

Navigating a Robot through Big Visual
Sensory Data

Altahhan, A.

Published PDF deposited in Curve September 2015

Original citation:
Altahhan, A. (2015) Navigating a Robot through Big Visual Sensory Data . Procedia Computer
Science, volume 53 : 478-485. DOI: 10.1016/j.procs.2015.07.325

http://dx.doi.org/10.1016/j.procs.2015.07.325

Creative Commons License

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

CURVE is the Institutional Repository for Coventry University

http://curve.coventry.ac.uk/open

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CURVE/open

https://core.ac.uk/display/228146321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://curve.coventry.ac.uk/open
http://dx.doi.org/10.1016/j.procs.2015.07.325
http://curve.coventry.ac.uk/open

doi: 10.1016/j.procs.2015.07.325

Navigating a Robot through Big Visual Sensory Data

Abdulrahman Altahhan1
1Coventry University, Coventry, U.K.

abdulrahman.altahhan@coventry.ac.uk

Abstract
This paper describes a reinforcement learning architecture that is capable of incorporating deeply
learned feature representation of a robot’s unknown working environment. An autoencoder is used
along with convolutional and pooling layers to deduce the reduced feature representation based on a
set of images taken by the agent. This representation is used to discover and learn the best route to
navigate to a goal. The features are fed to an actor layer that can learn from a value function calculated
by a second output layer. The policy is -greedy and the effect is similar to actor-critic architecture
where temporal difference error is back propagated from the critic to the actor. This compact
architecture helps in reducing the overhead of setting up a desired fully fledged actor-critic
architecture that typically needs extra processing time. Hence, the model is ideal for dealing with lots
of data coming from visual sensor that needs speedy processing. The processing is accomplished off
board due to the limitation of the used robot but latency was compensated by the speedy processing.
Adaptability for the different data sizes, critical to big data processing, is realized by the ability to
shrink or expand the whole architecture to fit different deeply learned feature dimensions. This added
flexibility is crucial for setting up such model since the space dimensionality is not known prior to
operating in the environment. Initial experimental results on real robot show that the agent
accomplished good level of accuracy and efficacy in reaching the goal.

Keywords: actor-critic, reinforcement learning, big data, visual sensors, deep learning

1 Introduction
Robot visual navigation towards a goal is considered one of the special cases of navigation. This

ability is essential and can be used as a building block for achieving general navigation capability by
considering multiple goals navigation for example. Using vision is problematic due to various reasons;
for example it is difficult often to get the same image quality under different conditions, such as
lighting, and it is difficult to repeat the same snapshot with exact positioning. However, the most
important difficulty is that visual processing is computationally intensive, and when it is required to be
performed in every time step before any simple decision can be made to move left, right or straight, is
very demanding. When running the robot in an environment, it can generate huge amount of visual
data in short time. It is essential to process this data in order to realize the ability of navigation based
on visual sensory input. In any environment, especially indoors, there could be a way to reduce the

Procedia Computer Science

Volume 53, 2015, Pages 478–485

2015 INNS Conference on Big Data

478Selection and peer-review under responsibility of the Scientific Programme Committee of INNS-BigData2015
c© The Authors. Published by Elsevier B.V.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.07.325&domain=pdf

dimensionality due to the confinement and repetition in the indoor structure. This reduction can be
done by deep learning by quickly training the agent on the environment after looking around for short
amount of time.

The ability to navigate towards a goal or home pertains to all animals naturally and is a must for
most of the commercial and entertaining robotics application. Central to this ability is the skill of
orienting towards the home and recognizing it once the agent is around it. Animals do that by wiring
the surrounding visual memory somehow to their neural map of the environment. How they do that is
yet to be discovered. Traditionally it has been linked to distinctive positions or places in the
environment i.e. landmarks. However, the way animals do their navigation and find their home
suggests something more subtle than only landmarks (Moller, 2005) (N. Tomatis, 2001). In this paper
we propose a model that could be used as proof of concept that animals hard wire the scenes to itself
and constantly compare it with the look of the home. It forms a frame of reference which is used to
compare all information passed through to obtain internal map of the home as opposed to the different
paths to its home.

2 Reinforcement Learning

2.1 Reinforcement Learning as a Framework
Reinforcement Learning performs well when is set up to interact in a novel situation where it is

impractical to obtain a model of the working environment. Therefore, it might be suitable to model
how an animal react, or plan, once it faces a new situation. RL does not require planning, but
planning-like behavior comes as a natural consequence of it. For the learner everything can be
summed up in terms of a reward signal (food, shelter etc.) and the sensory data that feed to it, in
addition to the actuators that the animal needs to use in order to reach its target and maximize the long
term rewards. Returning to its shelter is considered important urge in animals, and could make the
difference between life and death in certain situations. Therefore, animals have developed a complex
behavior around the shelter need and through evolution it becomes intrinsic in the brains of higher
animals. To trace all that back one needs to understand how primitive rewards form skills that governs
complex behavior.

2.2 Deep learning and RL
Deep learning has been shown to overcome the bottleneck representation problem that has long set

back the success of machine learning applications (G. Hinton, 2006). RL takes relatively long time to
converge due to the fact there is no direct answer to the input, the answer is just a signal that indicates
how good or bad the current action is, and hence how good or bad the overall behavior is. Supervised
learning has been showed to improve significantly when preceded with deep learning. When combined
with RL it is also believed to have a good potential for shortening the convergence time. By
combining the RL modeless capability with dimension reduction capability of Deep Learning, the
overall effect of the model is hoped to have the capability of effectively dealing with big data. For
navigation application the velocity and dimension of images the agent needs to process throughout its
operations bear the challenges of big data processing. It is estimated that the agent process one image
per two seconds hence it can process 2.2 Gigabyte per hour for jpeg files of 3.14 Kbyte.

Deep Feature-Action Architecture for Robot Homing Abdulrahman Altahhan

479

3 The Model

3.1 Construction of Feature Maps
Our model starts by learning a concise and reduced feature representation. The model obtains a

reduced representation in the first episode by randomly choosing a set of small patches form the
images that were collected during the first exploratory episode. Then a set of features maps are learned
via unsupervised learning to auto encode the patches. Those weights are then convoluted around each
new image in order to extract interesting features that are translation invariant. Simple average pooling
is then used to further reduce the set of features considered. Then the model shrinks the whole
architecture to fit the new reduced number of features, and this concludes the deep learning phase for
the feature representation layer. It should be noted that other methods could be better for object
detection or recognizing a certain pattern such as a hand-written digits (Y. LeCun, 2004). However,
for the purposes of our model we need something fast and low-level and we do not need to obtain
features that could be used for recognizing an object. We just need a set feature that is good enough to
distinguish the goal from other images.

3.2 Model Architecture and Components
In each consequent episode the model then takes advantage of the learned representation to

convolve each timeframe image to deduce a set of convolved features that has more channels but less
dimensions for each patch. Those convolved features are pooled together to further reduce the
representation. This process is done in each time step in order to obtain a suitable reduced feature
representation of the images instead of dealing with raw pixel information of each image. The
architecture has been set up in an off board style, where in each time step, the sensory data is sent from
the robot for processing in a remote machine, then the resultant action is sent back to the robot to be
executed. This situation creates a latency issue that is typical mitigated by a speedy processing in the
remote machine side. This scenario is hence ideal for testing whether the model is suitable for big data
processing which can be judged by the practicality of running the robot and its efficacy in reaching the
goal in a reasonable time. It should be noted that the architecture has the added advantage of
adaptability and learning which is not normally available for traditional big data processing systems.

Next is the turn of actor-critic architecture (Tsitsiklis, 2000). After the actor layer takes its input
form the feature pooling layer, it then decides to do a certain action, accordingly the critic layer
punishes or rewards the actor depending on the reward it receives form the environment. Figure 1
shows an overall view of the model.

Im
ag

e
s t

C
rit

ic
 L

ay
er

Learned once

In each time step t Features
F

Q(F(st),al)

A
ct

or
 L

ay
er

rig

ht

A
ct

or

La
ye

r
fo

rw
ar

d

A
ct

or

La
ye

r l
ef

t

V (st) Q(F(st),af)

Q(F(st),ar)

Exploratory Episodes Images Dataset

WCRIT

WACT

D
ee

p
Fe

at
ur

e
Le

ar
ne

d

Deep Feature-Action Architecture for Robot Homing Abdulrahman Altahhan

480

Figure 1. The Model’s Components.

Formally, the presented model uses the following components/stages. Goal representation: As

opposed to many models the goal or the home is represented by a set of snapshots taken for that
location with the different orientation towards the goal. In fact the method used to identify the goal is
transitionally invariant. Hence the goal location could indeed by identified by the agent from an angle
different to the one it has originally taken from as we shall emphasize later by our stopping condition.

The dimension of the features k is d1× d2×3 where d1 and d2 are the dimensions of the images and

3 coming from having three channels. The dimension of the reduced features iF is n<d1× d2×3. The
model uses an overall similarity measure that specifies the termination of the episode and is given by
the mean of the normalized pooled feature

nsFsNRB n

i tit 1
)((1)

This measure has been used along with empirical thresholds to set the stopping and approaching
conditions for the agent. The reward signal is calculated using the weights of the critic which is
constituted of three parameters in accordance with the number of actions allowed in this model. These
actions are forward, left and right respectively, where left and right have been set to equal speeds. The
reward function is given as a combination of step cost in addition to a reward for going towards
(approaching) the goal as well as a reward for reaching the goal itself (which is proportional to how
fast the agent reach the goal in terms of number of steps) as in (Altahhan, 2011). Further a higher cost
has been associated with turning actions, i.e. when the agent turns it will acquire higher costs than
when it goes strait. This had the desired consequence of suppressing unnecessary turns and
emphasizing going strait. Also a punishment for taking any action that leads to a reactive behavior has
been set. This is also to help reduce the costal behavior and to encourage going directly towards the
goal. Figure 1 shows an overall view of the model and its components.

3.3 Deep Blended Actor-Critic Architecture
By setting the second layer to three parameters; one for each action and calculating the error signal

for the Actor layer (which is responsible for taking the actions; its decision is the one that is being
carried out). And by allowing this second layer to act as a critic that contemplates the consequences of
the actions of the actor layer and sends a signal to it to indicate how well is its current policy. And by
making the two layers to work as hidden and output layers of a one neural network, we are creating
deep blended actor-critic architecture in one sound system that depends on two eligibility traces. The
critic layer itself is taking its feedback form the reward function. In that sense the actor-critic layered
architecture is deep in terms of learning action representation in the same sense that a deep learning
network is learning deep representation structure. Therefore, this model is deep in terms of its feature
representation and in terms of its action representation. All training is done using backpropagation.

Formally, the updates are given by:
)()(ieiw tttt (2)

),(),(kieki tttt (3)
Where

)(
)()()(1 iw

sVieie tt
tt

 (4)

)(
)()()(1 k

sVkeke
t

tt
tttt

Since we are dealing with two layered network each using logistic transfer function we have

Deep Feature-Action Architecture for Robot Homing Abdulrahman Altahhan

481

),()()(1 itttt aFQieie (5)
)(,)(1),(1),(),(),(ktittittitt FaFQaFQwkiekie (6)

Finally the policy has been formulated as a simple greedy policy.
It should be noted that eligibility traces in reinforcement learning framework is similar to the

momentum for supervised learning. It constitutes a way to accommodate previous updates into current
updates to guide the search for the local optima. In RL it traces blame of current decision back to older
decisions that lead to the current situation.

In addition, two regularizes have been multiplied by the two parameter sets to discount the old
values of the parameters (hence prevent ovefitting). Also the updates have been committed in an
online but in a semi-patch fashion. This means that for every M number of steps the weights is
updated. Finally at the end of each episode also the same learning has been done by committing the
patch updates of the whole episode. So the model blends patch update, online and offline learning.

4 Experimental Results
The robot was let to run for 50 episodes. Each episode starts by going from any location in the

environment to the goal/home location. The size of the robot makes it relatively easier to run it form
different locations. Hence, it was allowed to run for a 500 steps before the episode is considered a
failure.

4.1 Hardware and Software Settings
Figure 2 shows the used robot and its environment. It is basically an updated version of Lego

Mindstorm that has been used with additional camera module and processing unit that was mounted
and attached on top of it. This robot has low level of sophistication in terms of the motor commands,
balance, senor reading as well as its shape. Yet the results were good, so it is expected to obtain higher
performance once a finer robot it used. The Raspberry Pi has been powered by an off-the-shelf
1000AMP chargeable battery that was placed underneath the NXT brick. Matlab have been used
throughout the model in the form of a set of library functions that have been written specifically for
this model. In addition the RWTH- Mindstorms NXT Toolbox for MATLAB has been used to provide
the sensory reading and the actuator commands form the NXT robot to Matlab, only the very basic
Direct Motor Command were used which set up the speed of a specific motor without any further
calculations.

Figure 2. Left:A snapshot of the built robot with its sensors, actuators, and camera module. Right: The training envirnment.

4.2 Model Hyper Parameters Settings
It should be noted that the robot abducts itself after each successful/unsuccessful episode by

following a rigid set of backwards steps that formed a T-shape so that it is as far and disoriented form
the goal as possible. Each episode stops by either reaching the goal (successful) or by exhausting the

Deep Feature-Action Architecture for Robot Homing Abdulrahman Altahhan

482

allowed budget (number of steps) that the agent is given (unsuccessful). In the case of the presented
work it was 500 steps. The settings of the model hyper parameters are shown in Table1

Images with resolution of 160x120 were send form the Raspberry PI via wireless network adaptor

to an off-board computer for processing where learning is taking place, then the required commands is
sent to the actuators of the robot via Bluetooth.

4.3 Convergence and Performance
 Figure 3 shows the deep learning stage for 1000 patches that have been taken form various images of
the environment and that has been used to train a autoencoder for 30000 epochs. It can be realized that
after the first 10000 epochs there was very small improvements. Still these sometimes could make a
difference when the high dimensionality of the feature space is considered.

Figure 3. Deep Learning Performance for 1000 patchs and 30000 epochs

Figure 4 shows an intermediate stage where the robot was still learning. The number of episodes
(upper right corner) is envisaged (as was evident in the simulation in [5]) to show a pattern of
convergence towards minimal number of step if the robot where left to run for a very long time.
However, due to the time and physical constraints, this was difficult to do. Hence it has been let to run
for a limited number of episodes Nonetheless, it should be noted that the number of steps varied
between episodes due to the abduction of the robot to a random location after each episode, which
resulted near/further position from the goal. Nonetheless, the figure illustrates convergence, which is
evident indeed. Figure 4 shows the learned parameters, a tendency towards turning left is developed
by the agent through the left bottom critic parameters, which is what is expected when operating in an
open plan. It should be noted however that the agent did not just always turned left, the behavior
depends on the current image.

Symbol Value Description
Max_e 50 Number of episodes in each run

0 1.0 Initial learning rate
0 EP3.0 Initial exploration rate

ep0 EP3.0 Start episode for decreasing and
 1 The reward discount factor

m 1 Number of snapshots of the home
b 2 Features histograms bin size

upper, lower 0.88 0.87 Goal_at_perspective thresholds
 0.8 Eligibility trace discount

Max_steps1 500 steps before agent considered unsuccessful

Table 1: Hyper parameters values and description

Deep Feature-Action Architecture for Robot Homing Abdulrahman Altahhan

483

Figure 4. The model learned parameters and episodes number of steps

5 Conclusion
Our results show that out of 57 times (50 trainings + 7 testing) it confused the goal 4 times. This

has been verified by looking into what the robot has registered as a target in each episode. Hence,
accuracy in recognizing and reaching the goal during (training and testing) is 1-4/57 93% since the
agent missed 4 times. The features are learned through an autoencoder architecture that is set to learn a
deep reduced representation of a big number of fixed-size random patches taken from all the snapshots
of an exploratory episode. As opposed to many models the goal or the home is represented by a set of
six snapshots taken for that location with the desired orientation of the robot. The model uses double
deep learning for both feature representation and action learning, which set its distinctive novelty.
How practical is it, will be for future work to verify. Also it is intended to show some other interesting
properties of the model such as convergence and the relationship between deep feature learning and
deep action learning. The processing is accomplished off board due to the limitation of the used robot
but latency was compensated by the speedy processing. The model constitutes a proof of concept that
it is suitable for processing lots of visual sensory data that is grounded in the agent memory through
deep learning.

Deep Feature-Action Architecture for Robot Homing Abdulrahman Altahhan

484

References
Adam Coates, H. L. (2011). An Analysis of Single-Layer Networks in Unsupervised Feature

Learning. AISTATS , 14.
Altahhan, A. (2011). A Robot Visual Homing Model that Traverses Conjugate Gradient TD to a

Variable TD and Uses Radial Basis Features. In A. Mellouk, Advances in Reinforcement
Learning (pp. 225-254). Vienna: InTech Education and Publishing.

Andrew Ng, J. N. (2010). Online Tutorial in Deep Learning: Stanford University. Retrieved 2015,
from http://ufldl.stanford.edu/tutorial/

Barto, R. S. (1998). Reinforcement Learning, an introduction. Cambridge, Massachusetts: MIT Press.
C. Zhang, S. A. (2008). Efficient multi-agent reinforcement learning through automated supervision.

International Conference on Autonomous Agents. Estoril, Portugal.
Carlisle, D. (2010, April). graphicx: Enhanced support for graphics. Retrieved from

http://www.ctan.org/tex-archive/ help/Catalogue/entries/graphicx.html
G. Hinton, S. O. (2006). A fast learning algorithm for deep belief nets. Neural Computation,18(7),

1527–1554.
Moller, V. a. (2005). Biologically plausible visual homing methods based on optical flow techniques.

Connection Science, vol. 17, 47–89.
N. Tomatis, I. N. (2001). Combining Topological and Metric: a Natural Integration for Simultaneous

Localization and Map Building. Fourth European Workshop on Advanced Mobile Robots
(Eurobo).

N.Shimkin, O. Z. (2005). Multigrid Methods for Policy Evaluation and Reinforcement Learning. IEEE
International Symposium on Intelligent Control. Limassol.

P. Vincent, H. L. (2008). Extracting and composing robust features with denoising autoencoders.
ICML.

S. Bhatnagar, R. S. (2007). Incremental Natural Actor-Critic Algorithms. Neural Information
Processing Systems (NIPS19).

Tsitsiklis, V. K. (2000). Actor-Critic algorithms. NIPS 12.
Voronkov, A. (2004). EasyChair conference system. Retrieved from easychair.org
Y. LeCun, F. J. (2004). Learning methods for generic object recognition with invariance to pose and

lighting. CVPR.
Zeil, J. (April 2012). Visual homing: an insect perspective. Current Opinion in Neurobiology, Volume

22, Issue 2, ISSN 0959-4388, 285-293.

Deep Feature-Action Architecture for Robot Homing Abdulrahman Altahhan

485

	altahhancover
	altahhan

