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Abstract 16 

Dermanyssus gallinae, the poultry red mite (PRM), is a blood feeding ectoparasite 17 

capable of causing pathology in birds, amongst other animals.  It is an increasingly 18 

important pathogen in egg-layers and responsible for substantial economic losses to 19 

the poultry industry worldwide. Even though PRM poses a serious problem, very little 20 

is known about the basic biology of the mite. Here we review the current body of 21 

literature describing red mite biology and discuss how this has been, or could be, 22 

used to develop methods to control PRM infestations.  We focus primarily on the 23 

PRM digestive system, salivary glands, nervous system and exoskeleton and also 24 

explore areas of PRM biology which have to date received little or no study but have 25 

the potential to offer new control targets.  26 

Keywords: Dermanyssus gallinae, poultry red mite, biology, anatomy, control, mode 27 

of action 28 

29 



1. Introduction 30 

Dermanyssus gallinae, the Poultry Red Mite (PRM), belongs to the Order 31 

Mesostigmata which incorporates many mite species that vary considerably in 32 

morphology and behaviour. Many species are phytophagous, saprophagous or 33 

predatory free living species (Koehler, 1999; Gerson et al., 2008) whilst others, 34 

including PRM, have obligatory parasitic behaviour.  35 

PRM is a haematophagous ectoparasite of poultry and wild birds (Kristofík et al., 36 

1996; Brannstrom et al., 2008), requiring blood meals to develop into the last 3 37 

subsequent stages of its life cycle as well as for development of eggs during 38 

oviposition (See figure 1). Predominately females feed on blood several times during 39 

their lifetime though it has been reported that males may blood feed intermittently 40 

(Chauve, 1998). Whilst PRM feeds primarily on birds, it is cosmopolitan in its choice 41 

of host and has been reported to be capable of feeding on rodents (Bakr et al., 1995; 42 

Lucky et al., 2001; Abd El-Halim et al., 2009) and humans (Beck, 1999; Rosen et al., 43 

2002; Bellanger et al., 2008; Collgros et al., 2013;) though these are most likely 44 

accidental hosts and do not sustain a complete PRM life cycle. PRM has been 45 



implicated as a transmission vector for several significant animal pathogens, 46 

including some that are zoonotic. PRM-mediated transmission between hens has 47 

been shown directly for Borrelia anserine, fowl poxvirus and eastern equine 48 

encephalitis virus (Chamberlain & Sikes, 1955; Shirinov et al., 1972; De Luna et al., 49 

2008; Valiente Moro et al., 2009). The transmission of Salmonella spp. between 50 

birds by PRM has also been demonstrated and moreover the bacteria can be 51 

transmitted by mites transovarially to their progeny, rendering PRM a potential 52 

reservoir for zoonotic salmonellosis (Valiente Moro et al., 2007). Human cases of 53 

salmonellosis have been significantly reduced in recent decades however there is 54 

still an industry-wide requirement for safer and better defined vaccines against 55 

salmonellosis (Desin et al., 2013) .The potential of D. gallinae to harbour and 56 

transmit pathogens therefore appears to be an important and emerging problem. 57 

Pathology due to PRM in parasitized birds is variable depending on infestation rates. 58 

Symptoms from host birds most notably include a decline in general bird health due 59 

to lack of sleep and increased self-pecking (Kilpinen et al., 2005). Severe PRM 60 

infestations can lead to more serious effects such as cannibalism, anaemia and in 61 



some cases even bird death (Chauve, 1998; Kilpinen, et al., 2005). The most 62 

economically damaging symptom of PRM infestations is the reduction in egg laying 63 

amongst hens as well as a decline in egg quality (Chauve, 1998; Cosoroaba, 2001). 64 

Many controls against PRM, such as the use of chemical acaricides and silica dusts, 65 

are often sold as broad spectrum substances for controlling a range of farmyard and 66 

domestic pests. Reports of PRM resistance to acaricidal  drugs containing amitraz, 67 

carbaryl and permethrin (Zeman & Zelezny, 1985; Beugnet et al., 1997; Marangi et 68 

al., 2009), allied with genetic variation between red mite populations (Brannstrom, et 69 

al., 2008; Potenza et al., 2009; Roy & Buronfosse, 2011) suggest there is an urgent 70 

requirement for research to uncover more specific control strategies. Detailed 71 

knowledge of D. gallinae biology and behaviour is comparatively underrepresented 72 

in the literature given its commercial impact; this was estimated, for instance, in 2005 73 

to cause €130 million per annum economic loss in Europe alone (Van Emous, 2005).  74 

Here we present a brief overview of the basic understanding of PRM biology with 75 

specific regard to how this relates to current and potential future controls and their 76 

modes of action. We provide microscopic imagery of internal morphology, currently 77 



lacking in the existing literature, and discuss the types of control that target PRM 78 

systems at a cellular and systematic level.  It seems increasingly likely that control of 79 

PRM will require the application of integrated approaches, a concept we discuss 80 

against the backdrop of current ineffectiveness of the existing standalone controls. 81 

PRM is yet to be managed efficiently in large scale commercial farming facilities, 82 

which leaves an open platform for the introduction of a range of control options and 83 

potential for a standardised integrated control management. 84 

  85 



2. External Morphology 86 

D. gallinae thrives in environments of high (at least 70%) humidity whereas it does 87 

poorly in arid conditions because it cannot fully retain moisture (Nordenfors et al., 88 

1999) despite being externally protected by an exoskeleton (see Di Palma et al 89 

(2012) for detailed diagrams). A dorsal exoskeleton shield covers the length of the 90 

idiosoma (body) and is not gender specific. Ventrally however, females present two 91 

separate shields; a genitoventral shield spanning posteriorly from leg pairing II and a 92 

smaller, more rounded anal shield. Males possess a single, smaller ventral shield 93 

comprised of a seemingly fused joining of the genitoventral and anal shields (Di 94 

Palma, et al., 2012). 95 

The exoskeleton of acari is made of chitin, a tough and resilient polymer. In an 96 

unmodified state, often seen in the larval stage, chitin is translucent and 97 

comparatively flexible. Hormones secreted through pores trigger the polymerisation 98 

of chitin which is mixed with various protein families and phenolic compounds 99 

creating a sclerotized layer. The sclerotized cuticle offers a stiff layer which defines 100 

the mite’s body shape, aids with muscle attachment and limits water loss (Evans & 101 

Till, 1979; Hackman, 1982). Sclerotized cuticle can be identified by a 102 



brown/yellowish area, often covering the whole of the outer adult body and is 103 

replaced during each moulting stage as it cannot be extended during mite growth. 104 

The outer part of the mite exoskeleton, known as the epicuticle, consists of a layer of 105 

wax which further limits water loss, and a cement layer which protects the cuticle 106 

from external abrasion. Red mite controls, such as silica dust (Maurer & Perler, 107 

2006) and diatomaceous earth powder (Kilpinen & Steenberg, 2009), seek to dry out 108 

these outer layers and kill PRM through desiccation. Lipid removal through 109 

adsorption is thought to be due to the surface migration of fatty molecules into the 110 

hollow crystalline structure of the dust particles (Ebeling, 1971) which also interrupt 111 

the lipid layers through physical sheering (Vincent et al., 2003). These inert dust 112 

particles act via a chemically neutral mechanism and are not associated with any 113 

forms of resistance to mite controls, however their use can be limited by 114 

environmental conditions including very high humidity (>80%) and high levels of 115 

environmental dust within farming units (Kilpinen & Steenberg, 2009). Refinement of 116 

materials selected for dusting could possibly have potential to extend the longevity of 117 

this type of control, as could the use of dusts in liquid form.  Schulz et al (2014), 118 



however, reported no overall significant difference between liquid and dust form 119 

silica-based controls. 120 

There are prospects to develop novel control methods for PRM based on the use of 121 

entomopathogenic fungi. Fungi produce extracellular chitinases which when 122 

introduced to PRM chitin-rich hydrophobic coats can kill mites via desiccation (St et 123 

al., 1996). Fungi exhibit delayed pathology within PRM allowing for its wide 124 

dissemination, thus eliminating large mite populations (Tavassoli et al., 2008; 125 

Tavassoli et al., 2011). Beauveria bassiana has proved to be effective against PRM 126 

more than 10 days post exposure (Steenberg & Kilpinen, 2003) whilst Trichoderma 127 

album (Kaoud, 2010) and Metarhizium anisopliae fungi (Tavassoli, et al., 2011) are 128 

efficient at high spore concentrations as new acaricides. The use of parasitic fungi as 129 

a way to control PRM infestation could however generate downstream environmental 130 

disequilibrium, since entomopathogenic fungi are generally not specific for PRM and 131 

may affect other naturally existing insect populations. 132 

Heat treatment is also regularly used to reduce PRM populations in egg laying units 133 

in Norway and The Netherlands (M. Mul et al., 2009). Heating hen houses to a 134 



recommended 55°C kills PRM though it is suggested that high mite mortality also 135 

occurs at 35°C (Tucci et al., 2008). Heat treatment between flocks is not 136 

recommended for controlling PRM by itself but as part of an integrated approach (M. 137 

F. Mul & Koenraadt, 2009). 138 

3. Digestive tract 139 

The mite digestive tract is a comparatively well studied part of the anatomy of 140 

several species including the storage mite Lepidoglyphus destructor (Erban & 141 

Hubert, 2011), the house dust mite Dermatophagoides farina (Dumez et al., 2014), 142 

the sheep scab mite Psoroptes ovis (Hamilton et al., 2003)  and a range of 143 

synanthropic species (Erban & Hubert, 2010). In combination these studies provide 144 

an outline of the general anatomy of mites (Mehlhorn, 2001), although the specific 145 

physiology of PRM, which are haematophagous mites, may be substantially 146 

different. 147 

It is largely accepted that the ‘general’ mite digestive tract is organised into three 148 

recognisable parts; the foregut, midgut and hindgut. The foregut comprises the 149 

pharynx and oesophagus extending posteriorly from the gnathosoma to the midgut. 150 



Active food movement occurs through the oesophagus of PRM (J. Pritchard, 151 

personal observation) presumably via the action of pharyngeal dilator muscles and 152 

valves as has been demonstrated for P. ovis  (Mathieson & Lehane, 2002). 153 

The midgut, or ventriculus, and its associated caecae are thought to be primarily 154 

responsible for PRM digestion as is for other haematophagous mites. The midgut is 155 

located proximally between the third leg pairing and dorsally to most other internal 156 

soft tissue including the malpighian tubules (see figure 2a+b).  In unfed mites, the 157 

midgut appears reduced in size but in engorged mites it expands to fill most of the 158 

body cavity (Evans, 1992; Nisbet & Billingsley, 2000) as would be expected of a 159 

haematophagous parasite that ingests large blood meals. Enlargement of the midgut 160 

creates an increased surface area for digestive processes and also reduces the 161 

distance of the midgut and caecae from internal organs that depend on nutrient 162 

transport from the gut. 163 

Acari midgut digestive cells are generally classified into three types (anterior midgut 164 

cells, caecal cells and posterior midgut/hindgut cells) based on their function and 165 

location. Anterior midgut epithelial cells contain large vacuoles and go through a 166 



state of cytoplasmic degeneration whilst digesting food (Brody et al., 1972; Coons, 167 

1978).  In engorged mites, these cells detach from the gut mucosa and are able to 168 

engulf ingested material within the gut lumen becoming swollen and highly 169 

vacuolated. The presence of intracellular large vacuoles that contain material of a 170 

similar density to that seen in the gut lumen suggests that food digestion is carried 171 

out at least in part intracellularly (Mathieson & Lehane, 2002). The autophagic-172 

lysosomal pathway is the most likely way that intracellular digestion occurs and is 173 

thought to be initiated by the action of parasite endopeptidases such as Cathepsin D 174 

and Cathepsin L (Nisbet & Billingsley, 2000). Vaccination of poultry with recombinant 175 

PRM Cathepsin D or Cathepsin L induces anti-Cat D or anti-Cat L specific IgY 176 

immunoglobulins and when these are ingested by PRM in an in vitro feeding system, 177 

they cause increases in mite mortality (Bartley et al., 2012). Most likely these IgY 178 

antibodies bind directly to secreted Cathepsins D and L in the lumen of the mite gut 179 

however vaccine-induced immunity is believed also to cause damage to the gut 180 

barrier through direct binding of immunoglobins to membrane-bound proteins, even 181 

though complement induced antibody upregulation may be required  (Kemp et al., 182 

1989; Bartley, et al., 2012). 183 



PRM have six caecae extruding distally in a lateral manner, four anterior and two 184 

posterior, all  connected to the midgut in parallel to the third leg pairing (see figure 185 

2a+b). Caecal epithelial cells in various mite species are densely packed with 186 

lysosomes, smooth endoplasmic reticulum and mitochondria, all indicative of high 187 

metabolic activity related to digestive enzyme activity. Brody et al (1972) proposed 188 

that the lack of visible particulate material in the caecae of the house dust mite D. 189 

farinae indicates that caecal cells secrete enzymes which are used for digestion in 190 

the anterior midgut. However Erban and Hubbert (2011) demonstrated that midgut 191 

and caecal-wide hydrolysis of fluorescent substrates by several proteolytic enzymes 192 

occurred in the storage mite L. destructor. Given the significant expansion in size 193 

and large volume of blood found in the caecae in engorged PRM (see figure 2a+b) 194 

we suggest its caecae are also actively involved in food digestion. 195 

The start of the hindgut in PRM is defined by the junction of two large malpighian 196 

tubules at the posterior end of the midgut (see figure 2). Posterior midgut cells and 197 

hindgut cells in several species of mite have been shown to be apically-basally 198 

elongated with large microvilli (Brody, et al., 1972; Mothes-Wagner, 1985). It is 199 



believed the hindgut in mites is involved in water reabsorption and nutrient uptake, 200 

though the mechanism is yet unclear. Water reabsorption creates a black food bolus 201 

in PRM (J. Pritchard, personal observation) as seen also in D. farinae (Brody, et al., 202 

1972). Berridge and Gupta (1967) hypothesised that active transport of ions from the 203 

rectal papillae of the blow fly into intercellular spaces causes an osmotic gradient 204 

and thus water moves from the lumen to the hemolymph through osmosis. Further 205 

understanding of water reabsorption in PRM could help identifying potential targets 206 

for control. 207 

The peritrophic membrane is another potential future target for control; its presence 208 

has, however, neither been confirmed nor rejected in PRM. The presence of a 209 

peritrophic membrane in some mites is well defined such as in the flour mite Acaris 210 

siro (Hughes, 1950; Sobotnik et al., 2008) but seemingly absent in others (Coons, 211 

1978). The peritrophic membrane is a lamellar structure of chitin and associated 212 

structural proteins, which surrounds the food bolus protecting the gut against 213 

pathogenic microorganisms and compartmentalising food for digestive activity. 214 

Sobotnik et al. (2008) reported that the ingestion of calcofluor (which binds chitin in 215 



the membrane) and diflubenzuron (inhibits chitin synthesis) reduces Acaris siro 216 

population growth. Interfering with chitin or the chitin associated proteins could be a 217 

viable and safe method for PRM control since these molecules are absent in birds 218 

and mammals. In haematophagous arthropods peritrophic membranes have been 219 

suggested to protect epithelial cells against sharp edged haemoglobin crystals that 220 

form with blood meals (Berner et al., 1983; Eisemann & Binnington, 1994). In several 221 

species of ticks the membrane has been described in great detail (Matsuo et al., 222 

2003; Zhu et al., 1991) however as Eisemann & Binnington (1994) have noted, 223 

targeting the peritrophic membrane in arthropods presents immediate difficulties. 224 

This includes the possible destruction of antibodies and effector molecules from 225 

vaccinated hosts within the proteolytic environment of the gut as well as the 226 

necessity of a repeated control action every time a new peritrophic membrane is 227 

formed during a new blood meal. 228 

Proteins associated with the PRM midgut are not normally exposed to the avian 229 

immune system during mite feeding so the bird host does not generate a natural 230 

antibody response to them.  These ‘concealed’ gut antigens within the PRM 231 



therefore have potential to be selected as targets for vaccination as antibodies from 232 

vaccinated bird hosts would be taken up in a mite blood meal. Immunising hosts with 233 

gut-derived concealed antigens has proven successful for development of the 234 

vaccine TickGARD® (Hoechst Animal Health; Australia) against the midgut-235 

expressed BM86 protein of the cattle tick Rhipicephalus microplus (Willadsen et al., 236 

1995). Though no homolog to BM86 has been found in PRM the same strategy has 237 

recently been pursued using other internally expressed proteins (Arkle et al., 2008; 238 

Bartley et al., 2009; Bartley, et al., 2012). 239 

4. Nervous system 240 

Acari, including PRM, have a clustered region of nervous tissue known as the 241 

synganglion in the anterior section of the idiosoma, just anterior to the midgut (see 242 

figure 3). In PRM this central nervous mass is separated into two regions, the supra-243 

oesophageal nervous mass and the sub-oesophageal nervous mass. In agreement 244 

with Serverino et al (1984) we describe four pairs of pedal ganglia extending distally 245 

from the supra-oesophageal mass (Figure 3a), each ganglion connecting to each of 246 



the eight legs of the mite. The sub-oesophageal mass (figure 3b) is bisected 247 

longitudinally by the oesophagus and surrounded by fat tissue. 248 

Chemical acaricides against PRM predominantly target neurotransmitters and 249 

synapses between neurons within the synganglion tissue (see figure 4).  These 250 

substances classically target the voltage-gated Na+ channels of pre-synaptic axons, 251 

propagating a continually depolarised membrane leading to loss of action potential 252 

and eventually mite paralysis. Mites that cannot move to find food or escape 253 

environmental factors eventually die.  Sprayed acaricides are most likely taken up 254 

via sites of gaseous exchange in the PRM principally through the stigmata, located 255 

adjacent and dorsally to coxae II and III, through the peritreme branching network, 256 

into the haemolymph and finally through to the synganglion tissue. Mite synganglion 257 

tissue is reported in several mite species to be covered in an acellular sheath of 258 

neural lamellae which allows access of nutrients and other compounds (Coons & 259 

Axtell, 1971; Woodring & Galbraith, 1976). A rind of perikaryon (neural somata) cells 260 

further surrounds a central neuropile of axons and dendrites (Severino, et al., 1984) 261 

where it is likely PRM neurological controls are mostly active.   262 



PRM populations are known to be resistant to earlier generations of neurological 263 

pesticides, such as dichlorodiphenyltrichloroethane (DDT) and the pyrethroids 264 

(Zeman & Zelezny, 1985; Beugnet, et al., 1997). DDT is now banned for pesticidal 265 

control within the EU (UNEP-Chemicals, 2006) as it accumulates to high 266 

concentrations in food chains,  persists in the fatty tissues of animals and humans, 267 

and is associated with risk of several chronic illnesses (Orris et al., 2000; Eskenazi et 268 

al., 2006).  Pyrethroids are no longer used extensively with the exception of 269 

permethrin, a 3rd generation synthetic compound with activity against insects and 270 

acari (Blagburn & Dryden, 2009). Pyrethroid resistance has been reported in the 271 

important mite species Varroa destructor (Unit, 2013) and Sarcoptes scabiei 272 

(Andriantsoanirina et al., 2014). The use of pyrethroids has also been associated 273 

with increased numbers of Tetranychus urticae due to its toxicity against predatory 274 

mites of this species (Penman & Chapman, 1988).   275 

Other commercially popular pesticides include organophosphates such as Phoxim 276 

(Bayer, Germany), which target acetylcholinesterse, a hydrolytic enzyme required for 277 

acetylcholine hydrolysis and cross-synaptic signal termination. Acetylcholine is 278 



essential for neuron-to-neuron excitatory signal transmission thus inhibition of signal 279 

termination by Phoxim overloads receptors with too much acetylcholine preventing 280 

recovery of post-synaptic neuron potential. 50% Phoxim (Byemite®, Bayer, 281 

Germany) shows acaricidal effect on all stages of PRM as well as on egg 282 

development (Meyer-Kühling et al., 2007), although resistance may have already 283 

arisen in some natural populations in Poland (Zdybel et al., 2011). Post-synaptic 284 

acetylcholine receptors are also targeted by naturally derived essential oils and 285 

spinosyn A via competitive inhibition. Conversely, these compounds hinder 286 

acetylcholine binding so no post-synaptic signal is produced. Spinosad acaricides 287 

are a mixture of the compounds spinosyn A and D. Unlike spinosyn A which binds 288 

post synaptic acetylcholine receptors, spinosyn D targets GABA (gamma-289 

aminobutyric acid) receptors (Orr et al., 2009). Focusing acaricidal controls on two 290 

different target receptors of acetylcholine and GABA reduces the chance of natural 291 

resistance of mite populations to spinosad controls. The neurotransmitter GABA  292 

acts, in contrast to acetylcholine, by inhibiting excitatory signals. This suppression is 293 

enhanced by abamectin/ivermectin controls which stimulate GABA release in pre-294 

synaptic neurons and enhance its post-synaptic binding to GABA receptors. This 295 



induces hyperpolarisation of post-synaptic membranes via increased flow of chloride 296 

ions thus affecting downstream signalling capabilities. 297 

Due to the conserved nature of acari and insect neural pathways several acaricides 298 

are effective against many co-inhabiting species. The use of such substances, albeit 299 

practical, increases the risk of ecological disequilibrium. In addition the concurrent 300 

use of controls that target similar pathways increases the likelihood of resistance 301 

selection to multiple controls as has been seen in other insects and arthropods 302 

(Acevedo et al., 2009; Fernández-Salas et al., 2012)  303 

5. Salivary gland proteins 304 

Salivary gland proteins in haematophagous arthropods, including many acari 305 

species, have been shown to have biological functions in blood feeding. These 306 

proteins can influence blood flow through antihemostatic properties (Champagne, 307 

2004), interact with host immune cells to cause immunomodulation (Schoeler & 308 

Wikel, 2001; Titus et al., 2006) and eliminate bacteria in the feed by displaying anti-309 

microbial properties. Salivary proteins of the cattle tick Rhipicephalus annulatus have 310 

been suggested as potential alternative vaccine candidates (Shahein et al., 2013) as 311 



there is concern that ‘concealed’ or ‘hidden’ antigens from tick guts such as the 312 

BM86 vaccine TickGARD may not be effective in species other than R. microplus 313 

(Willadsen, et al., 1995; Nuttall et al., 2006). Unlike mites, ticks generally feed on 314 

their hosts for days or weeks at a time. This prolonged period of feeding requires the 315 

production of bioactive lipids and proteins in the salivary glands which are used to 316 

cement the tick to the biting site as well as to fight host immune-regulation, 317 

haemostasis and inflammation (Steen et al., 2006; Francischetti et al., 2009). It is 318 

possible that PRM salivary gland proteins are taxonomically related to known tick 319 

salivary gland proteins, however PRM feeding time is much shorter. A recent 320 

publication on sequencing the PRM transcriptome identified 24 potential salivary 321 

proteins likely to be involved in blood digestion (Schicht et al., 2013) some of which 322 

have hypothesised anti-bacterial functions.  323 

Secreted proteins in the saliva of the honey bee mite V destructor damage insect 324 

haemocytes and prevent aggregation formation that occurs in host wound healing 325 

(Richards et al., 2011). The requirement of V. destructor populations to feed multiple 326 

times on the same host is reflected in PRM behaviour, although it is unclear whether 327 



PRM feed repeatedly on the same open wound similarly to. If this is the case anti-328 

healing proteins may be a viable control target when present in PRM. More likely 329 

targets however are secreted salivary proteins with anti-microbial function since 330 

pathogens are ingested with blood meals regardless of feeding time duration. 331 

Studies into anti-microbial salivary proteins in ticks (Yu et al., 2006; Liu et al., 2010) 332 

as well as other arthropods (Titus, et al., 2006) should benefit further PRM research.  333 



6. Alternative and novel targets 334 

Mechanical and sensory inhibition  335 

Mites do not have eyes but sense their environment through hair-like appendages 336 

called setae, normally clustered at the palpal or tarsal extremities. In general, setae 337 

sense vibration, heat, moisture, CO2 or chemical cues generated by hosts or 338 

potential mates. PRM setae in the forelegs and palps play important roles in both 339 

olfactory and mechanical sensing (Cruz et al., 2005) as evidenced by increased 340 

movement of PRM in response to small vibrations and increases in environmental 341 

heat, suggestive of the presence of a passing host (Kilpinen, 2001). Kilpinen (2001) 342 

demonstrated that PRM exhibit increased heat-induced movement 2-10 days post-343 

feeding compared to mites fed 1 day before or fed >10 days before. Interestingly this 344 

correlates to the physiology of blood digestion in PRM suggesting that hungry mites 345 

2-10 days post feeding exert more energy on host finding, but after 10 days they 346 

become more static to conserve energy. PRM undergo a stasis-like diapause if no 347 

host is present or if the temperature drops, which is reflected by seasonal variations 348 

reported in PRM numbers (Nordenfors & Hoglund, 2000).   349 



The potential of utilising CO2, olfaction, and micro-vibrations in control strategies 350 

discussed below. 351 

Disrupting mating behaviour using micro-vibrations 352 

Both females and males of various species of insects produce and react to micro-353 

vibrations thought to be involved with mate attraction. Predominantly this behaviour 354 

has been studied in tree and plant parasitising species including the American 355 

grapevine leafhopper Scaphoideus titanus (Mazzoni et al., 2009), the southern green 356 

stink bug Nezara viridula (de Groot et al., 2010),  the Asian citrus psyllid, Diaphorina 357 

citri (Rohde et al., 2013) and the southern pine beetle Dendroctonus frontalis (Aflitto 358 

& Hofstetter, 2014). Studies have shown conspecific vibration patterns such as those 359 

from competing males (Mazzoni, et al., 2009; Rohde, et al., 2013) or heterospecific 360 

patterns such as those from a predator (de Groot, et al., 2010), can alter male 361 

behaviour resulting in reduced mating events. 362 

PRM are a colony-developing species and therefore mating may simply be a random 363 

process or pheromone-dependent (Entrekin & Oliver, 1982; Koenraadt & Dicke, 364 

2010), rather than directed by vibration. Mite activity is increased when PRM are 365 



exposed to substrate-borne microvibrations at 2 kHz (Kilpinen, 2005) however this 366 

has not been suggested to be directly related to mating behaviour. Further work into 367 

PRM reproductive behaviour and vibration sensing is needed to understand if this 368 

could be a potential route for population control. 369 

Use of carbon dioxide / mite traps 370 

D. gallinae initially remain static in the presence of CO2 although after 2 minutes 371 

exposure they display higher rates of movement compared to those of unexposed 372 

PRM (Kilpinen, 2005). This correlates to the behaviour of other haematophagous 373 

arthropods such as mosquitoes and ticks where CO2 induces increased movement 374 

based on evolution of host seeking behaviour. CO2 producing traps can be used as 375 

attractant controls as demonstrated by Garcia and others (Garcia, 1962; Newhouse 376 

et al., 1966; Wilson et al., 1972). Carbon dioxide has also been considered for 377 

control of several species of phytophagous mites that feed on stored crops (White & 378 

Jayas, 1991; Conyers & Bell, 2003).  Using levels of 50-60% CO2 in enclosed 379 

storage units reduces mite numbers significantly by asphyxiation however the use of 380 

CO2 at these levels is not appropriate for PRM control in farming units housing 381 

poultry flocks.  The use of local CO2 gradients to attract PRM into the vicinity of an 382 



already established PRM trap could be a potential alternative approach. Cardboard 383 

traps coated in compounds with acaricidal properties have proved to be a simple but 384 

effective control measure in trials in Sweden (Chirico & Tauson, 2002). 385 

Implementation of CO2 producing products for large scale control does remain 386 

speculative given the dangerously high levels that would be required for larger 387 

farming units. More appropriate would be their implementation in an integrated 388 

approach using multiple control methods. 389 

Predators and olfactory perception 390 

Olfactory receptors in PRM are suggested to play a role in mite survival since PRM 391 

remains initially and transiently motionless upon sudden CO2 concentration increase 392 

(Kilpinen, 2005). The CO2 increase possibly mimics the presence of potential 393 

predators. Consistently higher levels of CO2, however, induce PRM movement, 394 

suggesting perhaps a situation when their immediate risk of danger ceases to exist. 395 

PRM colonies that are openly exposed to hen flocks in illuminated areas are quickly 396 

pecked and presumably eaten (J. Pritchard, personal observation) thus explaining 397 

why PRM usually inhabit dark enclosed spaces and are nocturnal feeders. Use of 398 

intermittent light regimes has shown to vary mite numbers captured in studies carried 399 



out in Poland (Sokół et al., 2008) however application of lighting regimes in poultry 400 

houses varies between countries and such maybe subject to poultry welfare laws. 401 

Several predatory species including Hypoaspis miles, Hypoaspis aculeifer, 402 

Amblyseius degenerans  and Phytoseiulus persimilis are able to feed on D. gallinae, 403 

though feeding success as part of experimental PRM controls have proven to be 404 

dependent on environmental conditions and absence of alternative prey (Lesna et 405 

al., 2009; Ali et al., 2012; Lesna et al., 2012). The predatory mite P. persimilis feeds 406 

predominantly on the spider mite Tetranychus urticae and has been shown to be 407 

attracted to volatile compounds produced by plants fed on by T. urticae (Drukker et 408 

al., 2000; De Boer & Dicke, 2004). A hypothetical PRM control could be, for instance, 409 

the addition of such predator attractants to areas typically inhabited by PRM. 410 

D. gallinae themselves are affected by volatile compounds, most notably   repellent 411 

substances (Soon-Il et al., 2004; George, Olatunji, et al., 2010; George, Sparagano, 412 

et al., 2010). Plant derived essential oils are shown to possess repellent and even 413 

lethal characteristics of which garlic and thyme oils appear to be the most effective. 414 

As reviewed by George et al. (2014) naturally derived essential oils benefit from low 415 



mammalian toxicity and short environmental persistence indicating their potential 416 

future use as part of integrated control strategies. 417 

Conversely, little research has been carried out into mite attracting compounds. 418 

Zeman (1988) showed attraction of PRM to host-derived bird surface skin lipids 419 

which is postulated to be part of the evolution of PRM host-detection. Furthermore D. 420 

gallinae have been shown to release pheromones which attract other PRM causing 421 

mites to cluster together, most likely for protection (Entrekin & Oliver, 1982; 422 

Koenraadt & Dicke, 2010). How repellent or attractant compounds are used in future 423 

controls would require further research. The study of attractants to be employed in 424 

mite traps, repellents to be employed in densely populated areas and mechanical 425 

constraints would be beneficial for the development of integrated control strategies. 426 

Embryogenesis 427 

Adult female PRM are oviparous, laying 3-4 eggs after mating. Oviposition time 428 

varies with temperature but is suggested to be on average 1-3 days at 20-45°C 429 

(Maurer & Baumgartner, 1992; H. Nordenfors, et al., 1999). Embryo development 430 

requires various compounds including proteins, sugars and lipids which are secreted 431 



from both ovarian and extra-ovarian tissues. These compounds include vitellogenin, 432 

the precursor for the yolk protein vitellin, an essential nutrient during early 433 

embryogenesis (Seixas et al., 2012). A range of proteases involved with the 434 

hydrolysis of vitellin, leading to yolk degradation, have been isolated in eggs of the 435 

cattle tick R. microplus (Logullo et al., 1998; Sorgine et al., 2000; Seixas et al., 2008) 436 

and targeted via vaccination. This has led to reduction in tick fecundity and next 437 

generation egg weight in ticks fed on the blood of vaccinated bovine hosts (da Silva 438 

Vaz et al., 1998; Seixas, et al., 2008). Of these proteases vitellin-degrading cysteine 439 

endopeptidase (VTDCE), a Cathepsin-L like protein, is the most active enzyme. 440 

Comparative study into embryogenesis in PRM is lacking, but homologues to 441 

Cathepsin-L have been identified through suppression subtractive hybridization 442 

(Bartley, et al., 2012). Wright et al (2011) identified vitellogenin in PRM as the protein 443 

with the highest difference in expression between cDNA libraries of fed and unfed 444 

mites. Due to the increase in expression Cat-L and vitellogenin in fed mites it is 445 

plausible that Cat-L like proteases could play a part in PRM vitellogenesis. Huntley et 446 

al (2004) describe a vitellogenin homologue in the sheep scabies mite P. ovis to be 447 

highly immunogenic to the host. It is hypothesised P. ovis may induce allergic 448 



response to aid feeding and thus pre-vaccination of allergens such as vitellogenin 449 

may inhibit the induction of pro-inflammatory IgE antibodies and influence mite 450 

feeding. Success of PRM control is often measured at population level through total 451 

mite numbers, egg counts, analysis of rates of oviposition and development of early 452 

stage PRM. Embryogenesis and its associated molecules such as vitellin are 453 

therefore suggested as attractive potential future control targets. 454 

The Haemocoel / Immune system 455 

Jasinskas et al (2000) reported the ability of immunoglobulins specific to a range of 456 

tick proteins to cross from a blood meal to the haemolymph of the lone star tick 457 

Amblyomma americanum through the midgut epithelium. This proof of concept in 458 

ticks suggests there is a possibility of raising antibodies against essential proteins for 459 

ticks/mites present in the hemolymph and fat body. The acari immune system is 460 

composed of phagocytising haemocytes and anti-microbial peptides such as 461 

defensins and lysozymes. The midgut is the primary site for destruction of bacterial 462 

and viral pathogens which are ingested with a blood meal, but if these microbes 463 

successfully traverse the midgut epithelium, then defensins and lysozymes are 464 

secreted into the haemolymph and fat body (Ceraul et al., 2003; Simser et al., 2004; 465 



Taylor, 2006). Lysozymes in astigmatid mites can function in both defence and also 466 

in digestion when microbes are used as a secondary food source (Childs & Bowman, 467 

1981; Erban & Hubert, 2008). Greater understanding of PRM lysozymes and the 468 

cells that contain them could contribute to novel controls against the mites by 469 

affecting the ability of the mite to process ingested pathogens that may affect or be 470 

transmitted by PRM, as demonstrated for ticks (Simser, et al., 2004). 471 

Infection of PRM with bacteria has been shown by Valiente Moro et al (2009) who 472 

demonstrated that Salmonella enteritidis can enter the PRM 473 

heamolymph/reproductive organs and infect protonymphs via transovarial passage. 474 

Valiente Moro et al further demonstrated the negative effect of bacterial infection on 475 

PRM fecundity, with only 31% oviposition in infected PRM compared to 68% 476 

oviposition in control PRM. This suggests that targeting the PRM immune system 477 

and thus affecting their ability to cope with pathogens such as S. enteritidis in the 478 

reproductive organs could be explored. 479 

Subolesin, a tick homologue of the mammalian akarin family of proteins, is 480 

associated with the upregulation of innate immunity in various tick species (Zivkovic 481 



et al., 2010) and is proposed to be a transcription factor involved in multiple cellular 482 

processes (De la Fuente et al., 2008). Harrington et al (2009) showed that 483 

immunisation of chickens with recombinant Aedes albopictus subolesin increased 484 

fed PRM mortality by 31% compared to control groups, suggesting that a potential 485 

PRM subolesin orthologue may be a target for control. RNA interference of the 486 

subolesin gene in ticks has shown varying efficacy in terms of how well ticks are able 487 

to control bacterial infections. Zivkovic et al (2010) demonstrated that RNAi knock-488 

down of subolesin in ticks increased infection by Francisella tularensis but decreased 489 

infection by Anaplasma marginale. Whether by means of immunological repression 490 

resulting in increased bacteria loads or affecting other PRM systems, subolesin 491 

would make an interesting target for further vaccine studies against PRM. 492 

7. Integrated Control Strategies 493 

The efficiency of PRM control is dependent on many factors including substances 494 

employed, farm layout, mite population numbers and environmental factors. Future 495 

improvements to PRM control therefore will likely require integrated strategies such 496 

as the Hazard Analysis and Critical Control Points (HACCP) method laid out by Mul 497 



and Koenraadt (2009). The efficacy and longevity of new control strategies, such as 498 

the introduction of vaccines or novel acaricides, are likely to be affected by specific 499 

farming practices and methods of animal husbandry (Harrington et al., 2011) and will 500 

require careful planning. For example, introduction of novel acaricides to a system 501 

using natural predators of PRM may also affect the predator species as well as D. 502 

gallinae (Harrington et al., 2011). 503 

8. Concluding remarks 504 

The variable nature of control strategies taken by each farmer, ongoing changes in 505 

caged poultry regulations and the rapid emergence of acaricidal resistance, suggests 506 

that PRM will continue to be a major problem to the global egg-laying industry. 507 

Understanding PRM biology is essential for developing improvements to current 508 

biological controls and should be at the forefront of any future PRM research.  In this 509 

short review we have identified several biological targets that offer potential for 510 

possible future controls against PRM including embryogenesis, food digestion, 511 

sensory perception and predatory intervention. The current lack of a single 512 



commercial control methodology means that research into these fields would be of 513 

enormous benefit to the poultry industry and commercial sector. 514 

  515 
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Figure 1: The life cycle of Dermanyssus gallinae. The life cycle of PRM can be 861 

completed in 7 days, from egg to adult (Maurer & Baumgartner, 1992) although 14 862 

days is more usual. Commonly only females of the protonymph, deutonymph and 863 

adult stages feed on blood, though males have been known to feed. Female adults 864 

typically lay clutches of 4-8 eggs with a maximum of 30 eggs total in their life time. 865 

Larvae have 6 legs (not 8 as the other stages) and all stages live off the host, 866 

feeding intermittently for short periods at a time. 867 

Figure 2 Comparison of the PRM digestive system in blood fed (2a) and unfed (2b) 868 

mites. Mites were observed at x100 magnification from the dorsal side.  Gnth – 869 

Gnathosoma (mouthparts), Os – Oesophagus, Ca I-III – Caeca I-III, Mp – Malpighian 870 

tubules, Hg – Hindgut.  The PRM digestive tract extends from the gnathosoma 871 

posteriorly through the oesophagus, midgut and caeca and ending in the hindgut. 872 

Most blood digestion occurs in the much expanded three caecal pairings (Ca I-III) 873 

and central midgut (Mg) (Figure 2a).  Malpighian tubules elongate longitudinally 874 

along the idiosoma connected to the anterior hindgut (Figure 2b). These are involved 875 

in nitrogenous waste collection and osmoregulation. Waste leaves through the 876 



posterior hindgut and through the anal opening (not shown). Note: mite body shape 877 

increases and gets rounder during feeding and the digestive tract completes most of 878 

the body cavity of the PRM when full (Figure 2a) compared to that of an unfed mite 879 

(figure 2b). 880 

Figure 3: The synganglion tissue (brain) of the PRM.  Longitudinal sections of 10µm 881 

thickness observed at x200 magnification.  Sections were stained with 1:100 anti-882 

Cathepsin-D chicken IgY (kindly donated by Dr Alisdair Nisbet) then 1:1000 goat 883 

anti-rabbit IgG HRP and counter stained with haematoxylin.  Pg I-IV – Pedal ganglion 884 

1 to 4, SpCNM – Supra-oesophageal central nervous mass, Sb – Sub-oesophageal 885 

mass, Es –Oesophagus. The PRM synganglion tissue, as in all acari, is divided by 886 

the oesophagus into two connected masses – the supra-oesophageal mass (Figure 887 

3a) and the sub-oesophageal mass (Figure 3b). Figure 3a shows the supra-888 

oesophageal central nervous mass connected to 8 pedal ganglia extending distally 889 

to each corresponding leg. Figure 3b shows the sub-oesophageal mass, 890 

comparatively more rounded, split by the oesophagus extending longitudinally down 891 

though the centre.  892 



Figure 4: Neurological targets for acaricidal controls against D. gallinae. Pesticides 893 

and other controls affect either the transmission of acetylcholine (secreted from an 894 

excitatory neuron shown in red) required for excitatory signals or gamma-895 

aminobutyric acid (GABA) (secreted from an inhibitory neuron shown in blue) which 896 

are the predominant inhibitory neurotransmitters in the nervous system. Competitive 897 

inhibition of acetylcholine and GABA through binding to post-synaptic receptors is a 898 

common mode of action for acaricides. An alternative mode of action is the binding 899 

and inactivation of the enzyme acetylcholinesterse, which is required to hydrolyse 900 

acetylcholine and end signalling, thus leading to overstimulation. Several pesticides 901 

bind to and over stimulate the voltage gates Na+ channels in the presynaptic axon. 902 

These mechanisms aim to induce paralysis and consequently lead to death in red 903 

mite through excitoxicity and overstimulation in neural pathways or conversely 904 

through transmission inhibition. 905 


