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We investigate the critical properties of the d = 3 random-field Ising model with a Gaussian field distribution
at zero temperature. By implementing suitable graph-theoretical algorithms, we perform a large-scale numerical
simulation of the model for a vast range of values of the disorder strength h and system sizesV = L × L × L, with
L � 156. Using the sample-to-sample fluctuations of various quantities and proper finite-size scaling techniques
we estimate with high accuracy the critical disorder strength hc and the correlation length exponent ν. Additional
simulations in the area of the estimated critical-field strength and relevant scaling analysis of the bond energy
suggest bounds for the specific heat critical exponent α and the violation of the hyperscaling exponent θ . Finally,
a data collapse analysis of the order parameter and disconnected susceptibility provides accurate estimates for
the critical exponent ratios β/ν and γ̄ /ν, respectively.
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I. INTRODUCTION

The random-field Ising model (RFIM) is one of the
archetypal disordered systems [1–11], extensively studied due
to its theoretical interest, as well as its close connection
to experiments in hard [12–15] and soft condensed matter
systems [16]. Its beauty is that the mixture of random fields
and the standard Ising model creates rich physics and leaves
many still unanswered problems. The Hamiltonian describing
the model is

H = −J
∑
〈i,j〉

σiσj −
∑

i

hiσi, (1)

where σi = ±1 are Ising spins, J > 0 is the nearest neighbor’s
ferromagnetic interaction, and hi are independent quenched
random fields. Several field distributions have been considered
in the literature, the most common ones being the Gaussian
and bimodal distributions [14,17–19].

The existence of an ordered ferromagnetic phase for the
RFIM, at low temperature and weak disorder, followed from
the seminal discussion of Imry and Ma [1], when the space
dimension is greater than two (d > 2) [17–21]. This has
provided us with a general qualitative agreement on the sketch
of the phase boundary, separating the ordered ferromagnetic
phase from the high-temperature paramagnetic one. The
phase-diagram line separates the two phases of the model
and intersects the randomness axis at the critical value of
the disorder strength hc, as shown in Fig. 1. Such qualitative
sketching has been commonly used in most papers for the
RFIM [22–27], and closed form quantitative expressions
are also known from the early mean-field calculations [27].
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However, it is generally true that the quantitative aspects of
phase diagrams produced by mean-field treatments are very
poor approximations.

The criteria for determining the order of the low-
temperature phase transition and its dependence on the form
of the field distribution have been discussed through the
years [27–34]. In fact, different results have been proposed for
different field distributions, like the existence of a tricritical
point at the strong disorder regime of the system, present only
in the bimodal case [27,30]. Currently, despite the huge efforts
recorded in the literature, a clear picture of the model’s critical
behavior is still lacking. Although the view that the phase
transition of the RFIM is of second order is well established
[35–38], the extremely small value of the exponent β continues
to cast some doubts. Moreover, a rather strong debate exists
with regard to the role of disorder: The available simulations
are not able to settle the question of whether the critical
exponents depend on the particular choice of the distribution
for the random fields, analogously to the mean-field theory
predictions [27]. Thus, the whole issue of the model’s critical
behavior is under intense investigation [35–49].

The scope of the present work is to shed some light in
this direction by examining several critical features of the
phase diagram of the RFIM at d = 3. To this end, we recruit
powerful numerical and finite-size scaling (FSS) techniques in
order to obtain accurate numerical data through the extensive
use of large simulation platforms. On technical grounds,
we implement well-established optimization methods at zero
temperature (T = 0) combined with a Gaussian distribution
of random fields, as given by the formula

P(hi) = 1√
2πh2

exp

(
− h2

i

2h2

)
. (2)
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FIG. 1. Schematic phase diagram and renormalization-group
flow of the RFIM. The solid line separates the ferromagnetic (F)
and paramagnetic (P) phases. The black arrow shows the flow to
the random fixed point (R) at T = 0 and h = hc, as marked by an
asterisk.

The main advantage of the above distribution (2) is that
the ground state of the system is nondegenerate, so it is
sufficient to calculate just one ground state in order to get
the necessary information. Note here that, for cases of discrete
distributions, like the bimodal, degeneracy complicates the
numerical solution of the system at T = 0, since one has
to sweep over all the possible ground states of the system
[50,51]. On physical grounds, our attempt benefits from
classical FSS techniques and a scaling approach that involves
the sample-to-sample fluctuations of several quantities of
the system. In particular, sample-to-sample fluctuations and
the relative issue of self-averaging have attracted much interest
in the study of disordered systems [52]. Although it has been
known for many years now that for (spin and regular) glasses
there is no self-averaging in the ordered phase [53], for random
ferromagnets such behavior was first observed for the RFIM
by Dayan et al. [54] and some years later for the random
versions of the Ising and Ashkin-Teller models [55,56]. Ever
since, the subject of breakdown of self-averaging has been
an important aspect of several theoretical and numerical
investigations of disordered spin systems [57–69]. In view of
this increasing interest, we discuss here another successful
alternative approach to the criticality of the RFIM via its
sample-to-sample fluctuations at T = 0.

The rest of the paper is organized as follows: In the next
section we describe briefly the numerical approach, and we
provide all the necessary details of our investigation. The
relevant FSS analysis of the numerical data is discussed in
Sec. III. In particular, in this section we give refined estimates
of the critical disorder strength hc and the critical exponent ν

via a new approach based on the sample-to-sample fluctuations
of the model. We also present results on the controversial
issue of the specific heat of the RFIM by studying the scaling
behavior of the bond energy at the estimated critical field value
and its close neighborhood. Finally, a data collapse analysis of
the order parameter and magnetic susceptibility corroborates
our obtained values for hc and ν and provides us with estimates
for the magnetic exponent ratios β/ν and γ̄ /ν, respectively.
Finally, the paper ends with a summary of our conclusions in
Sec. IV.

II. SIMULATION PROTOCOL

As already discussed extensively in the literature (see
Refs. [70,71], and references therein), the RFIM captures
essential features of models in statistical physics that are
controlled by disorder and have frustration. Such systems
show complex energy landscapes due to the presence of large
barriers that separate several metastable states. If such models
are studied using simulations mimicking the local dynamics of
physical processes, it takes an extremely long time to encounter
the exact ground state. However, there are cases where efficient
methods for finding the ground state can be utilized, and,
fortunately, the RFIM is one such clear case. These methods
escape from the typical direct physical representation of the
system, in a way that extra degrees of freedom are introduced
and an expanded problem is finally solved. By expanding
the configuration space and choosing proper dynamics, the
algorithm practically avoids the need of overcoming large
barriers that exist in the original physical configuration
space. An attractor state in the extended space is found in time
polynomial in the size of the system, and when the algorithm
terminates, the relevant auxiliary fields can be projected onto
a physical configuration, which is the guaranteed ground state.

The random field is a relevant perturbation at the pure fixed
point, and the random-field fixed point is at T = 0 [14,17–20].
Hence, the critical behavior is the same everywhere along the
phase boundary of Fig. 1, and we can predict it simply by
staying at T = 0 and crossing the phase boundary at h = hc.
This is a convenient approach because we can determine the
ground states of the system exactly using efficient optimization
algorithms [50,51,72–85] through an existing mapping of
the ground state to the maximum-flow optimization problem
[86–88]. A clear advantage of this approach is the ability
to simulate large system sizes and disorder ensembles in
rather moderate computational times. We should underline
here that even the most efficient T > 0 Monte Carlo schemes
exhibit extremely slow dynamics in the low-temperature phase
of these systems and are upper bounded by linear sizes of
the order of Lmax � 32 [70,71]. Further assets in the T = 0
approach are the absence of statistical errors and equilibration
problems, which, on the other hand, are the two major
drawbacks encountered in the T > 0 simulation of systems
with rough free-energy landscapes [14].

The application of maximum-flow algorithms to the RFIM
is nowadays well established [80]. The most efficient network
flow algorithm used to solve the RFIM is the push-relabel
algorithm of Tarjan and Goldberg [89]. For the interested
reader, general proofs and theorems on the push-relabel
algorithm can be found in standard textbooks [87,88]. The
version of the algorithm implemented in our study involves
a modification proposed by Middleton et al. [35,77,78] that
removes the source and sink nodes, reducing memory usage
and clarifying the physical connection [77,78].

The algorithm starts by assigning an excess xi to each lattice
site i, with xi = hi . Residual capacity variables rij between
neighboring sites are initially set to J . A height variable ui

is then assigned to each node via a global update step. In
this global update, the value of ui at each site in the set
T = {j |xj < 0} of negative excess sites is set to zero. Sites
with xi � 0 have ui set to the length of the shortest path,
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via edges with positive capacity, from i to T . The ground state
is found by successively rearranging the excesses xi , via push
operations, and updating the heights, via relabel operations.
When no more pushes or relabels are possible, a final global
update determines the ground state, so that sites which are
path connected by bonds with rij > 0 to T have σi = −1,
while those which are disconnected from T have σi = 1. A
push operation moves excess from a site i to a lower height
neighbor j , if possible, that is, whenever xi > 0, rij > 0, and
uj = ui − 1. In a push, the working variables are modified
according to xi → xi − δ, xj → xj + δ, rij → rij − δ, and
rji → rji + δ, with δ = min(xi,rij ). Push operations tend to
move the positive excess towards sites in T . When xi > 0
and no further push is possible, the site is relabeled, with ui

increased to 1 + min{j |rij >0} uj . In addition, if a set of highest
sites U becomes isolated, with ui > uj + 1, for all i ∈ U
and all j /∈ U , the height ui for all i ∈ U is increased to its
maximum value, V , as these sites will always be isolated from
the negative excess nodes. Last but not least, the computational
efficiency of the algorithm has been increased via the use of
periodic global updates every V relabels [77,78].

Using the above described version of the push-relabel
algorithm we performed large-scale simulations of the Gaus-
sian RFIM for a wide range of simulation parameters. In
the first part, preliminary runs were executed, including also
small systems sizes V � 203, in order to probe efficiently
the critical h regime of the model. In the second part,
extensive simulations have been performed for lattice sizes
L ∈ {24,32,48,64,78,96,128,156} and disorder strengths h ∈
[2.0 − 3.0] with a step δh = 0.02. For each pair (L; h) an
extensive disorder averaging [· · ·] process has been under-
taken, by sampling over 50 × 103 independent random-field
realizations, much larger than in previous relevant studies of
the model [35,74,79]. Finally, in most of the figures below,
error bars are smaller than the system size and therefore are
indistinguishable.

III. FINITE-SIZE SCALING ANALYSIS

As the outcome of the push-relabel algorithm is the spin
configuration of the ground state, we can calculate for a given
sample of a lattice with linear size L the magnetization via
m = V−1 ∑

i σi . Taking the average over different disorder
configurations we may define the order parameter of the system
M = [|m|] and the disconnected susceptibility χdis = V[m2].
Another physical parameter of interest is the bond energy per
spin that corresponds to the first term of the Hamiltonian (1),
i.e., eJ = −V−1 ∑

〈i,j〉 σiσj , and its disorder average, defined
hereafter as EJ = [eJ]. Our analysis in the sequel will be
mainly based on these three thermodynamic quantities. In
particular, the disorder-averaged bond energy will be used for
an investigation of the critical behavior of the specific heat of
the RFIM.

At this point, let us start the presentation of our FSS
approach with Fig. 2, where we plot the sample-to-sample
fluctuations over disorder of three quantities, of physical and
technical origin. In particular, we plot the fluctuations of the
order parameter M [panel (a)], the bond energy EJ [panel (b)],
and the number of primitive operations of the push-relabel
algorithm, that is, the number of relabels per spin R [panel (c)].

FIG. 2. (Color online) Sample-to-sample fluctuations of the order
parameter VM (a), bond energy VEJ (b), and number of relabel
operations per spin VR (c), of the Gaussian RFIM as a function of the
disorder strength for various lattice sizes in the range L = 24–156.
Lines are simple guides to the eye.

All these fluctuations are plotted as a function of the disorder
strength h for the complete lattice size range L = 24–156. It is
clear that for every lattice size L, these fluctuations appear to
have a maximum value at a certain value of h, denoted hereafter
as h∗

L, that may be considered in the following as a suitable
pseudocritical disorder strength. By fitting the data points
around the maximum first to a Gaussian, and subsequently
to a fourth-order polynomial, we have extracted the values of
the peak locations (h∗

L) by taking the mean value via the two
fitting functions, as well as the corresponding error bars. Using
now these values for h∗

L we consider in the main panel of Fig. 3
a simultaneous power-law fitting attempt of the form

h∗
L = hc + bL−1/ν, (3)

simultaneous meaning that the values of hc and ν for all data
sets in the fitting procedure are shared in the fit. The quality
of the fit is fair enough, with a value of χ2/d.o.f. of the order
of 0.75, where d.o.f. refers to the degrees of freedom and
produces the estimates hc = 2.2725(25) and ν = 1.379(24)
for the critical disorder strength and the correlation length
exponent. These values compare very well to the most accurate
estimates of the literature hc = 2.270(4) and ν = 1.37(9), as
given by Middleton and Fisher [35].
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FIG. 3. (Color online) Simultaneous fitting of the form (3) of the
pseudocritical disorder strengths h∗

L, obtained from the peak positions
of the fluctuations shown in Fig. 2. The shared parameters of the three
data sets of the fit are the critical strength hc and the correlation length
exponent ν. The inset shows the data as a function of L−1/ν .

Having simulated eight lattice size points, we also tried
to perform the above analysis including higher-order scaling
corrections of the form (1 + b′L−ω), where ω is the well-
known correction-to-scaling exponent. As it is well known, the
role of scaling corrections in the study of universality classes
is of paramount importance. Although for the equilibrium
properties of the RFIM the presence, and effects, of scaling
corrections in the critical behavior of its thermodynamic
properties have been disregarded, for the out-of-equilibrium
version of the RFIM it has been shown that the election of the
scaling variable is causing the major source of uncertainty in
the determination of hc and relevant exponents [90]. Thus, we
attempted to perform a global fitting with the data of Fig. 3
using now the revised formula h∗

L = hc + bL−1/ν(1 + b′L−ω),
sharing as before the values of hc and ν, and also the value of ω

in this case, for the three data sets. However, no improvement
has been observed in the quality of the fit. On the contrary,
the corrected scaling assumption resulted in an unstable fitting
procedure with significantly large errors in the values of the
exponent ν and the coefficient b′, as well as the exponent ω.
Note that, such a behavior was also observed when fitting
separately the numerical data for the fluctuations of M , EJ,
and R (see also the discussion below).

We note here that our suggestion of choosing these newly
defined pseudocritical disorder strengths h∗

L as a proper
measure for performing FSS closely follows the analogous
considerations of Hartmann and Young [74] and Dukovski
and Machta [79], also for the Gaussian RFIM. The first
authors [74] considered pseudocritical disorder strengths at the
values of h at which a specific-heat-like quantity obtained by
numerically differentiating the bond energy with respect to h

attains its maximum. On the other hand, the authors of Ref. [79]
identified the pseudocritical points as those in the H -h plane
(with H a uniform external field), where three degenerate
ground states of the system show the largest discontinuities in
the magnetization. It appears that this method of extracting
pseudocritical points from the maxima of some properly
defined thermodynamic quantity is capable of producing very
accurate estimates for both the critical disorder strength and

the correlation length exponent, assuming that its behavior
follows the observed shift behavior of our pseudocritical
disorder strengths h∗

L. It is well known from the general scaling
theory that, even for simple models, the equality between
the correlation length exponent and the shift exponent is not
a necessary consequence of scaling [91]. Of course, it is a
general practice to assume that the correlation length behavior
can be deduced by the shift of appropriate thermodynamic
functions.

Middleton and Fisher [35], using similar reasoning on the
Gaussian RFIM, characterized the distribution of the order
parameter by the average over samples of the square of the
magnetization per spin and the root-mean-square sample-to-
sample variations of the square of the magnetization. They
identified a similar behavior to that of Fig. 2, i.e., with
increasing L, the peak magnitude of this quantity moved
its location to smaller values of h, defining another relevant
pseudocritical disorder strength. However, in Ref. [35] the
authors were interested only in the scaling behavior of the
height of these peaks. The practice followed in the current
paper, employing the FSS behavior of the peaks of the
sample-to-sample fluctuations of several quantities of physical
(M and EJ) and technical (R) origin, was inspired by the
intriguing analysis of Efrat and Schwartz [69]. These authors,
studying also the d = 3 RFIM, showed that the behavior of
the sample-to-sample fluctuations in a disordered system may
be turned into a useful tool that can provide an independent
measure to distinguish between the ordered and disordered
phases of the system. The analysis of Figs. 2 and 3 above
verifies their prediction, and the accuracy in the estimation of
relevant phase diagram features, like the critical field hc and
the critical exponent ν, makes up a clear test in favor of the
overall scheme.

Let us make at this point a small comment concerning
the errors inherent in these types of approximations. The
errors induced in the scheme based on the sample-to-sample
fluctuations of Fig. 2 have their origin in the application of
some polynomial, or peaklike, function in order to extract the
relevant position of the maximum in the h axis. On the other
hand, in similar definitions of pseudocritical points, such as
through the use of some properly defined specific-heat-like
quantity at T = 0 [74], one has to numerically differentiate
the data of the bond energy EJ, and then consider a smoothing
function to locate the position of the maximum. This scheme
is subjected to two successive fitting approximations, thus
increasing the errors in the estimation of the pseudocritical
points.

The second part of our analysis concerns the controversial
issue of the specific heat of the RFIM. The specific heat of the
RFIM can be experimentally measured [15] and is, surely, of
great theoretical importance. Yet it is well known that it is one
of the most intricate thermodynamic quantities to deal with in
numerical simulations, even when it comes to pure systems.
For the RFIM, Monte Carlo methods at T > 0 have been
used to estimate the value of its critical exponent α but were
restricted to rather small systems sizes and have also revealed
many serious problems, i.e., severe violations of self-averaging
[62,65]. A better picture emerged throughout the years from
T = 0 computations, proposing estimates of α ≈ 0. However,
even by using the same numerical techniques, but different
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scaling approaches, some inconsistencies have been recorded
in the literature. The most prominent was that of Ref. [74],
where a strongly negative value of the critical exponent α was
estimated (see also Table II). On the other hand, experiments
on random field and diluted antiferromagnetic systems suggest
a clear logarithmic divergence of the specific heat [15].

In general, one expects that the finite-temperature definition
of the specific heat C can be extended to T = 0, with the
second derivative of 〈E〉 with respect to temperature being
replaced by the second derivative of the ground-state energy
density Egs with respect to the random field h [35,74]. The
first derivative ∂Egs/∂J is the bond energy EJ, already defined
above. The general FSS form assumed is that the singular part
of the specific heat Cs behaves as Cs ∼ Lα/νC̃[(h − hc)L1/ν].
Thus, one may estimate α by studying the behavior of EJ at
h = hc [35]. The computation from the behavior of EJ is based
on integrating the above scaling equation up to hc, which gives
a dependence of the form

EJ(L,h = hc) = c1 + c2L
(α−1)/ν, (4)

with ci constants. Alternatively, following the prescription of
Ref. [74], one may calculate the second derivative by finite
differences of EJ(h) for values of h near hc and determine α by
fitting to the maximum of the peaks in Cs, which occur at h∗

L −
hc ≈ L−1/ν [similar reasoning to Eq. (3) above]. However, as
already noted in Ref. [35], this latter approach may be more
strongly affected by finite-size corrections, since the peaks in
Cs found by numerical differentiation are somewhat above hc,
and furthermore it is computationally more demanding, since
one must have the values of EJ in a wide and very dense range
of h values.

In the present case, where the critical value hc is known
with good accuracy from Fig. 3, the first approach seems to be
more suitable to follow. In this framework we performed new
simulations at the estimated critical-field value hc = 2.2725,
but also in the area within the range hc = 2.27–2.275, as
indicated by the error bar of our original estimate (2.2725 ±
0.0025) using seven candidate hc values (see also first column
of Table I). Numerically, we followed the recipe of Sec. II,
using lattice sizes in the range L = 24–156 and averaging
again over 50 × 103 random-field realizations for all candidate
values. The numerical data for the bond energy and the relevant
FSS analysis are presented in Fig. 4. The solid lines are
acceptable power-law fittings of the form (4) with χ2/d.o.f.
varying in the range 0.6–1.1 and the estimates for the exponent
ratio (α − 1)/ν are given in the second column of Table I.

TABLE I. Critical exponent α of the d = 3 Gaussian RFIM at the
seven candidate critical-field values hc obtained from the FSS of the
bond energy [Eq. (4) and Fig. 4] and the estimate ν = 1.379(24).

hc candidates (α − 1)/ν α

2.27 −0.955(66) −0.32(9)
2.271 −0.822(57) −0.13(8)
2.272 −0.825(55) −0.14(8)
2.2725 −0.788(52) −0.08(7)
2.273 −0.800(78) −0.1(1)
2.274 −0.784(50) −0.08(7)
2.275 −0.744(57) −0.03(7)

FIG. 4. (Color online) FSS behavior of the bond part of the energy
density at the seven candidate values of the critical random-field
strength hc. The lines are fittings of the form (4).

As in the case of Fig. 3 we also attempted here to include
in our fitting attempts scaling corrections of the same form
∼L−ω. However, as observed in the FSS analysis of the
pseudo-critical points h∗

L, the fitting procedure destabilizes
with the use of scaling corrections, and the fit turns out to be
unacceptable. In principle, one would expect to see at least
some fingerprints of the scaling corrections of the system,
given the fact that the disorder-averaging process performed
and the system sizes studied are considerably large. However, it
turns out that is not true and that our data cannot account for the
identification of scaling corrections. Since several large-scale
numerical calculations [35,66,74,79], including ours, using
modern algorithms on large simulation platforms have failed
to deal with this issue, it seems unlikely that a numerical
breakthrough will appear in the near future. Therefore, a better
theoretical understanding of the system is called for, especially
of corrections to scaling that may be the Achilles heel in the
study of the random-field problem.

Using our estimate ν = 1.379(24), we calculate now the
critical exponent α of the specific heat as a function of the
candidate field hc in the third column of Table I, obtaining
estimates that lie in the interval [−0.32(9),−0.03(7)], where
the error bars given are of pure statistical origin (see also
Table II for a summary and comparison of estimates for hc,
ν, and α of the d = 3 Gaussian RFIM). It is clear from
the values of Table I that small changes in the value of the
candidate critical field can produce different values of the

TABLE II. Summary of estimates for the critical field hc, corre-
lation length exponent ν, and critical exponent α of the specific heat
obtained in the current, but also in some of the most comprehensive
T = 0 studies, of the d = 3 Gaussian RFIM.

Ref. hc ν α

[35] 2.270(4) 1.37(9) −0.01(9)a

[66] 2.282(2) 1.25(2) −0.05(2)
[74] 2.28(1) 1.32(7) −0.63(7)
[79] 2.29(2) 1.1(1) 0.1(1)
This work 2.2725(25) 1.379(24) [−0.32(9), −0.03(7)]

aUsing the scaling of the bond energy at the mean critical field value
hc = 2.27, a value of α = −0.12(16) has been estimated.
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critical exponent α, as has also been noted in Ref. [35]. In our
approach, a change in the value of hc by a factor of δhc = 0.001
results, on a average, in a change δα ≈ 0.04 in the value of α. A
similar testing has been performed in Ref. [35], but with a less
fine mesh. These authors showed that a change of δhc = 0.01
introduces an uncertainty of the order of δα ≈ 0.3, which is
compatible with our analysis and results. Thus, if one wishes to
propose an estimate for the critical exponent α, corresponding
to the mean value of the candidate critical field hc = 2.2725,
the propagation of the errors stemming from the estimation of
hc and the pure statistical errors should be taken into account,
resulting in an estimate α = −0.08(24).

Another interesting point of Table I is that, excluding
the value of α that corresponds to the case hc = 2.27, all
other mean α estimates are close to zero and could therefore
be considered as compatible to the experimental scenario
of a logarithmic divergence [15]. However, we believe that
the current numerical observations do not fully account for
this assessment. As already discussed, perhaps on a first
approximation the identification and role of scaling corrections
should be cleared out, and in a second step, new methodologies
should be employed to tackle the problem. A promising route
to this direction would be the application of the quotients
method [92] on universal quantities, like the correlation length
in units of lattice spacing. Another possibility would be the
need to simulate even larger systems in order to probe safely the
asymptotic regime via the route of FSS theory. Unfortunately,
to the best of our knowledge, this is a task that goes far beyond
the power of currently accessible computer resources.

Finally, using the modified hyper-scaling relation [19]

θ = d − 1/ν + (α − 1)/ν (5)

and the above estimates of (α − 1)/ν and the value ν =
1.379(24), we suggest the following bounds for the exponent
θ = [1.320(47) − 1.531(41)], where the large range in the
values stems from the propagation of the errors in the
estimation of the critical field hc. Let us note here that, if
we accept the mean value hc = 2.2725 for the critical field,
we end up with an estimate θ = 1.49(3)(12), where the first
error is purely statistical, while the second includes also the
uncertainty in the estimation of hc. This latter value of θ

is compatible to the most accurate estimates in the modern
literature, i.e., the values 1.49(3) of Ref. [35] for the Gaussian
RFIM and 1.469(20) of Ref. [37] for the experimental analog
of the RFIM, that is, the diluted antiferomagnet in a field.

In the last part of our FSS analysis, we provide a further
verification of the above hc and ν estimates, together with
an independent calculation of the magnetic exponent ratios
β/ν and γ̄ /ν. Figure 5 illustrates a collapse behavior of the
magnetization (upper panel) and disconnected susceptibility
(lower panel) data, via the well-known scaling relations [73]

M = L−β/νM̃[(h − hc)L1/ν] (6a)

and

χdis = Lγ̄/νχ̃dis[(h − hc)L1/ν], (6b)

where M̃ and χ̃dis are universal functions of the scaling variable
(h − hc)L1/ν [91,93]. For the fitting procedure we have used
autoScale, a program that performs a FSS analysis for given
sets of simulated data [93]. The program implements a general

FIG. 5. (Color online) Collapse of the disorder-averaged magne-
tization (upper panel) and disconnected susceptibility (lower panel)
data.

scaling assumption which is expected to hold best close to the
critical point and optimizes an initial set of scaling parameters
that enforce a data collapse of the different sets. The optimum
data collapse, achieved by the minimization procedure of the
scaling parameters via the downhill simplex algorithm [94],
is carried out by finding a fair compromise between a (rather
small) value of a χ2/d.o.f.-like quantity, defined as S, and a
reasonably large interval h on the rescaled abscissa. In the
current case, the optimum data collapse is shown in Fig. 5
for lattice sizes in the range L = 48–156. The resulting values
for the critical disorder strength and the correlation length
exponent given in both panels of this figure are in excellent
agreement with the previous estimates of Fig. 3, obtained via
the FSS of the proposed pseudocritical disorder strengths h∗

L.
Moreover, the values of the magnetic exponent ratios β/ν =
0.013(5) and γ̄ /ν = 2.973(10) compare nicely to the most
accurate estimates of the literature. In particular we may refer
to the best known estimates β/ν = 0.011(3) of Ref. [35] and
γ̄ /ν = 2.941(46) of Ref. [73], both obtained by optimization
methods at T = 0. Closing, we would like to point out that it
might be also interesting to perform a data collapse analysis
of the fluctuations shown in Fig. 2 using the above scaling
procedure, in order to extract further estimates for the critical
parameters of the system. In this case, prior to the application
of the FSS program, a theoretical analysis involving the role
of fluctuations in the scaling equations should provide the
necessary formulae that will appear in the rescaled vertical
axis.
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IV. CONCLUSIONS

We have investigated the ground-state criticality of the
d = 3 RFIM with a Gaussian distribution of fields. A scaling
approach based on the sample-to-sample fluctuations of
several quantities of the system allowed us to present refined
estimates of the critical disorder strength hc and the correlation
length exponent ν. Particularly targeted simulations in the
neighborhood of the zero-temperature critical point suggested
bounds for the values of the critical exponent α of the
specific heat and the violation of the hyperscaling exponent
θ . Finally, accurate estimates for the magnetic exponent ratios
β/ν and γ̄ /ν have been given, in good agreement with
the current literature. The numerical effort recorded in the
present work became feasible via the mapping of the RFIM
to a network and its solution through a modified version
of the push-relabel algorithm. This scheme enabled us to
simulate, for a wide range of the random-field strength h,

large systems, containing up to 1563 spins, and to average
over huge ensembles of realizations, increasing the statistics
of ground states by a factor of 103, compared to previous
studies of the model. Although the present computational task
pushes available computing resources and goes beyond the
limit of typical Monte Carlo schemes, there are still many
boundaries to overcome in order to reach a complete resolution
of the model’s critical behavior, the most important of which
is the identification and impact of scaling corrections. We
are currently working towards this direction on a twofold,
numerical and theoretical, basis.
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[48] Ü. Akinci, Y. Yüksel, and H. Polat, Phys. Rev. E 83, 061103
(2011).

[49] M. Tissier and G. Tarjus, Phys. Rev. Lett. 107, 041601 (2011).
[50] A. K. Hartmann and K. D. Usadel, Physica A 214, 141 (1995);

A. K. Hartmann, ibid. 248, 1 (1998).
[51] S. Bastea and P. M. Duxbury, Phys. Rev. E 58, 4261 (1998);

S. Bastea, ibid. 58, 7978 (1998); S. Bastea and P. M. Duxbury,
ibid. 60, 4941 (1999).

[52] R. Brout, Phys. Rev. 115, 824 (1959).
[53] K. Binder and A. P. Young, Rev. Mod. Phys. 58, 837 (1986).
[54] I. Dayan, M. Schwartz, and A. P. Young, J. Phys. A: Math. Gen.

26, 3093 (1993).
[55] S. Wiseman and E. Domany, Phys. Rev. E 52, 3469 (1995).
[56] A. Aharony and A. B. Harris, Phys. Rev. Lett. 77, 3700 (1996).
[57] K. Eichhorn and K. Binder, J. Phys.: Condens. Matter 8, 5209

(1996).
[58] F. Pázmándi, R. T. Scalettar, and G. T. Zimányi, Phys. Rev. Lett.
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