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Abstract.
We investigate the connectivity properties of the random-cluster model mediated by bridge

bonds that, if removed, lead to the generation of new connected components. We study
numerically the density of bridges and the fragmentation kernel, i.e., the relative sizes of
the generated fragments, and find that these quantities follow a scaling description. The
corresponding scaling exponents are related to well known equilibrium critical exponents of the
model. Using the Russo-Margulis formalism, we derive an exact relation between the expected
density of bridges and the number of active edges. The same approach allows us to study the
fluctuations in the numbers of bridges, thereby uncovering a new singularity in the random-
cluster model as q < 4 cos2 (π/

√
3) in two dimensions. For numerical simulations of the model

directly in the language of individual bonds, known as Sweeny’s algorithm, the prevalence of
bridges and the scaling of the sizes of clusters connected by bridges and candidate-bridges
play a pivotal role. We discuss several different implementations of the necessary connectivity
algorithms and assess their relative performance.

1. Introduction
The random-cluster model was introduced by Fortuin and Kasteleyn as a generalization of the
much studied Ising model of ferromagnetism and the percolation model introduced in the 1950s
[1]. Through its relation to the Potts model and, ultimately, as a subject of study in its own right
it developed into an important generalized model particularly for the study of continuous and
first-order phase transitions [2, 3]. While a significant number of exact results are available in two
dimensions, and in particular for the special cases q → 0, q → 1 and q = 2, the main approach for
studying the random-cluster model away from such islands of exact solutions are Markov chain
Monte Carlo simulations [4]. While these are quite efficient in general, studies of systems close
to points of phase transitions are affected by a dynamical loss of ergodicity: for second-order
transitions this effect is known as critical slowing down. It is caused by the diverging length scale
at criticality that, in turn, leads to a divergence of time scales for the decorrelation of the system
in the Monte Carlo dynamics. For this case, cluster updates turn out to be extremely efficient at
speeding up the simulation. The algorithms of Swendsen and Wang [5] (and its generalization
by Chayes and Machta [6]) and the single-cluster variant by Wolff [7] are rather well-known and
frequently applied, but they are not applicable for q < 1. On the other hand, an algorithm
due to Sweeny [8] to simulate the system directly in the random-cluster language is significantly
less well-known, although a potentially superior performance has been demonstrated previously
[8, 9] and it is applicable for any q > 0. This is due to the algorithmic complication that for this
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single-bond update one requires information about the large-scale connectivity structure of the
current cluster configuration at each time step. Efficient implementations of such algorithms, as
the ones developed here, have only recently become available.

The performance of such connectivity algorithms crucially depends on the cluster structure at
criticality where such algorithms are typically applied. How strongly connected are such clusters?
What happens if a random bond is removed? These questions are relevant for the understanding
of the fragmentation properties of the random-cluster model. While fragmentation has been
studied for bond percolation, the additional variability in the connectivity structure implied
by the tunable cluster weight q allows for the modeling of a wider variety of different random
structures. Using the highly efficient simulation algorithms developed in the first part, we
will present a detailed study of the fragmentation properties of critical RC clusters below.
The fragmentation scaling exponents λ and φ are determined and derived from the set of
equilibrium critical exponents. Bridges are bonds that upon removal lead to a fragmentation
event. Using a probabilistic approach known as Russo-Margulis formalism [3], we find that
the expected density of such bonds can be rigorously related to the mean number of active
(or open) edges, revealing that the number of bridge bonds is essentially an energetic quantity.
The same approach also allows us study the fluctuations in the number of bridges, thereby
uncovering a new singularity in the random-cluster model occurring (in two dimensions) for
q < q̃ = 4 cos2 (π/

√
3) = 0.2315891 · · · .

The rest of the paper is organized as follows. In Sec. 2 we introduce the random-cluster model
and discuss its relation to other models of statistical mechanics. In Sec. 3 we discuss Sweeny’s
algorithm for simulations of the random-cluster model and compare a number of algorithmic
approaches for the required connectivity checks. Section 4 is devoted to the behavior of clusters
of the random-cluster under the random removal of bonds, i.e., a fragmentation process. In Sec.
5 we outline some of the analytical results on the role of bridge bonds. Finally, Sec. 6 contains
our conclusions.

2. The random-cluster model
The random-cluster (RC) model [3], introduced by Fortuin and Kasteleyn in a series of seminal
papers [1, 10, 11], serves as a generalization of percolation and the Ising model to a continuum
of models parameterized by the cluster weight q ≥ 0. Its partition function is

ZRC =
∑
A⊆G

v|A|qK(A), (1)

where A ⊆ E denotes the set activated edges on a graph G = (V,E) with vertex set V and edge
set E, resulting in K(A) connected components, and the bond weight v = p/(1− p). Hence the
RC model assigns weights to (spanning) sub-graph configurations A, i.e., subsets of activated
edges and the complete set of vertices, of the underlying graph G. A special limit of Eq. (1) is
q → 1 in which case the model reduces to uncorrelated percolation.

As shown by Fortuin and Kasteleyn [1] for integer values of q the model is equivalent to the
q-state Potts model with Hamiltonian

H = −J
∑
e∈E

δσi,σj , (2)

where e = (i, j) is an edge in the graph G, and σi ∈ {1, . . . , q}. This, in turn, up to a constant
reduces to the Ising model for the case of only two possible states, i.e., q = 2. For the purposes
of the present discussion, we restrict ourselves to systems on finite patches of the square lattice
with dimensions L × L, applying periodic boundary conditions. For this case, the ordering
transition of the Potts model occurs at the coupling J/kBT = ln(1 +

√
q), corresponding to the
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critical bond weight vc =
√
q in (1). This transition is continuous for q ≤ 4 and first-order for

q > 4 [2].

3. Simulation using Sweeny’s algorithm
While the construction of Swendsen and Wang [5], published in 1987, of a rejection-free update
of spin clusters in connection with bond variables implied by the random-cluster representation
is well known and widely used to simulate Ising, Potts and (through the cluster embedding trick)
also continuous spin models [7], a simpler and more direct approach was proposed by Sweeny
[8] in 1983 already. His approach is rooted in the results of Fortuin and Kasteleyn [1] in directly
attempting to sample bond configurations of the RC model according to the weight

wRC(A) = qK(A)v|A|, (3)

implied by the partition sum (1). For a given sub-graph or bond configuration A, the basic
update operation is then given by the deletion of an occupied edge or the insertion of an
unoccupied edge. As is seen from Eq. (3), the resulting transition probabilities are determined
by the change ∆|A| = ±1 in open edges and the change ∆K in connected components. While
the value of ∆|A| is trivially clear depending on whether one is attempting to open or to close a
given edge, the change in cluster number depends on whether the chosen edge is pivotal [12], i.e.,
whether it is a bridge bond that increases the number of connected components on its closing or
a candidate bridge that amalgamates two components upon its opening. For such pivotal edges,
one has ∆K = ±1, while for non-pivotal edges the cluster number remains unchanged, ∆K = 0.
The construction and implementation of data structures supporting the efficient calculation of
∆K constitutes the intricacy of Sweeny’s algorithm.

3.1. Connectivity algorithms
We implemented three main types of connectivity algorithms to facilitate the calculation of ∆K
for edge moves: breadth-first searches (BFS), a union-and-find algorithm (UF), and a dynamic
connectivity algorithm (DC).

3.1.1. Breadth-first search In the simplest case, one does not keep any state information relating
to the connectivity of points in the graph, but checks for the pivotality of a given edge e = (i, j)
each time an opening or closing of e is proposed. This entails a traversal of the components
connected to i and j, respectively, to decide whether these are connected through paths not
crossing e. We implement such traversals in a breadth-first (BFS) manner [13], but depth-first
variants lead to essentially identical runtime scaling. Regarding the typical runtime for such
searches for the RC model at criticality, arguments relating to the scaling of the shortest path
` between points i and j and the so-called spreading dimension d̂ [14] imply that the average
number of sites touched by the BFS for a non-pivotal edge is [15]

〈`d̂〉 ∼ LdF−x2 . (4)

Here, dF is the cluster fractal dimension [16], while x2 corresponds to the two-arm exponent
[17, 18]. For pivotal edges, on the other hand, a complete traversal of the encountered clusters is
required to terminate, and hence the expected number of operations scales as the typical cluster
size M2 ∼ Lγ/ν . As γ/ν > dF − x2 everywhere for the RC model, the operations on pivotal
edges dominate the asymptotic runtime, see the scaling results compiled in Table 1.

An improvement of the BFS approach can be achieved through the interleaving of searches
in the two cluster arms joined by e = (i, j) [19, 20]. In this case cluster traversal for a pivotal
edge can stop once the smaller cluster has been exhausted. The size of this smaller cluster is
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Table 1. Asymptotic runtime scaling at criticality of the elementary operations of opening
or closing of pivotal and non-pivotal edges, respectively, using sequential breadth-first search
(SBFS), interleaved BFS (IBFS), union-and-find (UF) or the fully dynamic connectivity
algorithm (DC) as a function of the linear system size L.

move SBFS IBFS UF DC

non-bridge insertion LdF−x2 LdF−x2 const. log2 L

bridge insertion Lγ/ν LdF−x2 const. log2 L
non-bridge deletion LdF−x2 LdF−x2 LdF−x2 log2 L

bridge deletion Lγ/ν LdF−x2 Lγ/ν log2 L

dominant scaling Lγ/ν LdF−x2 Lγ/ν log2 L

argued in Ref. [20] to scale ∼ LdF−x2 , thus leading to a uniform LdF−x2 scaling of all operations
for this variant of the algorithm. This behavior is indeed found in the numerical simulations
[20, 15, 21].

3.2. Union-and-find
The use of suitably designed data structures can reduce the runtime of at least some of the
required operations by storing and updating connectivity information continuously. If one
restricts the move set to the successive opening of edges, this leads to a continuous amalgamation
of clusters if pivotal edges are selected. A suitable data structure are balanced trees using path
compression that have previously been used for highly efficient simulations of the uncorrelated
bond percolation problem [22]. Using these, opening moves can be performed in a runtime that
is practically independent of the size of the system. The closing of edges, however, requires
more expensive updates to the data structure [15]. In the case of closing a non-pivotal edge, we
can use interleaved BFS to traverse both clusters, resulting in a runtime scaling proportional
to LdF−x2 . For the case of a pivotal edge, leading to fragmentation of the original cluster, a
complete re-labeling of both new clusters is required, however, resulting in a total scaling of
∼ Lγ/ν for this step. As Table 1 illustrates, the asymptotically dominant runtime scaling for
this approach is hence Lγ/ν , provided the different edge types appear all with (asymptotically)
constant probability (which is indeed the case as we show below). We note that a further
improvement of this scaling can be achieved by augmenting the union-and-find data structure
by cluster identifier labels, thus reducing the runtime for the closing of a bridge bond to the
form LdF−x2 as well. Details will be presented elsewhere [23].

3.2.1. Dynamic connectivity algorithm The goal of maintaining connectivity information for
a dynamically changing graph in constant or at most (poly-)logarithmic time per operation is
known as dynamic connectivity problem in computer science [24, 25]. We use the approach
suggested in Ref. [25] which is deterministic and features amortized runtimes of O(logN) for
connectivity queries and O(log2N) for deletions and insertions on graphs of N nodes. The
time complexity for connectivity queries depends on the underlying binary search tree used to
encode the graphs. In our case we used splay trees [26] which result in the amortized bound. An
identical worst-case bound holds for balanced binary search trees [25]. The algorithm represents
the edge set in form of Euler tours, stored in balanced trees, thus allowing for the efficient
implementation of the necessary tree manipulations. To facilitate the search for replacement
edges for the case of the closing of edges, a level hierarchy of a depth that is logarithmic in the
size of the graph is introduced. The edge hierarchy is dynamically adapted as edges are opened
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and closed to ensure that replacement edges can always be found efficiently. A more in-depth
discussion of the algorithm can be found in Ref. [21]. For simulations of the RC model, we
can therefore perform each operation in a runtime asymptotically proportional to log2 L, hence
clearly outperforming the other approaches at criticality, cf. Tab. 1.

3.3. Simulation results
The runtime scaling of the connectivity algorithms discussed above essentially determine
the asymptotic performance of the corresponding implementations of Sweeny’s algorithm1.
The actual efficiency of a simulation algorithm, however, also depends on its abilities to
efficiently decorrelate the configuration of the system. This latter property is encoded in the
autocorrelation times or, more generally, the mixing time of the algorithm [27]. We considered
the integrated autocorrelation times [28],

τint,O =
1

2
+

M∑
t=1

ρO(t), (5)

where M is the length of the time series and ρO(t) is the normalized autocorrelation function
for the observable O. τint,O controls the efficiency of an algorithm in determining the number of
steps it takes to create a statistically independent sample. Close to a critical point, we expect
scaling of the form τint,O ∼ Lzint,O , thus defining the dynamical critical exponent zint,O. The
ultimate efficiency of our implementation is then gauged by studying the quantity

TO ≡ τint,O t̄, (6)

where t̄ is the runtime per operation and hence TO measures the effective time, per edge, it takes
to generate a statistically independent sample. While this is clearly hardware-dependent, we
expect the relative performance of different implementations to be largely unaffected by these
details [15, 21].

The behavior of the autocorrelation times for the Sweeny update alone has a number of
very interesting features, most prominently that of critical speeding up, i.e., a decrease of
autocorrelation times with system size (in natural sweep time units), for certain magnetic
quantities, such that zint,O < 0 there. These effects are discussed in detail in Refs. [9, 15, 21, 27].
Regarding the performance of the slowest mode which is given by the number of open edges
(the energy) [27], we find slightly smaller values for the dynamical critical exponent than for the
Swendsen-Wang-Chayes-Machta algorithm [5, 6] where it is applicable. The question is whether
taking into account the algorithmic slowing down induced by the expense of frequent connectivity
queries destroys this asymptotic advantage, which will be the case if t̄ strongly increases with
the linear system size L. As a look at Table 1 indicates, for our four different implementations
of connectivity algorithms — sequential breadth-first search (SBFS), interleaved breadth-first
search (IBFS), union-and-find (UF) and the dynamic connectivity algorithm based on Euler
tours and an edge level hierarchy (DC) — the advantage is always preserved asymptotically
for the DC approach with poly-logarithmic scaling, whereas for the other three approaches the
answer depends on the values of zint,O and γ/ν resp. dF − x2 for the specific value of q under
consideration. In two dimensions, we find these values to be such that the advantage of the
single-bond dynamics is destroyed for the SBFS, IBFS and UF approaches apart from, maybe,
in the vicinity of the tricritical point q = 4.

For q < 1, on the other hand, Sweeny’s algorithm is the only available method. In Fig. 1 we
compare the runtime t̄ of operations per edge for systems with very small q = 0.005 between

1 Additional optimizations concern cases where connectivity queries are not necessary and move proposals can
be accepted unconditionally, but these do not affect the asymptotic scaling [15].
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Figure 1. (Color online) Run-time per edge operation of simulations of the q = 0.005 square-
lattice RCM and the bond algorithm employing the SBFS, IBFS, UF and DC connectivity
implementations, respectively.

the four different implementations of connectivity algorithms. While the first three approaches
clearly show power-law scaling (see also Table 1), we expect poly-logarithmic behavior for DC.
Within the range of studied system sizes, however, this is not clearly visible. Still, the new
implementation outperforms the other approaches. Further optimizations for the DC approach,
in particular a reduction of the level hierarchy to only one level, further increase this advantage
[27, 23].

4. Fragmentation properties
The distinction between pivotal and non-pivotal edges was found to be crucial for the asymptotic
runtime scaling of most of the connectivity algorithms discussed above. The question of whether
the closing (or removal) of a certain edge from the subgraph (or bond configuration) leads to the
creation of a new connected component also is pivotal for the understanding of the fragmentation
properties of clusters in the RC model. If one removes a single bond at the critical point p = pc
this might or might not lead to a fragmentation event. The number of such fragmenting edges
or bridges might depend on the cluster size and we assume the scaling form [29]

a(s) ∼ sλ.

To determine λ for the critical RC model, consider the total number of bridges,∑
s s nc(s)a(s)∑
s s nc(s)

∼
∫
s−τ+1+λe−cs ds ∼ L(τ−λ)/(σν), (7)

where we have used the scaling form of the critical cluster size distribution, nc(s) ∼ s−τe−cs as

well as the relations c ∼ |p − pc|
1
σ and |p − pc| ∼ L−

1
ν [16], where L is the linear dimension.

Using simulations with the Sweeny and Swendsen-Wang-Chayes-Machta algorithms, we studied
the density of bridges of the RC model on the square lattice numerically [30]. From the results,
summarized in Fig. 2, it is clear that the critical density of bridges is asymptotically non-
vanishing. Hence the average number of bridges in (7) must grow as Ld, implying d = (τ−λ)/σν.
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Figure 2. Proportion of bridges among active edges in the random-cluster model for different
values of q. Simulation data are for systems sizes L = 64 (q 6= 1) and L = 2048 (q = 1),
respectively. The solid line denotes the exact result for q = 2 and L→∞. The vertical dashed
lines specify the location of the critical point.

With the exponent identities σν = 1/dF and τ = 1+d/dF , where dF is the critical cluster fractal
dimension, this shows that

λ = 1, (8)

independent of q. This generalizes numerical results previously found for the percolation model
in two and higher dimensions [31, 32].

If a fragmentation event occurs, it is natural to ask for the relative sizes of the two fragments
created. This is encoded in the probability bs′,s (the fragmentation kernel) of creating a fragment
of size s′ on fragmenting a cluster of size s. The scale-free nature of the critical RC model suggests
a large-s scaling form

bs′,s ∼ s−φG
(
s′

s
,
s

LdF

)
, (9)

which is compatible with exact results for percolation in 1D and on the Bethe lattice [33].
To connect φ to previously established critical exponents, we multiply Eq. (9) by s′ and then
integrate to find that µs ∼ s2−φH(s/LdF ). From using a finite-size scaling form of the overall
cluster-size distribution [20] we conclude that the scaling of the ensemble average daughter
cluster size is 〈s′〉 ∼ LdF (3−d/dF−φ). On the other hand, one can show [27] that this is proportional
to the average of Cmin,2, the size of the smaller of the two clusters attached to two neighboring
disconnected vertices [20, 15]. In Ref. [20] it was shown that 〈Cmin,2〉 ∼ LdF−x2 , which implies

φ = 2 + (x2 − d)/dF = 2− dR/dF , (10)

where dR = d − x2 is the red-bond fractal dimension. This is consistent with previous results
for bond percolation [31, 34, 32]. However, the scaling form suggested there, φ = 2 − 1/(νdF ),
is only correct for percolation itself as dR = 1/ν in this case [35]. For general values of q, on the
other hand, only the form (10) gives the correct result. We also studied the fragmentation kernel
using numerical simulations of the square-lattice RC model [30]. These data are summarized in
Fig. 3 (left panel), demonstrating the validity of the scaling form of Eq. (9), showing an excellent
collapse of data for different cluster and system sizes onto scaling functions parametrized by q.
As is illustrated in Fig. 3 (right panel), our estimates for the fragmentation exponent φ are in

International Conference on Computer Simulation in Physics and Beyond 2015 IOP Publishing
Journal of Physics: Conference Series 681 (2016) 012014 doi:10.1088/1742-6596/681/1/012014

7



10−3 10−2 10−1 100

s′/s

100

101

102

103

104

105

106

sφ
b s
′ ,
s

q = 0
q = 0.0005
q = 0.5
q = 1
q = 2

0 1 2 3 4

q

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

φ

0 1 2 3 4
q

0.0

0.4

0.8

1.2

y

µ ∼ Ly

df − x2

Figure 3. Left: Re-scaled conditional fragmentation probability bs′,s according to Eq. (9) for
different values of the cluster coupling q. Right: Scaling exponent φ of daughter clusters in the
fragmentation of the square-lattice RC model as compared to the exact result (10). The inset
shows the scaling exponent of the ensemble average daughter cluster size 〈s′〉.

excellent agreement with the form (10) proposed above if we substitute the exact values known
from Coulomb gas arguments for dR and dF .

5. The role of bridges
Our arguments for the value λ = 1 of the exponent governing the density of fragmenting bonds
were based on the numerical observation of a value 〈B/N〉 of the expected relative density of
bridge bonds among all open edges that is strictly greater than zero and less than one. It turns
out that this property follows as a corollary from a much more general property of bridge bonds
in the random-cluster model [12].

This property can be derived starting from a well-known identity in percolation theory known
as Russo-Margulis formula [36],

d

dp
Ep,G[X] =

∑
e∈E

Ep,G[δeX], (11)

where X(A) : Ω→ R is an arbitrary observable and the quantity δeX is called the influence of
e on X and is given by

(δeX)(A) ≡ X(Ae)−X(Ae),

where A is a given bond configuration and Ae refers to A modified by opening e while Ae
correspond to A with edge e closed. Here, Ep,G[X] refers to an expectation with respect to the
probability measure of uncorrelated bond percolation on a graph G. Applying this formalism
to the cluster-number observable K, for which K(A)−K(Ae) = −1 if e is a bridge, e ∈ B(A),
and 0 otherwise, it is possible to show that [12]

Ep,q,G[B] =
Ep,q,G[N ]− p
(1− p)(1− q) , (12)

which we refer to as bridge-edge formula. Here, Ep,q,G[X] refers to the expectation of X with
respect to the random-cluster weight (3). This is a general relation, valid for any graph and any
value of q 6= 1 (the case of q → 1 is discussed in Ref. [12]). Since we know that for 0 < p < 1 the
edge density Ep,q,G[N ] satisfies 0 < Ep,q,G[N ] < 1, it follows that λ = 1 exactly for all graphs
and for critical as well as off-critical conditions.
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Figure 4. The exponents α/ν and 2− 2x2 appearing in the system size scaling of Varq[|B|]/|E|
at criticality. The solid and dotted lines show the exact value of 2− 2x2 and α/ν, respectively,
following from the Coulomb gas mapping. The symbols denote our numerical estimates from
fitting to the variance of the bridge density, cf. Ref. [12].

As the number of open edges in the RC model is an energy-like quantity, through Eq. (12) the
same holds true for the density of bridges. Exact results for the energy and hence the density
of open edges at the self-dual, critical point [2] allow us to exactly find the critical density of
bridges,

Epsd(q),q,Z2 [B] =
1

2(1 +
√
q)
. (13)

From the same connection to the internal energy of the Potts model, one may also deduce the
finite-size corrections to the asymptotic result (13), and one finds that the dominant term is
proportional to L1/ν−d [12]. Similarly, it is possible to derive analogous relations for other types
of edges, i.e., non-bridges as well as candidate bridges and candidate non-bridges. Details can
be found in Ref. [12].

It turns out that the Russo-Margulis formalism allows for even more advanced investigations.
Following along similar lines as for the derivation of the bridge-edge formula (12) one can
investigate the fluctuations in the number of bridge bonds. The variance Varp,q,G[|B|]/|E| is
found to be exactly given by

Ep,q,G[N ] (2p− 1)− p2 + Varp,q,G[N ]/|E|
(1− q)2(1− p)2 + Ep,q,G[B] +

1

1− q
1

|E|
∑

e6=f∈E
Pp,q,G[e⇔ f ], (14)

where we write e
A⇔ f for the event that both e and f are non-bridges in the same cycle such

that removing e will cast f into a bridge. The first term in Eq. (14) is essentially the fluctuation
in the number of open edges which, in turn, corresponds to the internal energy. Hence we expect
asymptotic critical scaling proportional to Lα/ν . The last term, on the other hand, can be shown
to lead to scaling proportional to Ld−2x2 [37, 12]. The values of these exponents are illustrated
for the square-lattice model in Fig.4. In two dimensions we hence find that the term proportional
to Lα/ν dominates for q > 1 and, as is well known, becomes positive for q > 2. For q < 1, on
the other hand, the new term proportional to L2−2x2 dominates and, in particular, leads to a
new divergence for 2− 2x2 > 0, which occurs for q < q̃ = 4 cos2 (π/

√
3) = 0.2315891 · · · .
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6. Conclusions
We have presented a general implementation of Sweeny’s algorithm for the random cluster model
that works independent of the structure and dimensionality of the lattice and features, at least
asymptotically, an improved efficiency in decorrelating the system as compared to the better
known Swendsen-Wang-Chayes-Machta algorithm. In addition, it can be applied to the regime
q < 1 which is inaccessible to all other known simulation approaches. It would be interesting to
study the dynamic behavior of the algorithm in more detail, in particular for the random-cluster
model in three dimensions.

In the course of developing and comparing different implementations of the required
connectivity checks we discovered the crucial importance of bridge bonds or singly connected
bonds for the dynamic as well as the static behavior of the RC model. Fragmentation processes
can be understood from studying the bridge bonds and the properties of the clusters connected
by bridges. Studying fragmentation we found that the density of bridges is asymptotically
independent of cluster size, thus rendering the fragmentation probability upon random bond
removal directly proportional to the size of clusters. We investigated the fragmentation kernel,
i.e., the conditional probability of a fragmentation event on a cluster of size s to generate a
daughter cluster of size s′. This is found to be highly asymmetric, i.e., an fragmentation event is
very unlikely to yield fragments of comparable size, in contrast to recent claims in Ref. [38]. This
property also explains our recent observation of the fact that, under suitable initial conditions,
the equilibrium fragmentation exponent φ also governs the final fragment size distribution in a
non-equilibrium process [30, 27].

Using the Russo-Margulis formalism of percolation theory, we were able to relate the expected
density of bridges to the density of open edges. Some of the manifold consequences of this
observation are discussed in Ref. [12]. Additionally, the study of fluctuations in the number of
bridges allowed us to uncover a previously unknown singularity in the random-cluster model
occurring, in two dimensions, for q < 4 cos2 (π/

√
3). Removing all bridges from critical RC

model configurations leads to a new ensemble of structures and the sizes of the resulting
fragments are found to scale according to the backbone critical exponent of the model [12].
This promises an efficient new approach for determining this otherwise hardly accessible critical
exponent, especially for the case of the random-cluster model in three dimensions.
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