative
change in monthly suicides due to changing a day’s average temperature from 15-18◦C to an
alternative average temperature (left vertical axis). Estimates are net of all constant differences
between locations, all within-location seasonal (monthly) variations, and all nationally coherent
annual changes in rates. Grey histograms display the distribution of individual days in each sample
(right vertical axis).
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Figure S2: Robustness and heterogeneity in the binned model for the US. a, Baseline binned
model (black, as in Figure S1A assigns all daily exposure >30◦C into one bin. Estimates from
a model that instead splits exposure above 30◦C exposure into 30-33◦C , 33-36C, and >36C
bins has identical estimates below 30◦C but noisy estimates above 33◦C , given the very low
number of days in our sample with daily average temperatures above 33◦C (as shown in the
histogram at bottom). b, the effect of daily temperature exposure on suicide as a function of
county average temperatures, with blue (purple) showing counties with below (above) median
temperature. Estimates in cooler counties are noisy in the >30◦C bin given the minimal exposure
in those counties to hot temperatures, as shown in the histograms at bottom. c, as in (b) but for
above- and below-average air-conditioning (AC) penetration. Counties with lower AC penetration,
which tend to be cooler in our sample and thus have low current exposure to extreme heat, again
have noisy estimates for the >30◦C bin. As in Figure S1, all estimates refer to the 1981-2004
period for which we have daily temperature data.
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Figure S3: Robustness of effects of temperature on monthly suicide rate over time in the US.
Left plot: As in Figure 2A. Right plot: sample restricted to a balanced panel of counties reporting
data in every year.
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Figure S4: Effect of temperature earlier and later months on depressive tweets in the current
month. Black markers are changes in the rate of depressive tweets in month t as a function of a
1◦C increase in previous, current, and future months, for both codings of depressive tweets. Blue
markers show the cumulative effect (

∑t
t−3 βt) of current and previous-month temperature exposure.

See Methods for full description.
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Table S1: Estimates of the linear effect of temperature on suicide rate in the US are robust to
different statistical specifications. All models include county-month fixed effects (i.e. 12 dummy
variables for each county) as indicated in the FE1 row, and include time fixed effects as indicated
in the FE2 row, with ‘S’=state, ‘Yr’=year, ‘Mo’=month. Some models also contain linear time
trends, and are weighted by county population, as indicated in the bottom rows. The outcome
variable is the monthly suicide rate (models 1-5; mean = 1.03 suicides per 100,000 people), the log
of the monthly suicide rate (model 6), or the inverse hyperbolic sine-transformed monthly suicide
rate (model 7). Temperature is measured in ◦C , precip in meters. Standard errors are shown in
parenthesis, clustered at the county level. Models 1-5 are analogous to lines 1-5 shown in Figure
1A.

Dependent variable:
suicide rate log(rate) ihs(rate)

(1) (2) (3) (4) (5) (6) (7)
temp. (◦C ) 0.007∗∗∗ 0.008∗∗∗ 0.006∗∗∗ 0.006∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.004∗∗∗

(0.001) (0.002) (0.001) (0.001) (0.002) (0.001) (0.0005)

prec. (m) −0.035 0.014 −0.059∗∗ −0.038 −0.048 −0.011 −0.016
(0.024) (0.073) (0.029) (0.024) (0.032) (0.032) (0.016)

FE1 C x Mo C x Mo C x Mo C x Mo C x Mo C x Mo C x Mo
FE2 S x Yr S x Yr Yr Yr Yr x Mo S x Yr S x Yr
Pop. weights Y N Y Y Y Y Y
Observations 851,088 851,088 851,088 851,088 851,088 280,486 851,088
R2 0.175 0.128 0.166 0.172 0.167 0.512 0.232

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table S2: Estimates of the linear effect of temperature on suicide rate in Mexico are robust to
different statistical specifications. All models include Municipality fixed effects as indicated in
the FE1 row, state-month fixed effects (i.e. 12 dummies for each state) as indicated in the FE2 row,
and include time fixed effects as indicated in the FE3 row, with ‘S’=state, ‘Yr’=year, ‘Mo’=month.
Some models also contain linear time trends, and are weighted by municipality population, as
indicated in the bottom rows. The outcome variable is the monthly suicide rate (models 1-5; mean
= 0.22 suicides per 100,000 people), the log of the monthly suicide rate (model 6), or the inverse
hyperbolic sine-transformed monthly suicide rate (model 7). Temperature is measured in ◦C ,
precip in meters. Standard errors are shown in parenthesis, clustered at the county level. Models
1-5 are analogous to lines 1-5 shown in Figure 1B.

Dependent variable:
suicide rate log(rate) ihs(rate)

(1) (2) (3) (4) (5) (6) (7)
temp. (C) 0.006∗∗∗ 0.007∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗ 0.008∗ 0.005∗∗∗

(0.001) (0.003) (0.002) (0.002) (0.002) (0.004) (0.001)

prec. (m) 0.011 0.009 −0.015 −0.010 −0.025 0.076 0.007
(0.020) (0.046) (0.027) (0.027) (0.028) (0.055) (0.013)

FE1 Mun. Mun. Mun. Mun. Mun. Mun. Mun.
FE2 S x Mo S x Mo S x Mo S x Mo S x Mo S x Mo S x Mo
FE3 S x Yr S x Yr Yr Yr Yr x Mo S x Yr S x Yr
Pop. weights Y N Y Y Y Y Y
Observations 611,366 611,366 611,366 611,366 611,366 40,701 611,366
R2 0.168 0.018 0.164 0.166 0.164 0.736 0.298

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table S3: Estimates of the linear effect of temperature on suicide rate are robust to different
ways of clustering the standard errors. Top panel is United States, bottom panel is Mexico.
Columns show estimates under different clustering schemes: (1) county, (2) county + state-by-year,
(3) county + year, (4) state.

United States:
(1) (2) (3) (4)

temp. (C) 0.0067∗∗∗ 0.0067∗∗∗ 0.0067∗∗∗ 0.0067∗∗∗
(0.0008) (0.0008) (0.0011) (0.0007)

prec. (m) −0.0347 −0.0347 −0.0347 −0.0347
(0.0242) (0.0238) (0.0236) (0.0300)

Clustering County County + State-Yr County + Yr State
Observations 851,088 851,088 851,088 851,088
R2 0.1754 0.1754 0.1754 0.1754

Mexico:
(1) (2) (3) (4)

temp. (C) 0.0063∗∗∗ 0.0063∗∗∗ 0.0063∗∗∗ 0.0063∗∗∗
(0.0014) (0.0015) (0.0014) (0.0017)

prec. (m) 0.0108 0.0108 0.0108 0.0108
(0.0203) (0.0137) (0.0172) (0.0144)

Clustering Mun. Mun. + State-Yr Mun. + Yr State
Observations 611,366 611,366 611,366 611,366
R2 0.1684 0.1684 0.1684 0.1684

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table S4: Heterogeneous effect of temperature on suicide rate in the US. Covariates include
county income in each year (in $1000 USD), county average temperature averaged across all
years (in ◦C ), and state-level AC penetration in each year (defined as percent of households with
residential AC, derived from Barreca et al30). Covariates are all de-meaned to ease interpretation.
All regressions include county-month FE and state-year FE and are weighted by county population.

Dependent variable:
suicide rate

(1) (2) (3) (4)
temp 0.0068∗∗∗ 0.0065∗∗∗ 0.0067∗∗∗ 0.0065∗∗∗

(0.0008) (0.0008) (0.0008) (0.0008)

temp*income 0.0001∗∗∗ −0.000003
(0.00003) (0.00004)

temp*avgtemp −0.0001 −0.0002
(0.0002) (0.0002)

temp*AC 0.0037∗∗∗ 0.0037∗
(0.0012) (0.0020)

Observations 806,448 806,448 806,448 806,448
R2 0.1756 0.1755 0.1755 0.1756

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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