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The natural topology on the space of causal paths of a space-time depends on the
topology chosen on the space-time itself. Here we consider the effect of using the
path topology on space-time instead of the manifold topology, and its consequences
for how properties of space-time are reflected in the structure of the space of causal
paths. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4963144]

I. INTRODUCTION AND CONTEXT

What is the topology of space-time?
This question has several answers, each of which has its attractions.
The first, and most obvious answer is that since space-time is a Lorentz manifold, the topol-

ogy is the manifold topology. This answer enables us to make use of the apparatus of differential
topology and (pseudo-)Riemannian geometry and has provided enormous benefits in the attempt to
understand gravitation and the structure of the universe.

But if we take the attitude that a space-time is not a differentiable manifold endowed with
additional geometric structure, but that the geometric structure is as fundamental as the set of points,
then there are some attractive alternatives, which use the topology to encode the geometry in a more
fundamental way.

The first of these was Zeeman’s construction1 of the fine topology on Minkowski space (the
finest topology which induces the standard topology on each timelike straight line and spacelike
hypersurface) which encodes the information of the causal and linear structure of Minkowski space.
This was generalized to curved space-time by Göbel2 by taking the finest topology with respect to
which all timelike geodesics and spacelike hypersurfaces inherit the standard topology. If we regard
the (pseudo-)metric structure of the space-time as fundamental, this topology has some compelling
properties: in particular, it determines the metric up to an overall constant. On the other hand, it does
not admit a countable neighbourhood basis, which makes it very difficult to work with in particular
cases.

We could reasonably also consider an alternative approach, in which we do not require timelike
geodesics and spacelike hypersurfaces to inherit the standard topology, but rather require that all
timelike paths do. (Note that throughout, we will use the terminological convention that a curve is a
function from some interval to space-time, and a path is the image of a curve.) This is the approach
taken by Hawking, King, and McCarthy.3 This topology is rather more tractable than the Zeeman
or Göbel topologies as it admits a countable neighbourhood basis. For each x ∈ M , and each open
neighbourhood U of x, we denote by I(p,U) the set of points connected to p by a timelike path lying
in U, and by K(p,U) the set I(p,U) ∪ {x}. Choose some arbitrary Riemannian metric h on M , and
denote by Bϵ(x) the open ball of all points within distance ϵ of x with respect to h. Finally, for an
open convex normal neighbourhood, U, of x, let LU(x, ϵ) = K(p,U) ∩ Bϵ(x). The sets of the form
LU(ϵ, x) are then a basis for the path topology. Indeed, by choosing ϵ = 1/n for n ∈ N, we obtain a
countable neighbourhood basis, so that the path topology is first countable.

The path topology onM is of particular interest if one’s primary concern is the causal, rather
than the metric structure of M. The continuous curves are precisely the Feynman paths, and the
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path topology induces the discrete topology on null and spacelike sets. Furthermore, the path
topology determines both the differentiable and conformal structure ofM.

There has been recent interest in these alternative topologies, in particular showing some
surprising consequences for the connectedness of space-time;4–6 more recently it has been argued
that the use of limit curve theorems in the study of singularities must take proper account of the
topology of space-time.7

In this note we will consider the consequences of using the path topology on space-time to
induce a topology on a space of causal paths in a strongly causal space-time. We will see that the
situation is rather different for timelike paths and null geodesics (as one might expect, since the path
topology induces the discrete topology on a null geodesic), and that these differences present some
difficulties, but also some subtleties.

II. TOPOLOGY ON PATH SPACES

So let M denote a space-time, i.e., a time-orientable Lorentz manifold, and let P be a set of
paths (i.e., the set of images of a set of continuous curves) in M. We will, of course, have some
particular sets of paths, such as timelike or causal in mind, but it will be convenient to set up the
general situation first and then specialize to the particular cases of interest. Note that as we are
considering the path, rather than the curve, the notion of future or past pointing does not apply
directly to the path: however, when we consider timelike or causal paths we will assume throughout
that a curve whose image is a given path has a future-directed parameterization.

So let γ ∈ P, let x ∈ γ, and let U be an open neighbourhood of x (in whichever topology
on M is under consideration). Then the set {γ′ ∈ P |γ′ ∩U , ∅} is a neighbourhood of γ. We
take the topology on P obtained by using these neighbourhoods as a sub-basis, and recall that a
neighbourhood basis is given by the set of all finite intersections of these sets.8

As usual,9 we can say that γn converges to γ if for any neighbourhood of γ, all but finitely many
γn lie in this neighbourhood, and that γ is a limit curve of γn if γn has a subsequence that converges
to γ.

We then denote by PM the space P equipped with the topology obtained by using the usual
manifold topology on M, and by PP the space P equipped with that obtained by using the path
topology onM.

Furthermore, we denote by T the space of endless timelike paths inM and by C the space of
endless causal paths inM. Note that as we consider continuous paths, without imposing differen-
tiability, there need not be a tangent vector to a path γ in T . But even if the path is differentiable,
the tangent need not be timelike: any portion of such a path can be null, as long as it is not a null
geodesic. We only require that all points on γ be timelike related to one another. We now wish to
consider the relationships between TP, TM, CP, and CM.

III. THE SPACE OF TIMELIKE PATHS

First, we establish the equivalence of the topologies induced on T by the path and manifold
topologies for M .

Let γ ∈ T and let U be a neighbourhood of γ in TM. Then there exist sub-basis elements
U1 . . .Un arising from points x1, . . . , xn ∈ γ and M-open neighbourhoods Ui of xi as described
above. Now, denote by Vi the set of all elements of T which pass through K(xi,Ui), and by V the
intersection of theVi. ThenV is a P-neighbourhood of γ which is a subset ofU .

Conversely, letV be a neighbourhood of γ in TP. Then there exist sub-basis elementsV1 . . .Vn

arising from points x1, . . . , xn ∈ γ and P-open neighbourhoods Vi of xi as described above. Now,
each Vi is of the form K(xi,Wi) for some M-open neighbourhood Wi of xi. So let yi ∈ γ ∩Wi, and
let Ui be an open neighbourhood of yi inside K(xi,Wi). Finally, denote byWi the set of all γ ∈ T
which pass through Ui, and byW the intersection of theWi. This gives an M-neighbourhood of γ
which is a subset ofV .

Then each P-neighbourhood of γ lies inside an M-neighbourhood, and vice versa, giving us the
result.
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Proposition 1. TP is homeomorphic to TM.

We see then that if γn ∈ T , convergence in the P-topology is equivalent to convergence in the
M-topology; γn → γ in TM if and only if γn → γ in TP. In addition, it is clear from the definition of
neighbourhoods that if γn → γ, then for each x ∈ γ there is a sequence xn ∈ γn such that xn → x, in
both topologies. This has the surprising consequence.

Proposition 2. If γn → γ in TM, then for each x ∈ γ, there exist xn ∈ γn such that xn → x in
the path topology onM.

This is certainly encouraging: it tells us that if we consider timelike paths, the notion of conver-
gence is unaffected by the choice of whether we use the manifold or the path topology onM. This
might at first sight seem plausible given that the path topology was chosen so to induce the standard
topology on timelike paths, but we should recall that this choice of topology can have extreme
consequences for the relationships between these timelike paths, as we see from the fact that there
are no non-trivial homotopies of timelike paths inM equipped with the path topology.4–6

However, we must now extend consideration to the more problematic case of causal paths.
Since the path topology induces the discrete topology on null geodesic segments, we might expect
their inclusion to complicate the situation, and indeed it does.

IV. THE SPACE OF CAUSAL PATHS

So, we now consider C, and the relationship between CP and CM.
By the same argument as before, if γn converges to γ in CP, it must also converge in CM.
Furthermore, if γn in C converges to γ in CM and γ ∈ T , then again, we must also have γn → γ

in CP. The difficulty arises when γ contains a null geodesic segment.
Let x ∈ γ, and let some neighbourhood of x in γ (in the manifold topology) be a null geodesic

segment. Then there exists γn, a sequence of timelike paths such that γn → γ in CM, but not in CP.
We can exhibit such a sequence as follows. Let U be an open convex normal M-neighbourhood

of x, and let p and q be points in γ ∩U, and on the future and past light cones of x, respectively.
Further, let pn be a sequence of points in U on the future null cone of x, but not on γ, such that
pn → p; similarly let qn lie in U on the past null cone, but not on γ, and such that qn → q.

Then since pn and qn are connected by a piecewise null geodesic which is not a null geodesic,
pn ∈ I+(qn) for all n. Define γ to be the causal path consisting of the null geodesic segment from q
to p and otherwise an arbitrary timelike path.

Now take some convex normal neighbourhood, V of p. For pn sufficiently close to p, γ will
enter I+(pn,V ), so we can connect pn to p′n ∈ γ in such a way that also p′n → p (again, in the
M-topology). We can carry out the same procedure for qn and q. Patching these segments together,
we take γn to coincide with γ after p′n and before q′n, to connect p′n and q′n to pn and qn as described
above, respectively, and to be the timelike geodesic segment between qn and pn.

Then clearly each γn is timelike, γn → γ in CM, but no γn intersects K(x,U), and so γn does
not converge to γ in CP.

We therefore see the following proposition.

Proposition 3. The path topology onM induces a strictly finer topology on C than the mani-
fold topology does.

Now it is clear that TM is dense in CM; but we now know that convergence of a sequence in CM
does not imply its convergence in CP. Nevertheless, we can see that if γ ∈ C, there exists a sequence
γn in T such that γn → γ in CP.

To see this, choose a Riemannian metric h on M and denote by Br(x) the h-ball of radius r
centred on x, by abuse of notation let γ be the image of γ : (−∞,∞) → M, and let Kn be the image
γ restricted to the interval [−n,n]. Finally, define

Un =

x∈Kn

B1/n(x).
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Then by pushing each point of Kn a sufficiently small distance in a timelike direction we
can obtain10 a path which is everywhere timelike and intersects each B1/n(x); let γn be this path
extended arbitrarily outside Un.

Then if x is any point on γ, and U is any M-open neighbourhood of x, for sufficiently large
n the B1/n ball lies inside U, and so for sufficiently large n, all γn intersect K(x,U). Thus γn is a
sequence of curves in T which converges to γ in CP.

This establishes the following proposition.

Proposition 4. TP is dense in CP.

From this we now see that if γ ∈ T , the open neighbourhoods of both topologies agree; but if
γ ∈ C \ T , there are more P-neighbourhoods than M-neighbourhoods. In passing we can also note
that since any causal path can be approximated arbitrarily closely in the M-topology by a piecewise
null geodesic path, C \ T is also dense in C, in both topologies.

V. CONSEQUENCES

So, the principal difference between CP and CM is the neighbourhoods of curves with null
geodesic segments; but of course, null geodesic segments are highly important in causality, since
they locally determine the causal structure. Also, since piecewise null geodesic paths are dense
in C, as noted above, this may lead to significant difference between the options when we try to
understand how causal properties of space-time are reflected in the topology of C.

We begin by considering the characterization of global hyperbolicity of M. It is well known
that M is globally hyperbolic iff for any x, y ∈ M, the space of causal paths connecting x and y
is compact,11 and has also been shown that this is equivalent to these spaces of causal paths being
Hausdorff, and to the space of all causal paths, or, equivalently, the space of all timelike paths in
M being Hausdorff.12 By a slight abuse of notation, we will use T and C to denote the spaces of
timelike and spacelike paths from x to y inM.

We should note that the definition of the topology used in Ref. 11 was introduced by Geroch
in Ref. 13 and is slightly different from the definition of the manifold topology used here and
in Ref. 12. Call this the Geroch topology. So let x, y ∈ M, let A, B be open sets such that x ∈ A
and y ∈ B, and let γ be a causal path connecting x to y . Finally, let R be an (M-)open set in M
which contains γ. Then the set of causal paths from x to y which intersect R clearly contains the
set of causal paths from x to y which lie inside R, and so an M-neighbourhood of γ contains
a Geroch-neighbourhood. Conversely, we can cover γ by finitely many sufficiently small causally
convex open sets, where sufficiently small means that each set lies inside R and that no causal
path can leave one of the sets and re-enter it. Then the intersection of all M-neighbourhoods of γ
corresponding to these sets gives an M-neighbourhood of γ lying inside the Geroch-neighbourhood.
Thus the two descriptions impose the same topology on this space of causal paths.

Now, since CP is finer than CM, it follows that if CM is Hausdorff, then CP is also Hausdorff. On
the other hand, if CM is not Hausdorff then it follows from the arguments of Ref. 12 that TM is not
Hausdorff; but TM = TP, so that TP is not Hausdorff, and so CP is also not Hausdorff. We thus have
the following proposition.

Proposition 5. CM is Hausdorff if and only if CP is Hausdorff; consequently, M is globally
hyperbolic if and only if CP is Hausdorff.

Thus the equivalence of global hyperbolicity to the space of causal paths being Hausdorff is
maintained when we shift from the manifold topology onM to the path topology. But this does not
work for the compactness criterion.

Let C now be the space of all causal paths from x to y inM, where y ∈ I+(x). Recall that for
any path γ in C with a null geodesic segment we can find γn ∈ T such that γn → γ in CM, but not in
CP. Since CP is finer than CM, if γn → γ′ , γ in CP, then we must also have γn → γ′ in CM. Clearly
this holds for any subsequence of γn. Thus if CM is Hausdorff, and hence compact, CP contains a
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sequence with no convergent subsequence, and therefore8 cannot be compact. If CM is not compact,
then clearly CP is not compact. We thus have the following proposition.

Proposition 6. If x, y ∈ M with y ∈ I+(x), and C is the space of causal paths from x to y , then
CM is compact if and only if CM is Hausdorff if and only if CP is Hausdorff; however, CP is never
compact.

Finally, we consider the limit curve theorem. There are numerous versions of this,14 but roughly
speaking all say that if γn is a sequence of causal paths and xn ∈ γn, with x a limit point of {xn},
then there is an endless causal path γ through x which is a limit curve of {γn}, all in the manifold
topology.

Let pn be a sequence of null vectors in three dimensional Minkowski space, such that pn → p
in the usual topology, and let γn be the null geodesic through the origin with tangent pn, and γ to
be the null geodesic through the origin with tangent p. Since the origin lies on each γn, we can take
xn to be the origin for all n, so we have a sequence xn ∈ γn, and the origin is a limit point of this
sequence. Clearly, γ is the unique limit curve of {γn} in CM.

But if U is any open set (not containing the origin), and p ∈ γ ∩U , then for all n, γn ∩ Kp(U) =
∅, so that γ is not a limit curve of {γn} in CP. But then {γn} has no limit curve in CP, and in
particular no limit curve containing the origin.

Hence the limit curve theorem fails to hold if we replace the manifold topology by the path
topology throughout its statement.

VI. CONCLUSION

This suggests that although the path topology is of great interest from the point of view of
encapsulating the differentiable and causal structure of space-time, it is nevertheless inappropriate
for at least some important aspects of the study of causal structure, where the manifold topology
remains both technically easier to work with and fruitful.
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