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Abstract 

Supply chain risks and uncertainties exist in the Taiwanese light-emitting diode industry due 

to rapid market changes aimed at sustainability. The risks and uncertainties caused by the 

social media data, quantitative data and qualitative data (referred to herein as big data) which 

industry unable to handle these booming information to respond customer needs. As result of 

these various data have their own characteristics that affect decision making regarding to 

develop firms’ capabilities. This study proposes to use fuzzy and grey Delphi methods to 

identify a set of reliable attributes, and then transforming big data into comparable scale for 

considering the impacts. Subsequently, applying fuzzy and grey Decision Making Trial and 

Evaluation Laboratory determine the causal relationship for supply chain risks and 

uncertainties. Accordingly, this study aggregates the various data for undertaking an extensive 

investigation of supply chain risks and uncertainties. The results reveal that capacity and 

operation have greater influence than do other factors and that risks stemming from triggering 

events are difficult to diagnose and control. The implications and conclusions of these 

findings are addressed herein. 

 

Keywords: big data, supply chain risks and uncertainties, sustainability indicators, Decision 

Making Trial and Evaluation Laboratory (DEMATEL), Delphi method  
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Toward Sustainability: Using Big Data to Explore Decisive Attributes of 

Supply Chain Risks and Uncertainties 

 

1. Introduction 

 Social media has become an essential channel for firms to spread information, thus 

customers are able to acquire enormous amounts of diversified information from firms’ 

official websites and through their performances and developments. This phenomenon forces 

Taiwanese light-emitting diode (LED) firms to realize social media information and develop 

related capabilities to comply with customer and stakeholder expectations toward 

sustainability. However, it might generate the supply chain risks and uncertainties (SCRU) 

while developing the capacities. In order to mitigate the SCRU and ensure the development 

efficiently, several studies proposed sustainability indicators to assist firms in arriving the 

sustainability (Erol et al., 2011; Hauer, 2003; Linton et al., 2007; Rahdari & Anvary Rostamy, 

2015; Veleva et al., 2001). Moreover, firms lack appropriate methods for making decisions 

regarding the development of proper capabilities (Hauer, 2003; Speier et al., 2011). More 

specifically, various information, such as quantitative data regarding operations, qualitative 

data from management and social media information (big data), is involved to the firms’ 

decision-making process. Hence, to assist firms in diagnosing SCRU with sustainable 

development perspective, there is an essential need to identify, assess and analyze these 

diverse data sources (Hallikas et al., 2004; Peck, 2005; Sodhi et al., 2012). 

 In the literature, Chopra and Sodhi (2004) stress that managing SCRU is difficult 

because the individual risks are often interconnected with actions that mitigate some risks 

while exacerbating others. The collaboration theory is used to enhance the understanding of 

SCRU and explores the decisive attributes for monitoring the risks in these interconnected 

relationships. Furthermore, Lozano (2007) emphasizes that collaboration is a key 

problem-solving attribute that facilitates dynamic interactions and that incremental actions 

produce enduring significant improvements toward sustainability. Jiang et al. (2009) stress 

that supply chain problems are a timely and important managerial topic as such problems 

impact costs, operations, risks and uncertainties. In addition, risks associated with disruption, 

production and complexity result in the erosion of brand equity and the loss of consumer 

confidence, both of which impact on financial performance (Kleindorfer et al., 2003; Speier et 

al., 2011). Heckmann et al. (2015) categorizes risks into controllability, organization and 

operations. In conclusion, these prior studies provide a foundation which can develop a 

comprehensive framework and assessment in diagnosing SCRU. 
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 Particularly, prior studies felt the need in capturing the risks due to the incremental 

complexity and uncertainties exist in supply chain, thereby making actions harder or even 

impossible to predict (Helbing et al., 2006). Nonetheless various risks in daily operations, 

such as an unanticipated decrease in demand or a sudden boom in growth, remain, and few 

firms have taken the commensurate actions that allow supply chains to confront the risks from 

these abrupt events (Sodhi, 2005; Sodhi et al., 2012; Nooraie & Mellat Parast, 2015). 

Confronting these risks requires a framework with a quantitative assessment to detect 

potential SCRU that is applicable to both practitioners and researchers (Ghadge et al., 2012; 

Tang & Nurmava Musa, 2011). Hence, this study attempts to aggregate various data, 

including quantitative data from operations, qualitative data from management and social 

media data, to facilitate decision making and provide comprehensive consideration to mitigate 

the risks toward sustainability. Subsequently, the fuzzy Delphi method (FDM) and the grey 

Delphi method (GDM) are proposed to screen unnecessary SCRU measures and to compare 

the abilities of the fuzzy Decision Making Trial and Evaluation Laboratory (FDEMATEL) 

and the grey Decision Making Trial and Evaluation Laboratory (GDEMATEL) to address 

uncertainties and risks in the supply chain. The advantage of comparing these methods is to 

enhance the accuracy in making decision. 

 Thus, the objective of this study is to develop an assessment that supports firms in 

exploring the decisive attributes and enhancing the understanding of SCRU by aggregating 

from big data and different data types. This assessment allows managers to make decisions in 

a logical, systematic, precise and comprehensive manner based on cross-functional 

considerations. Consequently, the results reveal the decisive SCRU attributes to be used as a 

guide by firms to efficiently distribute their resources. The remainder of this study is 

composed of six sections. The next section presents an extensive literature review and 

includes a discussion of SCRU, collaboration theory and sustainability indictors. The gaps 

and proposed measures are addressed in section 3, and a detailed discussion of methods is 

provided in section 4. Section 5 provides the empirical results of the evaluation, section 6 

discusses theoretical and managerial implications, and a summary of the discussions, 

implications, contributions, limitations, future research and conclusions are included in the 

last section.  

 

2. Literature Review 

 Brief discussions of SCRU, collaboration theory and sustainability indicators are offered 

to enhance the understanding of these specific terms. 
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2.1. Supply Chain Risks and Uncertainties 

Due to the increasing complexity and interrelation of modern supply chains, the type and 

nature of uncertain developments and the effect of specific actions are becoming harder to 

forecast or even becoming unpredictable (Helbing et al., 2006). Several studies categorize the 

risks into triggering events and functional risks, both of which synonymously refer to SCRU. 

Triggering events are often understood as the starting point for risk identification to reduce 

uncertainties (Klinke & Renn, 2002). Functional risks, refer to the occurrence of a sudden 

problem within a firm’s basic operational functions. For instance, Peck (2006) defines SCRU 

as anything that disrupts or impedes information, material or product flow from the original 

supplier through to the delivery of the final product to the ultimate end user. Though prior 

studies have addressed multiple SCRU aspects, a reliable theoretical model is still lacking 

(Heckmann et al., 2015; Speier et al., 2011; Zsidisin, 2003). 

Firms often focus on consistent but low impact risks rather than on high impact less 

probable risks. Furthermore, firms also encounter difficulties addressing SCRU due to the 

interconnected relations among individual risks (Chopra & Sodhi, 2004; Trkman & 

Mccormack, 2009). This study captures multiple aspects from a comprehensive literature 

review to increase the validity, and it further categorizes these aspects into two groups: 

functional risks and triggering events. Functional risks include problems stemming from 

capacity, operations, products and organization, whereas triggering events represent risks 

caused by disruption, costs, complexity, controllability and reputation (Chopra & Sodhi, 2004; 

Heckmann et al., 2015; Jiang, 2009; Ratnasingam, 2006; Speier et al., 2011; Tang, 2006).  

There are increasing evidences to discover the negative impacts from SCRU, though 

many firms lack the capability to assess potential impacts on their supply chain because they 

underinvested in developing the sustainability to respond to the risks (Hauer, 2003). Thus, to 

diagnose potential SCRU, firms must extend even further by adopting sustainability 

indicators (Speier et al., 2011). Although most firms apply standard financial indicators to 

track financial risks, some non-financial risk should be taken to monitor and demonstrate 

chronological change (Chen et al. 2014; GRI, 2011). Hence, firms must be aware that the 

indicators shall precisely reflect performance and provide appropriate guidelines for 

determining risks and uncertainties (Heckmann et al., 2015; Rahdari & Anvary Rostamy, 

2015). 

 

2.2. Collaboration Theory 

Collaboration involves engaging in an interactive process to decide on related issues of a 

particular domain (Lozano, 2007; Wood & Grey, 1991). As such, it is considered a path 
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toward sustainability due to its changes in individual actions to participate in concerted efforts 

and to attain common interests (Lozano, 2008). In addition, supply chain partners strengthen 

mutual benefits and share mutual risks (Powell et al., 1996; Soosay et al., 2008). Hence, 

collaboration reduces internal conflict and creates a common goal by developing values and a 

sustainability vision to eliminate potential SCRU e.g., lack of controllability, loss of capacity 

and increase in costs (Lozano, 2007; Van Hoof & Thiell, 2014). Therefore, to develop a 

theoretical basis for SCRU, the concepts of congruence and alignment must be implemented. 

With respect to congruence, the discussion focuses on the degree of consistency in 

internalizing sustainability, in other words, the spreading of the impacts of sustainability to 

other aspects (Myers, 2004; Nadler & Tushman, 1980). However, the definition of 

congruence in the field of SCRU refers to the probabilities of event occurrence, thus 

suggesting that risks might generate limitations for the supply chain (Heckmann et al., 2015). 

In addition, Lozano (2008) proposes the concept of alignment to express a type of 

need/objective that is consistent across different levels to avoid misunderstandings and 

conflicts. Similarly, the illustration of alignment in the SCRU field denotes a need/objective 

to prevent unintentional and intentional actions (Speier et al., 2011). These two concepts 

deliver a clear picture that firms can use to realize how potential risks may exist in developing 

sustainability.  

The theoretical framework of SCRU is based on the collaboration theory wherein the 

inter-relations of each risk are addressed through the following concepts. SCRU can be 

categorized into concepts of congruence and alignment. Capacity, operation, product and 

organization belong to the congruence category and represent the basic functions of firms that 

may suffer from either unintentional or intentional activities that result in risks. Disruption, 

costs, complexity, controllability and reputation are grouped into the category of alignment. 

These triggering events are considered points of risk identification (Heckmann et al., 2015; 

Klinke & Renn, 2002). When SCRU increase, a commensurate investment in developing 

sustainability may prevent the materialization of these risks and uncertainties. Hence, SCRU 

must be linked with sustainability indicators to explore the decisive attributes necessary for 

effective commensurate investments.  

 

2.3. Sustainability Indicators 

The Brundtland Commission Report (1987), the Earth Summit (1992) and Ranganathan 

(1998) define sustainability indicators as “the information used to measure and motivate 

progress toward sustainable goals”. Although the use of these indicators has become a 

standard procedure for all ranks of government, non-government organizations and firms 
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when developing firm capabilities (Milman & Short, 2008), most firms apply certain aspects 

and sets of attributes from only a single sustainability indicator. However, there are many 

sustainability assessments with different sets of indicators from other methods of aggregation 

(Rahdari & Anvary Rostamy, 2015). This study demonstrates the essentials of aggregating the 

necessary proposed and evaluated indicators in a real case scenario. 

However, aggregation is an extremely complicated decision-making process, and 

therefore, the mathematical consistency involved in aggregation must be addressed (Romero 

& Linares, 2014). Nonetheless, once firms overcome this mathematical problem, 

sustainability indicators can be a barometer of the socio-economic conditions to use for 

monitoring the various aspects of overall risk (Liu, 2014). In addition, the potential risks and 

opportunities that firms may encounter in the long term to screen through the application of 

sustainability indicators provide a better alternative for managing opportunities and risks 

(Rahdari & Anvary Rostamy, 2015). These attributes support the premise of this study, that is, 

firms develop the capability to mitigate the emergence of SCRU by launching sustainability 

indicators. 

This study adopts FDM and GDM to filter the aggregated indicators and explores the 

decisive attributes by applying the FDEMATEL and the GDEMATEL to assist firms in 

concentrating their resources to prevent the occurrence of risks under uncertainty. In previous 

studies, most practitioners have questioned the need to aggregate and have experienced 

difficulties in obtaining mathematical consistency. Therefore, though quite complex, it is 

necessary to distinguish conditions from pressures, identify causal relationships and measure 

firm risk (Milman & Short, 2008). Accordingly, sustainability indicators can be used as an 

evaluative tool to supporting firms in diagnosing risks and reducing the complexities. 

 

3. Rationale of study 

Gaps in previous studies are examined for the purpose of enhancing the validity and 

contributions of this study, and the proposed measures for the study are presented herein  

 

3.1. The study gaps 

Ratnasingam (2006) conducted in-depth multiple case comparisons to discover potential 

attributes of SCRU. To complete the theoretical basis and create a unifying decision-making 

framework, Ellis et al. (2011) reviews 79 studies and then proposes an interdisciplinary 

framework that offered new insights into the risk decision-making process. However, these 

prior studies neglect the inter-relations among attributes. To this end, Speier et al. (2011) 

adopts a MANOVA for a correlation analysis and reveals a significant interrelation between 
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complexity and product risk. Tazelaar and Snijders (2013) apply a conjoint analysis with 255 

respondents to identify how problems are ultimately resolved after a transaction. Atwater et al. 

(2014) extends this conjoint analysis by associating it with a statistical method to develop a 

scoring model for SCRU; however, uncertainty remained. To reduce uncertainty, Heckmann 

et al. (2015) conducts a review of definitions, measurement methods and models, and then 

reveals the missing attributes in the prevailing definitions, quantification measures and 

modeling approaches.  

It is important to offer an assessment that includes mathematical consistency in 

aggregating big data to gather precise and reliable evaluations from selected sustainability 

indicators as doing so allows firms to establish the related capabilities necessary to respond to 

SCRU and represents the capability to link responses and performances to sustainability. 

However, most indicators address a single dimension, and only a few indicator assessments 

enable reflection on the situation. Moreover, even fewer indicators possess the ability to link 

with the system and express the resulting state (Briassoulis, 2001). Though previous studies 

have proposed several types of sustainability indicators, the critical point is to aggregate the 

components necessary for truly assessing the condition while simultaneously maintaining 

mathematical consistency (Böhringer & Jochem, 2007; Milman & Short, 2008; Rahdari & 

Anvary Rostamy, 2015). Romero and Linares (2014) emphasize the essential aggregation of 

indicators to solve complicated decision-making problems. 

Sustainability is required to use various data for realizing the available resources (Wong 

& Zhou, 2015). Hence, Belaud et al. (2014) apply scientific simulation based on big data and 

collaborative work to develop sustainability in natural hazards management. Nativi et al. 

(2015) discover and assess the challenges based on the big data concept. Though the big data 

concept increases the reliability of attribute evaluation, the attributes must still be limited for 

firms to concentrate their resources and investments. In reality, it is impossible to implement 

all attributes as available resources and investments are restricted. Hence, this study proposes 

FDM and GDM to eliminate unnecessary attributes based on the opinions of several experts. 

Subsequently, the FDEMATEL and GDEMATEL are used to classify the remaining 

attributes into cause and effect groups and to map the relationships among the attributes, thus 

ensuring reliable results that can guide firms in managing SCRU. 

 

3.2. Proposed Measures 

Chopra and Sodhi (2004) stress that though the disruption of material flow anywhere in 

the supply chain is unpredictable and rare, it is also quite damaging when it does occur. 

Disruption often affects supply chain performance, thereby harming all supply chain partners 
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(Zsidisin et al., 2005). The occurrence of disruption in the supply chain, which may be the 

result of a man-made or natural disaster (Chen et al., 2012), has a long term negative impact 

on the firm’s financial performance (Tang, 2006). To prevent the supply chain from 

collapsing, the proposed sustainability indicators, which include preventing biodiversity loss, 

reducing air emissions, preserving natural resources and conserving energy (Azapagic, 2004; 

Chen et al., 2014; Marnika et al., 2015; Rahdari & Anvary Rostamy, 2015), can mitigate 

disruption. 

Capacity, unlike inventory, can be developed in manufacturing and can be grown or 

reduced over a period of time. Although building excess capacity often becomes a strategic 

consideration, it is not always a perfect solution for preventing risk (Chopra & Sodhi, 2004). 

Normally, excess capability causes a financial burden when the firm addresses the occurrence 

of risky events. Hence, monitoring capacity using sustainability indicators is an effective 

technique for preventing risks. The sustainability indicators include capacity building, 

ensuring availability for long-term prevention, implementing an available dispute resolution 

mechanism, ensuring capital efficiency and improving margins (Reed et al., 2006; Milman & 

Short, 2008; Choi & Sirakaya, 2006; Samul et al., 2013). 

Some studies concentrate on the relationship between labor-related costs and risks and 

find that rising labor costs significantly decrease margins (Jiang et al., 2009; Roberts, 2006). 

Thus, to prevent cost risks, this study proposes using three sustainability indicators as triggers 

to observe the variations in costs: employee education and skill development, the creation of 

employment and employee work conditions (Azapagic, 2004; Chen et al., 2014; Jiang, 2009). 

However, firms also encounter cost risks when research and development activities are 

launched (Onat & Bayer, 2010). In particular, when sustainable product design is being 

developed, many resources and investments are required to explore new technologies to 

overcome current issues (Bask & Kuula, 2011; Chiu & Chiu, 2012; Rahdari & Anvary 

Rostamy, 2015). 

Operational risks are related to supply chain coordination, which might result in 

insufficient procedures, ineffective persons and inefficient short-systems (Bhattacharyya et al., 

2010; Lockamy & McCormack, 2009). However, practitioners have found it difficult to 

identify the difference between risks due to disruption and operational risks. The major 

difference between these two risks is the degree of control (Byrne, 2007). For example, 

disruption is an event that is under less control, and once it occurs, it results in major damage. 

On the contrary, operational risks are due to either the intentional or unintentional actions or 

goals and thus are more controlled (Chen et al., 2012). In other words, operational risks can 

be prevented by implementing or addressing the appropriate sustainability indicators, such as 
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land use and rehabilitation, labor relations, compliance with supply chain partners, water use 

and effluents, and leachates and resource use and availability (Chen et al. 2014; de Araujo & 

de Oliveria, 2012; Dues et al., 2013; Jiang et al., 2009; Linke et al., 2013; Marnika et al., 

2015). 

Firms suffer from damage to their reputations in media-rich societies stemming from 

criticism from non-governmental organizations and fair trade/no sweat organizations (Jiang et 

al., 2009). This negative publicity easily and rapidly spreads through social media, thereby 

causing harm to brands and resulting in a significant loss in the market share. This is, in part, 

because firms have insufficient resources to check different types of social media. This study 

provides sustainability indicators that firms use to assess the probability of reputational risk, 

such as local economic impacts, health and safety factors, social investments, global warming 

effects and environmental impacts (Chen et al., 2014; Esteves et al., 2012; Marnika et al., 

2015; Rahdari & Anvary Rostamy, 2015). 

As products are considered risky in terms of their product nature and supply chain or 

intentional interruptions (Speier et al., 2011), preventative measures focus on improving 

process management and reducing environmental impact. Moreover, there are measures to 

mitigate product risk, e.g., decreasing the use of hazardous materials, reducing solid waste, 

applying life cycle assessment and increasing product stewardship (Chen et al., 2014; 

Marnika et al., 2015; Samuel et al., 2013). In addition, a supply chain features intricate and 

sometimes counterintuitive interactions among its elements, thus resulting in complexity. The 

complexity of the supply chain is an aggregate measure of the structure, type and volume of its 

interdependent activities, transactions and processes (Manuj & Mentzer, 2008). As such, these 

activities also generate information, constraints and uncertainties that increase risk. Therefore, 

to help firms mitigate the risk from complexity, this study selects four sustainability indicators: 

security, corruption, policy coherence and relationships with the local community (Blancas et 

al., 2011; Chen et al., 2014; Samuel et al., 2013).  

Controllability refers to the ability to manage and limit the frequency and impact of risk 

(Heckmann et al., 2015) and is therefore highly dependent on the firm’s environment and its 

objectives. Controllability is concerned with reducing risks associated with the environment, 

supply, internal cooperation processes, internal controls and demand. The indicators are 

intended to avoid the risks due to controllability by enhancing crisis management, 

environmental regulations and wealth distribution. (Esquer-Peralta, 2007; Rahdari & Anvary 

Rostamy, 2015; Samuel et al., 2013). The risks to the organization require the involvement of 

top management and a commitment of resources and finances (Ratnasingam, 2006). The 

sustainability indicators assist in developing an organizational structure and process to ensure 
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long-term sustainability and reduce the probability of risk (Choi & Sirakaya, 2006). To 

mitigate risks within the organization requires strong information exchange, process 

integration, operational linkages and internal cooperation. Thus, the indicators to avoid 

organization risks include the use of traditional rights and knowledge, management efficiency, 

community outreach and environmental education (Ou & Liu, 2010; Rahdari & Anvary 

Rostamy, 2015; Samuel et al., 2013). 

 

4. Method 

This section aggregates qualitative data, social media data and quantitative data. In 

addition, FDM, GDM, FDEMATEL and GDEMATEL are used to enhance the accuracy of 

decision-making and the reliability of the study. Additionally, the proposed analytic 

procedures are presented. 

 

4.1. Data Gathering 

Qualitative Data 

The proposed measures are intended to enhance the validity of the study. The original set 

of measures includes nine aspects and 38 attributes related to the Taiwanese LED industry. 

The ability of FDM and GDM to eliminate unnecessary aspects and attributes is then 

discussed. The collected information in obtained from practitioners, a group that includes 

professors, CEOs, vice presidents, managers and engineers, all of whom have experience in 

the industry. The results of the assessment are presented in Table 1, in which seven aspects 

and 16 attributes are identified.  

 

Table 1. The Results of Experts’ Assessment 

Aspects (Risks) Attributes (SI) 

AS1 Capacities 

C1 Available capacity for long-term prevention of shortages  

C2 Capital efficiency 

C3 Margin improvement  

AS2 Cost C4 Employee education and skills development 

AS3 Operations 

C5 Labor relations  

C6 Compliance with supply chain partners 

C7 Resource use and availability 

AS4 Reputation 
C8 Health and safety  

C9 Global warming and environmental impacts 
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AS5 Products 

C10 Reduction of solid waste 

C11 Application of life cycle assessment  

C12 Increased product stewardship 

AS6 Controllability 
C13 Crisis management 

C14 Environmental regulations 

AS7 Organization 
C15 Management efficiency 

C16 Environmental education 

 

Social Media  

Firms use social media to communicate with external parties using a multipronged 

strategy that crosses various platforms (Piskorski, 2011). Web-based information is a platform 

that allows firms to deliver messages, information and performances to the public. This study 

uses Nvivo 10 software to capture fragment terms and frequencies from several LED firms’ 

websites, such as Everlight Electronics Co., Ltd., Epistar Corporation, Edison Opto 

Corporation, etc. Content analysis establishes the existence and frequency of attributes (Chan 

et al., 2015). However, the feature of these accumulated frequencies from social media is grey 

relational grade. Hence, these grey relational grades must be transferred into comparable 

weights to evaluate their effects (Delgado & Romero, 2016). 

 Entropy presents the degree of disorganization of a system. The larger the entropy value, 

the greater the diversity of information. In this study, entropy weight identifies the effects of 

social media frequency. Assume there are 𝑛 terms and the accumulated frequency is denoted 

as 𝑓𝑖 , 𝑖 = 1,2,3,⋯ , 𝑛. In the first step, value 𝑓𝑖 is normalized by the following equation: 

𝑓𝑖
′ = 𝑓𝑖 ∑ 𝑓𝑖

𝑛
𝑖=1⁄                                                             (1) 

 

Second, the entropy 𝑓𝑖
ℎ of each term is computed using the following equation: 

𝑓𝑖
ℎ = −(𝑙𝑛(𝑛))−1∑ 𝑓𝑖

′ 𝑙𝑛(𝑓𝑖
′)𝑛

𝑖=1                                               (2) 

 

Third, the degree of divergence for the intrinsic information is obtained using the following 

equation: 

𝑓𝑖
𝑑𝑖𝑣 = 1 − 𝑓𝑖

ℎ                                                             (3) 

 

Finally, to acquire the entropy weight 𝑓𝑖
𝑒 for each term, the following equation is applied: 

𝑓𝑖
𝑒 = 𝑓𝑖

𝑑𝑖𝑣 ∑ 𝑓𝑖
𝑑𝑖𝑣𝑛

𝑖−1⁄                                                         (4) 

 

Quantitative Data 
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Big data require extensive management capabilities characterized by volume, velocity 

and variety (Laney, 2001). In other words, big data contain several data sets, strict constraints 

and heterogeneity (Nativi et al., 2015). This study obtains data from financial statements as 

well as daily operational information which include input and output raw materials, 

production time, number of defective units over the past decade. These data are characterized 

by various units and are unable to be compared directly (Lin et al., 2014). Therefore, a data 

transformation is performed to attain comparable values.  

𝑎𝑖𝑗
′ = 𝑎𝑖𝑗

𝑦
−𝑚𝑖𝑛 𝑎𝑖𝑗

𝑦
𝑚𝑎𝑥 𝑎𝑖𝑗

𝑦
−𝑚𝑖𝑛 𝑎𝑖𝑗

𝑦
,⁄              

𝑎𝑖𝑗
′ ∈ [0,1];  𝑖 = 1,2,⋯ , 𝑛; 𝑗 = 1,2,⋯ , 𝑘; 𝑦 = 1,2,⋯10

                           (5) 

where 𝑚𝑖𝑛 𝑎𝑖𝑗
𝑦
= 𝑚𝑖𝑛(𝑎11

1 , 𝑎12
1 , ⋯ 𝑎𝑖𝑗

10) and 𝑚𝑎𝑥 𝑎𝑖𝑗
𝑦
= 𝑚𝑎𝑥(𝑎11

1 , 𝑎12
1 ,⋯ 𝑎𝑖𝑗

10).  

Then, relevant investments for 𝑛𝑡ℎ terms of all aggregated firms is assessed as follows: 

𝑎𝑖𝑗
𝑛 = ∑ 𝑎𝑖𝑗

′𝑘
𝑗=1 𝑦 × 𝑘⁄                                                        (6) 

 

4.2. FDM 

Decision making in an uncertain environment is related to subjective judgments that are 

vague and imprecise (Tseng, 2009). Hence, fuzzy set proposed to overcome the imprecision. 

In addition, this study used FDM as an initial filter to find the proper aspects and attributes. 

This hybrid method increases the quality and efficiency of the response time and feedback 

(Chen et al., 2014; Noorderhaben, 1995).  

 Assume that 𝑆 is a universe of discourse that states 𝑆 = {𝑠1, 𝑠2, ⋯ , 𝑠𝑛}. The fuzzy set 

𝐴 of 𝑆 is denoted as a set of ordered pairs {(𝑠1, 𝑓𝐴(𝑠1)), (𝑠2, 𝑓𝐴(𝑠2)),⋯ , (𝑠𝑛, 𝑓𝐴(𝑠𝑛))}, where 

𝑓𝐴(𝑆) is the 0 to 1 membership function of 𝐴. The value of 𝑓𝐴(𝑠𝑖), 𝑖 = 1,2,⋯𝑛 presents 

the degree of membership of 𝑠𝑖 in 𝐴 (Chang et al, 2011; Tseng, 2009). The membership 

function is used in the following equation to express triangular fuzzy numbers (TFNs) 𝛿̅ =

(𝛿𝑙, 𝛿𝑚, 𝛿𝑟): 

𝑓𝐴(𝑠𝑖) =

{
 
 

 
 

0, 𝑠𝑖 < 𝛿𝑙                     
𝑠𝑖−𝛿𝑙

𝛿𝑚−𝛿𝑙
, 𝛿𝑚 ≥ 𝑠𝑖 ≥ 𝛿𝑙            

𝛿𝑟−𝑠𝑖

𝛿𝑟−𝛿𝑚
, 𝛿𝑟 ≥ 𝑠𝑖 ≥ 𝛿𝑚            

0, 𝑠𝑖 > 𝛿𝑚                   

                                   (7) 

Triangular fuzzy numbers rely on a three-value assessment that contains the minimal 

value 𝛿𝑙 , the mean value 𝛿𝑚  and the maximal value 𝛿𝑟 . Attribute values must be in 

accordance with the linguistic scales to be converted into triangular fuzzy numbers. Table 2 

shows the corresponding triangular fuzzy numbers with the linguistic scales as proposed by 

Wu et al. (2015). Suppose 𝑘 experts evaluate a significant ℓth element 𝛿̅ = (𝑎𝑘ℓ, 𝑏𝑘ℓ, 𝑐𝑘ℓ), 

where 𝑘 = 1,2,3,⋯ ,𝑚 and ℓ = 1,2,3,⋯ , 𝑛. The weight of 𝛿ℓ̅ for the ℓth element is 𝛿ℓ̅ =
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(𝑎ℓ, 𝑏ℓ, 𝑐ℓ) , for which 𝛼ℓ = min(𝑎𝑘ℓ) , 𝑏ℓ = (
∑ 𝛽𝑎𝑏
𝑛
1

𝑛
) , and 𝑐ℓ = max(𝑐𝑘ℓ) . The 𝛼 -cut 

approach is used to obtain the convex combination value for 𝑆ℓ, as in the equations below: 

 

𝐿ℓ = 𝑎ℓ − 𝛼(𝑏ℓ − 𝑎ℓ)            

𝑈ℓ = 𝑐ℓ − 𝛼(𝑐ℓ − 𝑏ℓ)            

𝑆ℓ = ∫(𝑈ℓ, 𝐿ℓ) = 𝜆[𝑈ℓ + (1 − 𝜆)𝐿ℓ]
                                          (8) 

Normally, 𝛼 adopts 0.5 to present the general condition. If the experts are optimistic 

adopters, the value of 𝛼 can be set to 1; on the contrary, 0 is the conservative choice. 

Therefore, 𝜆 is the degree of optimism of the decision maker. This value used to balance the 

extreme opinions of experts. The definite value 𝑆ℓ can then be generated. Finally, 𝜇𝐹𝐷𝑀 =

 ∑ 𝑆ℓ
𝑛
ℓ=1 𝑛⁄  is the threshold for screening acceptable attributes using the following equation: 

𝐼𝑓 𝑆ℓ ≥ 𝜇𝐹𝐷𝑀, the ℓth attribute is accepted as a potential evaluating attribute; 
𝐼𝑓 𝑆ℓ < 𝜇𝐹𝐷𝑀, the attribute is rejected                                      

 (9) 

 

Table 2. Linguistic Scales for Corresponding TFNs 

Scales Linguistic Preferences Corresponding Triangular Fuzzy Numbers 

1 No influence/importance (0, 0.1, 0.3) 

2 Very low influence/importance (0.1, 0.3, 0.5) 

3 Low influence/importance (0.3, 0.5, 0.7) 

4 High influence/importance (0.5, 0.7, 0.9) 

5 Very high influence/importance (0.7, 0.9, 1.0) 

 

4.3. GDM 

Grey theory is a mathematical theory proposed by Deng (1982) that stems from the grey 

set. This efficient approach addresses problems with uncertainty and discrete data (Tseng, 

2009). The assessment values for conversion into the corresponding grey numbers are 

presented in Table 3. 

 

Table 3. Linguistic Scales for corresponding grey numbers  

Scales Linguistic Preferences Corresponding Grey Numbers (∆𝐺) 

1 No influence/importance (0, 0.3) 

2 Very low influence/importance (0.3, 0.5) 

3 Low influence/importance (0.3, 0.7) 

4 High influence/importance (0.5, 0.9) 
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5 Very high influence/importance (0.7, 1.0) 

 

The grey numbers are presented. Hence, the grey number ∆𝐺 is presented as an interval 

value  ∆𝐺 = [𝐺ℓ, 𝐺𝓊]  such that ∆𝐺 = [−∞,𝐺𝓊]  and ∆𝐺 = [𝐺ℓ, ∞]  represent the 

lower-limit and upper-limit grey numbers, respectively, both of which are then defined as 

uncertain information (Bhattacharyya, 2015). 

𝐼𝑓 𝐺ℓ  → −∞ 𝑎𝑛𝑑 𝐺𝓊 → ∞,∆𝐺 𝑖𝑠 𝑎 𝑏𝑙𝑎𝑐𝑘 𝑛𝑢𝑚𝑏𝑒𝑟,           
𝑤ℎ𝑖𝑐ℎ 𝑚𝑒𝑎𝑛𝑠 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑛𝑦 𝑚𝑒𝑎𝑛𝑖𝑛𝑔𝑓𝑢𝑙 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛.

𝐼𝑓 𝐺ℓ = 𝐺𝓊, ∆𝐺 𝑖𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑡𝑜 𝑏𝑒 𝑤ℎ𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟,          
𝑤ℎ𝑖𝑐ℎ 𝑚𝑒𝑎𝑛𝑠 𝑡ℎ𝑎𝑡 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑔𝑎𝑡ℎ𝑒𝑟𝑒𝑑.        

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, ∆𝐺 =  [𝐺ℓ, 𝐺𝓊] 𝑖𝑠 𝑎 𝑔𝑟𝑒𝑦 𝑛𝑢𝑚𝑏𝑒𝑟                 

𝑎𝑛𝑑 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑖𝑛𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑎𝑛𝑑 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛       

             (10) 

Assume that there are 𝑘 experts in the evaluating group. The assessments of attribute 

relations ∆𝐺𝑛 can be obtained as follows: 

∆𝐺𝑛
𝑘 = (∆𝐺𝑣

1 + ∆𝐺𝑣
2 +⋯+ ∆𝐺𝑣

𝑘) 𝑘⁄                                            

(11) 

where ∆𝐺𝑛
𝑘, 𝑛 = 1,2,⋯ , 𝑣 is the attribute relation given by the 𝑘th expert and is expressed 

as ∆𝐺𝑛
𝑘 = [𝐺𝑛

ℓ𝑘, 𝐺𝑛
𝓊𝑘]. The completed information ∆̿𝐺𝑛

𝑘  is gathered from the following 

equation, where ∆̿  represents the equal-weight mean whitenization value of the grey 

parameter (Memon et al., 2015): 

∆̿𝐺𝑛
𝑘 = (𝐺𝑛

ℓ𝑘 + 𝐺𝑛
𝓊𝑘) 2⁄                                                      

(12) 

Thus, 𝜇𝐺𝐷𝑀 = ∑ ∆̿𝐺𝑛
𝑘𝑛

1 𝑛, 𝑛 = 1,2,⋯ , 𝑣⁄  is the threshold for screening suitable attributes 

using the following equations: 

𝐼𝑓 ∆̿𝐺𝑛
𝑘 ≥ 𝜇𝐺𝐷𝑀, the  𝑛th attribute is accepted as a potential evaluation attribute; 

𝑖𝑓 ∆̿𝐺𝑛
𝑘 < 𝜇𝐺𝐷𝑀, the attribute is rejected.                                       

(13) 

 

4.4. FDEMATEL 

After the screening process, the resulting acceptable attributes rely on the FDEMATEL to 

identify their causal relationships. This approach enables a display of the visual analysis 

through a visual diagram. Hence, the FDEMATEL has been applied to assist in solving 

complicated system problems in various fields (Tseng, 2011; Wu et al., 2015). Assume that 

initially there are sets of attributes 𝑆 = {𝑆𝑖|𝑖 = 1,2,⋯𝑛} and pairwise inter-relations. The 

linguistic scale is then implemented into the evaluation assessment, as displayed in Table 2. 
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Suppose that there are 𝑘 respondents and the linguistic scale must be transferred to 

triangular fuzzy numbers 𝛿𝑥̅𝑦 = (𝛿𝑥𝑦
𝑙𝑘 , 𝛿𝑥𝑦

𝑚𝑘, 𝛿𝑥𝑦
𝑟𝑘), which represents the degree to which 

attribute 𝑥  affects attribute 𝑦 in the 𝑘 th response. The defuzzification process requires 

triangular fuzzy numbers be converted into crisp values (Lin, 2013). This study adopted 

Max-Min to normalize the triangular fuzzy numbers before obtaining the completed crisp 

values. The Max-Min normalization process follows the equation below: 

𝜏𝛿𝑥𝑦
𝑙𝑘 = (𝛿𝑥𝑦

𝑙𝑘 −min𝛿𝑥𝑦
𝑙𝑘 )/∆𝑚𝑖𝑛

𝑚𝑎𝑥 

𝜏𝛿𝑥𝑦
𝑚𝑘 = (𝛿𝑥𝑦

𝑚𝑘 −min 𝛿𝑥𝑦
𝑙𝑘 )/∆𝑚𝑖𝑛

𝑚𝑎𝑥

𝜏𝛿𝑥𝑦
𝑟𝑘 = (𝛿𝑥𝑦

𝑟𝑘 −min 𝛿𝑥𝑦
𝑙𝑘 )/∆𝑚𝑖𝑛

𝑚𝑎𝑥 

, 𝑤ℎ𝑒𝑟𝑒 ∆𝑚𝑖𝑛
𝑚𝑎𝑥= max 𝛿𝑥𝑦

𝑟𝑘 −min𝛿𝑥𝑦
𝑙𝑘                (14) 

Identifying the left (𝑙) and right (𝑟) normalized value, we have the following: 

𝜏𝑙𝑥𝑦
𝑘 = 𝜏𝛿𝑥𝑦

𝑚𝑘 (1 + 𝜏𝛿𝑥𝑦
𝑚𝑘 − 𝜏𝛿𝑥𝑦

𝑙𝑘 )⁄

𝜏𝑟𝑥𝑦
𝑘 = 𝜏𝛿𝑥𝑦

𝑟𝑘 (1 + 𝜏𝛿𝑥𝑦
𝑟𝑘 − 𝜏𝛿𝑥𝑦

𝑚𝑘)⁄
                                           (15) 

Then, gathering the total normalized crisp values (𝜏𝑥𝑦
𝑘 ): 

𝜏𝑥𝑦
𝑘 = [𝜏𝑙𝑥𝑦

𝑘 × (1 − 𝜏𝑙𝑥𝑦
𝑘 ) + (𝜏𝑟𝑥𝑦

𝑘 )
2
] [1 − 𝜏𝑟𝑥𝑦

𝑘 + 𝜏𝑟𝑥𝑦
𝑘 ]⁄                            (16) 

Attaining the crisp values: 

𝑐𝑥𝑦
𝑘 = min 𝛿𝑥𝑦

𝑙𝑘 + 𝜏𝑥𝑦
𝑘 × ∆𝑚𝑖𝑛

𝑚𝑎𝑥                                                (18) 

The final step of the transformation is to aggregate the crisp values: 

𝑐𝑥𝑦 = ∑ 𝜏𝑥𝑦
𝑘𝑘

1 𝑘⁄                                                            (19) 

To arrange these crisp values in a pairwise comparison and express them as a direct 

relation matrix 𝑆𝑛×𝑛
𝑑 , the matrix can be rewritten as 𝑆𝑑 = [𝑐𝑥𝑦]𝑛×𝑛. Subsequently, the direct 

matrix 𝑆𝑑 must be normalized into 𝑆𝑛, and the normalized matrix 𝑆𝑛 can be obtained from 

the following equation: 

𝑆𝑛 = ∀ × 𝑆𝑑, where ∀= 1 max
1≤𝑥≤𝑛

∑ 𝑐𝑥𝑦
𝑛
𝑦=1⁄ , 𝑥, 𝑦 = 1,2,⋯ , 𝑛                    (20) 

Once the normalized matrix 𝑆𝑛 is obtained, it must be correlated with the identity matrix to 

obtain the total relation matrix 𝑆𝑡, as in the following computation: 

𝑆𝑡 = 𝑆𝑛 × (𝐷 − 𝑆𝑛)−1, where D is the identity matrix                        (21) 

 Finally, the sums of the rows and columns in the total relation matrix are used to acquire 

the vectors 𝑣  and ℎ , respectively. The computation of vectors is obtained using the 

following equations: 

𝑆𝑡 = [𝑐𝑥𝑦
𝑡 ]

𝑛×𝑛
, 𝑥, 𝑦 = 1,2,⋯ , 𝑛

𝑣 = [∑ 𝑐𝑥𝑦
𝑡𝑛

𝑥=1 ]
𝑛×1

= [𝑐𝑥
𝑡]𝑛×1  

ℎ = [∑ 𝑐𝑥𝑦
𝑡𝑛

𝑦=1 ]
1×𝑛

= [𝑐𝑦
𝑡 ]
1×𝑛

  

                                              (22) 

Thus, the causal diagram is produced. The vertical axis, (𝑣 − ℎ), represents the role of the 

attribute. If (𝑣 − ℎ) is negative, the attribute is considered to be the effect, whereas if 
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(𝑣 − ℎ) is positive, the attribute is considered to be the cause. Subsequently, (𝑣 + ℎ) is the 

horizontal axis and represents the importance of the attributes. 

 

4.5. GDEMATEL 

The acceptable attributes 𝐶 = (𝐶1, 𝐶2, ⋯ 𝐶𝑛) form a pairwise comparison to evaluate the 

relationship among them. This evaluation is denoted by response 𝑝 that is required to 

convert the linguistic scale into a grey number ∆𝐺 = [𝐺ℓ, 𝐺𝓊], which is presented in Table 3. 

These grey numbers consist of a direct relation grey matrix 𝐺𝑝, 𝑝 = 1,2,⋯ , 𝑛, which is 

expressed as follows: 

𝐺𝑝 =
𝐶1
𝐶2
⋮
𝐶𝑛

𝐶1 𝐶2 ⋯ 𝐶𝑛
[0,0] 𝐺12

𝑝 ⋯ 𝐺1𝑛
𝑝

𝐺21
𝑝 [0,0] ⋯ 𝐺2𝑛

𝑝

⋮ ⋮ ⋱ ⋮
𝐺𝑛1
𝑝 𝐺𝑛2

𝑝 ⋯ [0,0]

                                             (23) 

where 𝐺𝑥𝑦
𝑝

 is the grey number for the degree of influence of 𝑥 on 𝑦 in the 𝑝 response.  

 Using the average to aggregate the response, the computation process is as follows: 

𝐺𝑑 = (∑ 𝐺𝑝𝑝
𝑖=1 𝑝⁄ )                                                        (24) 

Accordingly, the aggregated direct relation grey matrix 𝐺 is normalized into a direct relation 

matrix 𝐺𝑛 as follows: 

𝐺𝑛 = 𝐺𝑑 max
1≤𝑥≤𝑛

∑ 𝐺𝑥𝑦
𝑛
𝑦=1⁄                                                    (25) 

The normalized direct relation matrix 𝐺𝑛 is then incorporated in the total relation matrix 𝐺𝑡 

as follows: 

𝐺𝑡 = 𝐺𝑛(𝐼 − 𝐺𝑛)−1, where I is the identity matrix                         (26) 

Subsequently, 𝑣  and ℎ  are denoted by 𝑛 × 1 and 1 × 𝑛  vectors, respectively, and 

represent the sum of the rows and the columns in the total relation matrix 𝐺𝑡, respectively. 

Thus, 𝑣𝑥 represents the sum of the 𝑥th row within matrix 𝐺𝑡, which contains both the direct 

and indirect effects from attribute 𝑥 on other attributes, and ℎ𝑦 represents the sum of the 

𝑦th column in matrix 𝐺𝑡  and represents the effects received by attribute 𝑦 from other 

attributes. The computation is as follows: 

𝑣𝑥 = ∑ 𝐺𝑥𝑦∀𝑥
𝑛
𝑥=1

ℎ𝑦 = ∑ 𝐺𝑥𝑦∀𝑦
𝑛
𝑥=1

                                                         (27) 

where 𝑥 = 𝑦 , (𝑣 + ℎ)  states the degree of importance for the attribute and (𝑣 − ℎ) 

presents the degree of causality. A causal diagram is then drawn for decision-making such 

that [(𝑣𝑥 + ℎ𝑦), (𝑣𝑥 − ℎ𝑦)], ∀ 𝑥 = 𝑦. 

 

4.6. Proposed Analytic Procedures 
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The proposed analytic procedures are divided into three sub-sections, as presented in 

Figure 1. 

Formulating Proposed 

SCRU Measures 

Applying FDM and GDM 

to Eliminate Unnecessary 

SCRU Measures 

Based on Assessments from Experts

 Obtaining the Frequency 

from Social Media  

 Related Qualitative and 

Quantitative Data 

Content 

Analysis

Financial Statement 

 and Operational Data

Aggregating Weights in 

Decision-Making Matrix

Quantitative 

Transformation

Entropy

Weight

Generate Causal Diagram 

Using FDEMATEL and 

GDEMATEL

Compare Diagrams 

between Initial Expert 

Judgments and Aggregated 

Data Sets

ProceduresStages

Experts  Assessments

Big Data Acquirements 

and Transformations

Data Aggregation and 

Result Comparisons

Utilizing Remaining Aspects

Identifying  Interactions 

through FDEMATEL and 

GDEMATEL

Reliable Attributes

 

Figure 1. Analytic Procedures 

 

Experts’ Assessment Stage: 

1. The proposed SCRU measures reflect a realistic industry situation to eliminate 

unnecessary measures through FDM and GDM. The eliminating procedures are based on 
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Eqs. (7-9) and (18-21), respectively, and the final results are presented in Table 1.  

2. The remaining aspects must be incorporated to evaluate the interactions by applying the 

FDEMATEL and GDEMATEL, as done in Eqs. (10-17) and (22-26), respectively. The 

aspects are then arranged to create a visual two-dimensional map. 

 

Big Data Acquisition and Transformation stage: 

1. The content analysis reveals the terms related to the listed measures and to the 

accumulated frequencies obtained from social media data. In addition, the quantitative 

data are derived from firms’ financial statements and daily operations. 

2. The frequency (social media) is transformed into entropy weight by using Eqs. (1-4) and 

the relevant data are converted into comparable values using Eqs. (5-6).  

 

Data Aggregation and Result Comparison stage: 

1. The aggregated entropy weights and quantitative transformations are incorporated into the 

decision-making matrix to compare the results of the FDMATEL and GDEMATEL using 

Eqs. (10-17) and (22-26), respectively. Subsequently, the causal diagram is generated 

based on the vertical (𝑣 − ℎ) and horizontal (𝑣 + ℎ) axes and the mapping of the 

attributes into the diagram. 

2. The interactions are identified through the four quadrants, as shown in Figure (2). 

Quadrant I represents the driving attributes, i.e., hose with the greatest influence and 

greatest importance in their ability to affect other attributes. Quadrant II represents 

voluntary attributes, i.e., those that have high influence but less importance in their ability 

to affect other attributes. Quadrant III denotes independent attributes, i.e., those with less 

influence and less importance. Quadrant IV represents the core problem. Though these 

attributes have low influence and greater importance, significant improvements could not 

be achieved through the aspects in this quadrant. Finally, a comparison between the causal 

diagram of initial information and that of the aggregation of various data sets is conducted 

to identify the effects of social media, quantitative data and qualitative data in SCRU 

mitigation. 

II

Voluntary 

Attributes

I

Driving 

Attributes

III

Independent 

Attributes

IV

Core 

Attributes

v - h

v + h
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Figure 2. Causal Diagram Quadrant 

 

5. Empirical Results 

5.1. Industrial Background 

Lighting is a basic human need, but traditional lighting technology generates 1.9 billion 

tons of CO2 annually, a statistic that provides a compelling reason to replace traditional 

lighting with LEDs and thereby reduce CO2 emissions. Although the Taiwanese industry has a 

complete supply chain, it lacks the channels and the well-known brands to compete with other 

countries. More specifically, China’s government has subsidized the expansion of local 

factories to increase their productivity and lower their prices. Moreover, other countries are 

also aggressively launching relevant subsidized policies to strengthen their local brands and 

enhance demand in competition.  

Many data are generated from these firms’ daily operations. However, the manufacturers 

lack the capability to diagnose risks using these valuable data sets. Furthermore, the industry 

grapples with high uncertainty due to rapid technological changes and low cost competition. 

Though firms strive to enhance their capabilities by using the indicators to mitigate risks, 

limited resources and different aggregated data sets impede firms’ abilities address the 

occurrences of risks and uncertainties. Thus, it is essential to integrate all data when exploring 

the decisive attributes of SCRU, as this can assist firms in concentrating their resources and 

investments on strengthening the firms’ capabilities to mitigate risks. 

 

5.2. Results 

1. Experts employ a linguistic scale to present the importance of aspects in Table 4. However, 

as the feature of these linguistic scales is qualitative data, it is necessary to use fuzzy set 

and grey theory to convert the data into comparable values. Table 5 displays the 

comparison of results from FDM and GDM using Eqs. (7-9) and (18-21), respectively. 

The aspects are reduced from the original nine aspects to the final seven aspects. 

Accordingly, Table 6 presents the interactive evaluation of aspects based on the experts’ 

judgments using Eqs. (10-17) and (22-26). These aspects can be mapped into the causal 

diagram by adopting the coordinates [(𝑣 + ℎ), (𝑣 − ℎ)], as displayed in Figures (3-4). 

The diagrams reveal that AS1 and AS3 are the driving aspects for SCRU and that AS5 

denotes the core problem. 

 

Table 4. Assessment of Aspects by Experts 
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  E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 

A1 1 1 1 3 1 4 1 5 3 2 1 1 3 4 1 

A2 4 1 4 4 1 2 1 4 1 4 5 4 4 3 5 

A3 1 3 3 3 5 2 1 4 5 5 2 3 5 2 4 

A4 2 4 3 2 1 3 5 3 2 4 3 4 4 3 1 

A5 3 2 4 3 5 4 5 3 1 3 1 5 1 1 3 

A6 4 2 2 5 5 1 3 2 1 3 5 5 3 5 5 

A7 4 4 2 2 4 2 3 4 1 5 1 5 3 3 3 

A8 4 4 3 2 2 1 2 2 1 4 1 1 1 3 2 

A9 4 5 2 3 3 3 5 2 1 4 5 1 4 5 2 

 

Table 5. Comparison of FDM and GDM for Aspects 

 
FDM GDM 

Renamed 

 
𝑆ℓ Assessment ∆̿𝐺𝑛

𝑘 Assessment 

A1 0.2908 x 0.3457 x   

A2 0.3158 0.3158 0.5424 0.5424 AS1 Capacity 

A3 0.3175 0.3175 0.5567 0.5567 AS2 Cost 

A4 0.3108 0.3108 0.5114 0.5114 AS3 Operation 

A5 0.3108 0.3108 0.5083 0.5083 AS4 Reputation 

A6 0.3225 0.3225 0.5771 0.5771 AS5 Product 

A7 0.2092 x 0.3331 x   

A8 0.3142 0.3142 0.5357 0.5357 AS6 Controllability 

A9 0.3192 0.3192 0.5562 0.5562 AS7 Organization 

 
0.3012 𝜇𝐹𝐷𝑀 0.4963 𝜇𝐺𝐷𝑀   

 

Table 6. Causal Group for Aspects 

 

FDMATEL GDMATEL 

 

𝑣 ℎ (𝑣 + ℎ) (𝑣 − ℎ) 𝑣 ℎ (𝑣 + ℎ) (𝑣 − ℎ) 

AS1 22.221 22.154 44.531 0.470 19.560 18.960 38.521 0.600 

AS2 22.501 22.030 44.375 0.067 18.867 19.325 38.192 (0.459) 

AS3 22.406 22.121 44.527 0.285 19.320 19.013 38.333 0.306 

AS4 20.798 20.851 41.649 (0.053) 18.232 18.457 36.689 (0.225) 

AS5 21.545 22.046 43.592 (0.501) 18.992 19.646 38.638 (0.655) 

AS6 21.968 20.321 42.290 1.647 18.754 17.489 36.243 1.265 
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AS7 20.504 21.996 42.501 (1.492) 18.190 18.706 36.896 (0.515) 

 

 

Figure 3. The Causal Diagram for Aspects 

 

 

Figure 4. The GDEMATEL Causal Diagram for Aspects 

 

2. Table 7 displays the eliminated result comparison for attributes; 15 attributes remain in the 

FDM and 16 attributes remain in the GDM. This study adopts 16 attributes for the 
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Table 7. Comparison of FDM and GDM for Attributes 

 FDM GDM Renamed  FDM GDM Renamed 

C1 x x  C21 x x  

C2 x x  C22 0.320 0.581 C9 

C3 x x  C23 x x  

C4 x x  C24 0.329 0.625 C10 

C5 x x  C25 0.331 0.650 C11 

C6 0.316 0.546 C1 C26 0.333 0.660 C12 

C7 x x  C27 x x  

C8 0.355 0.578 C2 C28 x x  

C9 0.316 0.536 C3 C29 x x  

C10 0.331 0.643 C4 C30 x x  

C11 x x  C31 0.316 0.539 C13 

C12 x x  C32 0.362 0.609 C14 

C13 x x  C33 x x  

C14 x x  C34 x x  

C15 0.318 0.553 C5 C35 x x  

C16 0.321 0.588 C6 C36 0.326 0.626 C15 

C17 x x  C37 x x  

C18 x 0.532 C7 C38 0.326 0.597 C16 

C19 x x  𝜇𝐹𝐷𝑀 0.315   

C20 0.323 0.598 C8 𝜇𝐺𝐷𝑀  0.529  

 

3. Social media data are acquired through public and professional websites to accumulate 

frequencies of the proposed aspects. In addition, the quantitative data are obtained from 

firms’ financial statements and operational data (total 1,951,749 sets of data). The 

transformations are derived by applying Eqs. (1-6) and are presented in Table 8. 

 

Table 8. Entropy Weights and Quantitative Transformations 

 

Frequency Ratio Normalize Entropy Entropy Weight Quantitative Transformation 

C1 2549 0.0907 0.0785 0.9215 0.0613 0.4253 

C2 801 0.0285 0.0366 0.9634 0.0641 0.3993 

C3 1517 0.0540 0.0568 0.9432 0.0627 0.3764 

C4 1486 0.0529 0.0561 0.9439 0.0628 0.3814 
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C5 1869 0.0665 0.0650 0.9350 0.0622 0.3962 

C6 2745 0.0977 0.0820 0.9180 0.0611 0.4738 

C7 1777 0.0633 0.0630 0.9370 0.0623 0.2457 

C8 2479 0.0882 0.0773 0.9227 0.0614 0.6145 

C9 2759 0.0982 0.0822 0.9178 0.0611 0.2090 

C10 2110 0.0751 0.0701 0.9299 0.0619 0.1658 

C11 1124 0.0400 0.0464 0.9536 0.0634 0.1902 

C12 2154 0.0767 0.0710 0.9290 0.0618 0.4834 

C13 1874 0.0667 0.0651 0.9349 0.0622 0.7428 

C14 1631 0.0581 0.0596 0.9404 0.0626 0.0865 

C15 900 0.0320 0.0398 0.9602 0.0639 0.1657 

C16 319 0.0114 0.0183 0.9817 0.0653 0.6361 

 

4. The FDEMATEL and GDEMATEL are based on Eqs. (10-17) and (22-26), respectively. 

The entropy weight and quantitative transformation should be integrated with the 

computations of the FDEMATEL and GDEMATEL. Table 9 presents the aggregated 

causal group for attributes. 

 

Table 9. Aggregated Causal Group for Attributes 

 

FDMATEL GDMATEL 

 

𝑣 ℎ (𝑣 + ℎ) (𝑣 − ℎ) 𝑣 ℎ (𝑣 + ℎ) (𝑣 − ℎ) 

C1 0.6366 0.7009 1.3374 (0.0643) 0.5390 0.6041 1.1431 (0.0651) 

C2 0.5587 0.6567 1.2154 (0.0980) 0.4853 0.5620 1.0473 (0.0767) 

C3 0.6266 0.6088 1.2354 0.0178 0.5440 0.5208 1.0648 0.0232 

C4 0.6242 0.6142 1.2384 0.0100 0.5462 0.5261 1.0723 0.0201 

C5 0.6433 0.6427 1.2860 0.0006 0.5513 0.5498 1.1011 0.0015 

C6 0.6322 0.7653 1.3975 (0.1332) 0.5390 0.6508 1.1898 (0.1119) 

C7 0.6219 0.3962 1.0180 0.2257 0.5201 0.3409 0.8611 0.1792 

C8 0.6108 0.9623 1.5731 (0.3515) 0.5224 0.8259 1.3483 (0.3035) 

C9 0.6155 0.3250 0.9405 0.2905 0.5209 0.2783 0.7991 0.2426 

C10 0.5829 0.2638 0.8467 0.3191 0.5050 0.2259 0.7309 0.2791 

C11 0.6301 0.3186 0.9486 0.3115 0.5364 0.2726 0.8091 0.2638 

C12 0.6205 0.7965 1.4170 (0.1760) 0.5286 0.6855 1.2142 (0.1569) 

C13 0.5805 1.1925 1.7731 (0.6120) 0.4917 1.0241 1.5158 (0.5324) 
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C14 0.6074 0.1360 0.7434 0.4714 0.5306 0.1162 0.6468 0.4144 

C15 0.5762 0.2755 0.8518 0.3007 0.4950 0.2370 0.7319 0.2580 

C16 0.5741 1.0864 1.6605 (0.5123) 0.4925 0.9281 1.4206 (0.4356) 

 

5. The causal diagram is mapped based on the coordinates [(𝑣 + ℎ), (𝑣 − ℎ)] in Table 9. 

Once the mapping is completed, the decisive attributes of SCRU are explored in Figures 5 

and 6. These figures, aggregated with the big data, social media data and qualitative data, 

therein, C3, C4 and C5, are the driving attributes for mitigating SCRU as greater influence 

is ascribed to other attributes. Moreover, these attributes, C1, C6, C8, C12 and C16, are 

located in the quadrant of the core problem, which represents an essential need for 

improvement, though the improvement processes must amend the driving attributes.  

 

 

Figure 5. The FDEMATEL Causal Diagram According to Various Data Aggregations 
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Figure 6. The GDEMATEL Causal Diagram According to Various Data Aggregations 

 

6. Compare the causal diagram with the initial judgments of the experts (see Figures (7-8) to 

identify the effects of aggregating the different data sets and enhancing the accuracy in 

decision making. This confirms that C3, C4 and C5 are the driving attributes of SCRU, 

according to Figures (5-8). In addition, the results indicate that C12 is in need of urgent 

improvement. 

 

 

Figure 7. The FDEMATEL Causal Diagram  
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Figure 8. The GDEMATEL Causal Diagram  

 

6. Theoretical and Managerial Implications 

Based on the empirical results, significant insights into the theory and its implementation 
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operational risks in terms of poor quality, low productivity and unfilled orders (Jiang et al., 

2009). In addition, maintaining labor relations not only reduces turnover intentions but also 

enhances the firm’s reputation. Hence, the well-known Taiwanese LED firms realize that the 

operational risk is a critical negative impact among the firm. In order to ensure the operation 

sticks with the standard of procedure and avoid the risk occurrence, these firms provide series 

of training and developing course for their labors, so the labors enable to improve their skills 

in the operation or develop a new skill to make the operation efficiently. 

 While prior studies find that capacity (AS1) and operation (AS3) may generate supply 

chain risks, they are unable to identify the driving factors that will reduce such occurrences. 

This study aggregates social media, quantitative data and qualitative data to extensively 

reflect the impact on decision making, and it utilizes collaboration theory to demonstrate the 

interactions. The prevention of risk is achieved through alignment, which requires 

maintaining consistency with respect to needs. However, it is difficult to mitigate risk by 

adopting congruence as the probability of such congruence due to these attributes is highly 

uncertain and unpredictable. 

 

6.2. Managerial Implications 

Margin improvement (C3) is one of the driving attributes behind the prevention of SCRU. 

Most firms consider margin improvement as a way to increase profit; however, the key 

purpose is to establish a buffer to effectively absorb or defend against loss when a risky event 

occurs. Although most Taiwanese LED firms are profit oriented, they employ a specific 

technique to improve operational efficiency but often ignore the establishment of a buffer in 

the profit margin to prevent risks. Once a risky event occurs, many firms merge or are 

acquired by larger firms and hence must use their specific technique to develop and extend 

their capabilities into a core competitive advantage. This core competitive advantage should 

be adapted to respond to rapid market changes rather than to low cost competition.  

Furthermore, employee education and skills development (C4) is a double-edged sword 

in that unexpected innovation and improvement generated through education and skill 

development for employees, while increasing the firm’s human capital, come at a cost to the 

firm. Thus, this practice is still lacking in the industry due to limited investments and 

resources. However, over the long term, firms must establish educational programs for their 

employees and provide opportunities for them to develop and enhance their skills as sufficient 

education and skill create flexibility in production and generates a dynamic for responding to 

customer feedback.  
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LED firms focus on profit while neglecting the impacts of labor relations (C5). 

Significantly, the empirical results recognize that this problem may be related to SCRU. 

Labor problems cause organizational friction, generate unstable skills and negatively impact 

customer satisfaction, factors that lead to high employee turnover. Conversely, such turnover 

can be prevented by educating employees and thereby enhance firm performance. In the long 

term, stable employee turnover generates a positive impact, particularly in terms of novel 

ideas and rapid information sharing among the supply chain networks. However, decreasing 

turnover reduces short term SCRU.  

These firms are capable of conquering firm capability development by identifying the big 

data to enhance their accuracy in mitigating SCRU for the decision-making process. The 

results reveal that firms can enhance their building capabilities, e.g., margin improvement 

(C3), employee education and skills development (C4), and labor relations (C5). Moreover, it 

is necessary to increase and improve product stewardship (C12), and this improvement is 

ameliorated through the three driving attributes. Once firms succeed in strengthening their 

capabilities, they will be able to mitigate unintentional risks.  

 

7. Conclusions 

The Taiwanese LED industry proposed to adopt sustainability indicators to prevent 

SCRU. Although the indicators provide firms with a guideline toward sustainability, the firms 

often underinvest in developing their capabilities. Furthermore, the firms experience 

difficulties in determining the risks and uncertainties due to limited resources and inadequate 

approaches to aggregate the different data sets. Hence, this study attempted to eliminate the 

lesser important attributes in the Taiwanese LED industry and proposed aggregating the big 

data into the decision matrix. Subsequently, FDEMATEL and GDEMATEL were used to 

explore the decisive attributes in mitigating the SCRU. Finally, the comparisons of the 

proposed methods are essential for enhancing the accuracy and reliability and confirming the 

decisive attributes as firms may strengthen the capabilities and mitigate the risks and 

uncertainties by concentrating their resources and investments in these attributes.  

The contribution of this study is to offer guidelines for LED firms to reduce the risks and 

uncertainties by effectively utilizing the resources and investments while developing the 

sustainability. With respect to theoretical implications, capacity and operations are the driving 

aspects, thus confirming their influence as identified in previous studies and supporting the 

evaluation of their attributes. As firms provide flexible capacity and beneficial effects through 

alignment and congruence, similarly, operations must adopt several controls for improvement 

where the productions are located in the core problem quadrant. In addition, though most 
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risks and uncertainties can prevent functional risks, trigger events are difficult to prevent 

given that they are generally unintentional and unpredictable.  

 The remaining attributes located in the first quadrant represent significant decisive 

attributes that lead firms to mitigate the risks including margin improvement, employee 

education, skills development and labor relations. Margin improvement establishes a buffer 

and absorb loss when risks occur. Though employee education and skills development are 

costly, if an employee integrates the new knowledge and skills and thereby improves firm 

efficiency and effectiveness, the occurrence of risky events will be prevented. Labor relations 

allow firms to achieve efficiency in operations. However, as increasing product stewardship is 

a major challenge and it is difficult to meliorate the performance, the improvement must 

include the investment of resources into three decisive attributes.  

Several limitations exist regarding this study. Although the proposed attributes are 

acquired through extensive literature reviews, the basis is still insufficient to cover all 

attributes. Hence, the eliminating assessments could include more attributes in future research. 

In addition, the selected information only focused on the Taiwanese LED industry as doing so 

allowed us to control the contextual and operational attributes in the industry. However, it 

also limits the generalizability of the findings. Future studies could expand this study to other 

industries and thus overcome the limitations regarding generalizability. Furthermore, 

implementing sustainability is crucial for Asian manufacturers because of the nature of 

complexity in the supply chain networks. To assist firms in preventing risks due to 

uncertainty, future research should investigate the precise relationship between firms’ 

capabilities and the SCRU. 
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