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Abstract 

A method is described for minimising a quadratic function subject to equality and 

inequality constraints.  This approach is applicable to solving the full body muscle 

load distribution problem and calculating joint contact loads.  It has been found that 

this approach can provide the solution on modest computing facilities and in 

significantly less time than using active set and interior point quadratic programming 

techniques.  Hence the approach is suitable for providing real time feedback to 

subjects undergoing biomechanical analysis of muscle, skeletal and joint loadings. 

 

 

Introduction 

The modelling of the musculoskeletal system is becoming a widely used technique in 

biomechanical simulation.  Most models consist of rigid bodies with appropriate mass 

/ inertia and geometric properties to represent the major skeletal components.  These 

segments are connected by joints which represent the kinematics of their anatomical 

counterparts [Delp et al 2007].   Muscles are included in the model so that the 

resulting motion due to muscle activation and external forces can be calculated 

(forward dynamics) or muscle forces and joint contact forces corresponding to a 

prescribed movement and external forces can be calculated (inverse dynamics).  The 

inverse dynamics solution method commences with a calculation of the joint torques 

which correspond to the observed motion [Koopman et al 1995].  These torques are 

generated by forces in the muscles which cross these joints; for many biomechanical 

analyses the task is to calculate these muscle forces which are required to generate the 

observed motion and subsequently the contact forces occurring in the joints. 
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Equating the torques at the joints to the torques generated by the muscles results in a 

number of equality constraints; the number of equality constraints equals the number 

of joint torques considered in the model.  However most musculoskeletal models 

possess many more muscles than joint torques; for example the BoB model [Shippen 

and May 2010] has 606 locomotor muscles but only 30 joint torques to satisfy.  Hence 

the system contains many redundancies and consequently there is not a unique 

solution for the muscle loading problem by only satisfying the equality constraints.  

Therefore it is necessary to introduce an objective function to choose the optimal 

solution from the infinite number of possible solutions for the muscle loading 

distribution.  This objective function should be based on a physiological basis, for 

example, minimising fatigue. Numerous objective functions have been proposed and 

implemented [Crowninshield and Brand, 1981, Thelen et al., 2003] and Modenese et 

al (2011) found that an objective function based on the minimisation of the sum of the 

quadratic of the muscles activation provided the best fit of the calculated muscle 

activity to the measurements of muscle activity using EMG methods. 

 

Additionally, inequality constraints arise as muscles cannot push and hence the 

instantaneous force must be greater than zero.  Also, the maximum force which a 

muscle can generate is limited and hence the instantaneous force must be less than 

this value which introduces further inequality constraints..   

 

Minimising the objective function subject to equality and inequality constraints can be 

solved by various numeric approaches but this paper presents a novel, 

computationally efficient method suitable for solving the muscle load distribution in a 

full body musculoskeletal system in real time on moderate computing facilities.  This 
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enables the production of real-time biomechanical system to provide feedback to a 

subject on the activation of muscles and loads occurring in the muscles and joints.  

 

 

Method 

The loads in the body’s muscles will be calculated as the distribution which 

minimises an objective function whilst subject to equality and inequality constraints.  

A Lagrange multiplier method approach will be used [Arfken 1985] to minimise the 

objective function subject to equality constraints together with an iterative matrix 

partitioning approach to accommodate the inequality constraints. 

 

The objective function to be minimised, f(x), is defined as the sum of the squares of 

the muscles’ activations where muscle activation is defined as the instantaneous force 

divided by the maximum isometric force of the muscle: 

 f(x)  = 
j

xi
2 

 

where xi  = muscle activation 

  = 
Fi

Fimax
 

 

 Fi = the instantaneous force generated in the muscle 

 Fimax = the maximal isometric force in the muscle modified by 

optimal length effects and contraction rate effects 

[Zajac 1989] 
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Equality constraints, g(x), are defined which relate the torques generated by the 

muscles surrounding the joints to equal the torque required to articulate the joint in the 

observed manner as calculated by ann inverse dynamical analysis: 

 g(x)  = 
j

( )ri x ( )Fimax . xi  - Tj = 0 

where  ri  = the radius of the lever arm of action of the ith muscle 

about jth rotation axis through the jth joint centre 

 Tj = the torque occurring at the joint due to the surrounding 

muscles about jth rotation axis 

 

For an instantaneous configuration, ri can be considered to be a constant therefore 

g(x) can be expressed as: 

 g(x) = Aeq . x – T  = 0 

 

where Aeq = is a matrix of lever arms for the the ith muscle about 

the about jth rotation axis through the jth joint centre 

times the ith muscle’s maximal isometric force 

 

The minimum of the objective function subject to the equality constraint occurs at: 

 

 
f

xi
   = 

j

j 

g

xi
 

where j = jth Lagrangian multiplier 
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Expressing the Lagrangian expression in matrix form and including the condition that  

the equality constraints are valid results in: 

 

 






0

T
  = 





2I Aeq

T

Aeq 0
 






x


  

 

It should be noticed that the above matrix is square and symmetric and therefore 

efficient methods, for example LU factorization with partial pivoting, can be 

employed for the solution of x and  (although the numeric values of the latter are 

rarely of interest). 

 

To ensure that the solution for the muscle force lie between the upper and lower 

limits, partitions of the matrices will be defined. The g-set consists of all of the 

variables; ie the muscles activations (x) and the Lagrange multipliers (): 

 

 kgg  = 




2I Aeq

T

Aeq 0
 

 

 vg  = 






x


 

 

 fg  = 






0

T
 

 

The g-set can be partitioned into 2 sets: the f-set (the variables which are within their 

prescribed limits as defined by the inequality constraints) and the s-set (the variables 

which are outside their prescribed limits as defined by the inequality constraints): 
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 vg  = 






vf

vs
 

 

 fg  = 






ff

fs
 

 

 kgg  = 




kff  kfs

ksf  kss
 

 

Assigning the limiting values of vs which are known, and solving for vf: 

 

 vf  = [ ]ff - ksf
T . vs

-1 kff  

 

 fs  = ksf . vf + kss . vs 

 

The s-set is further partitioned into u-set (the variables which exceed their prescribed 

limit) and the l-set (the variables which are lower than their prescribed limit). 

 

Remove from the u-set, and hence the s-set, the elements which correspond to an 

entry in fs less than zero.  Remove from the l-set, and hence the s-set, the elements of 

the correspond to an entry in fs which are greater than zero.   

 

Iteratively repeat for the solution of vf until there is no modifications to the s-set. vf 

will then contain the solution for the minimisation of the objective function subject to 

equality and inequality constraints together with the Lagrange multipliers. 
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Results 

The BoB musculoskeletal modelling system was used to generate the equality and 

inequality constraint equations for a full body model in a number of arbitrary poses 

subject to an arbitrary set of external forces; an example is shown in figure 1.  The 

musculoskeletal system consisted of 508 muscle forces and 30 joint torques. 

  

The muscle force distribution was calculated using 3 methods: 

1)  The above described Lagrange multiplier / partitioning based method. 

2)  An active set algorithm [Gill 1981] 

3)  An interior point convex algorithm [Gould and Toint 2004] 

 

All three methods calculated the same muscle loading distribution to within machine 

precision.  However there was a significant difference in the demand on 

computational resource between the various methods.  Listed below are the solution 

times for the full body muscle load distribution problem running on an i7 laptop: 

 

 Method Solution time 

 Lagrange multiplier  0.052s 

 Interior point convex  0.647s 

 Active set  18.785s 

 

For the above trials, the Lagrange multiplier results were derived from translated 

Matlab [Mathworks, Natick, MA, USA] m-code whereas the active set and interior 

point convex algorithms were implemented using compiled code and hence the 

compilation of the former is expected to return even greater speed. 
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Discussion 

A method has been described which is capable of solving the full body muscle load 

distribution problem within approximately one twentieth of a second on a laptop 

computer.  This speed of solution is commensurate with the requirements of a system 

providing real time feedback to a subject undergoing a biomechanical analysis of 

muscle, skeletal and joint loads. 

 

The approach lends itself to compact, robust code development.  The Matlab m-code 

implementation of the above method consisted of 54 lines of arithmetic and command 

control code. 

 

If a search method is to be implemented to minimise an alternative objective function, 

it is suggested that the above method be used as a starting position for the search due 

to its low computational cost. 

 

 

Conclusion 

A method has been presented which is capable of solving the full body muscle load 

distribution problem in a time significantly less than active set and interior point 

quadratic programming techniques on modest computing facilities.  The approach can 

be readily implemented within a biomechanical analysis scenario with minimal 

coding. 
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Figure 1: An example of a full body model in an arbitrary pose subject to an arbitrary 

set of external forces demonstrating muscle activation calculated using the 

Lagrange/partitioning method 


