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 61 

ABSTRACT 62 

 63 
Obesity affects the major metabolic and cellular processes involved in skeletal muscle contractility. 64 

Surprisingly, the effect of obesity on isolated skeletal muscle performance remains unresolved. The 65 

present study is the first to examine the muscle specific changes in contractility following dietary 66 

induced obesity using an isolated muscle work-loop (WL) model that more closely represents in vivo 67 

muscle performance. Following 16-week high calorific feeding, soleus (SOL), extensor digitorum 68 

longus (EDL), and diaphragm (DIA) were isolated from female (CD-1) mice and contractile 69 

performance compared against a lean control group. Obese SOL produced greater isometric force, 70 

however isometric stress (force per unit muscle area), absolute WL power and normalised WL power 71 

(watts per kg muscle mass) were unaffected. Maximal isometric force and absolute WL power of the 72 

EDL was similar between groups. For both EDL and DIA, isometric stress and normalised WL power 73 

were reduced in the obese groups. Obesity caused a significant reduction in fatigue resistance in all 74 

cases. Our findings demonstrate a muscle specific reduction in contractile performance and muscle 75 

quality that is likely related to in vivo mechanical role, fibre type and metabolic profile, which may in 76 

part be related to changes in MyHC expression and AMPK activity. These results infer that beyond the 77 

additional requirement of moving a larger body mass, functional performance and quality of life may 78 

be further limited by poor muscle function in obese individuals. As such, a reduction in muscle 79 

performance may be a substantial contributor to the negative cycle of obesity. 80 

 81 
 82 

NEW AND NOTEWORTHY 83 

 84 

The effect of obesity on isolated muscle function is surprisingly under researched. The present study is 85 

the first to examine the effects of obesity on isolated muscle performance using a method that more 86 

closely represents real word muscle function. This work uniquely establishes a muscle specific profile 87 

of mechanical changes in relation to underpinning mechanisms. These findings may be important to 88 

understanding the negative cycle of obesity and in designing interventions for improving weight status. 89 

 90 
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 121 

INTRODUCTION  122 
 123 

Obesity is a global epidemic, attributed to calorific rich foods and reduced physical activity (45). 124 

Associated health complications such as metabolic syndrome, cardiovascular disease, diabetes, 125 

musculoskeletal disorders, and some cancers (17) contribute to mortality, poor quality of life and 126 

significant financial implications for healthcare providers (2, 18, 22). If energy intake is not balanced 127 

with expenditure, adipose tissue accumulation occurs and is stored viscerally, subcutaneously and 128 

ectopically in organs, including skeletal muscle (3). Skeletal muscle is the largest regulator of 129 

metabolism in the body and contractility is needed to produce movement, highlighting the importance 130 

of investigating the effect of elevated lipid content on this tissue. Presently it is not clear whether lipid 131 

accumulation attenuates skeletal muscle contractility. 132 

 133 

Previous in vitro studies suggest that obesity may improve absolute strength of ‘antigravity’ muscles, 134 

but has little effect on musculature that is not loaded with an increased body mass (see review 39). For 135 

example, Rolland, Lauwers-Cances, Pahor, Fillaux, Grandjean and Vellas (50) reports an increase in 136 

the absolute force generating capacity of the knee extensors in obese elderly women, without 137 

significant changes in handgrip strength. These results are not surprising given the potential training 138 

adaptation that may occur due to the increased demand placed on the postural muscles during standing 139 

and locomotion (20). Interestingly, the small number of studies examining muscular fatigue have 140 

conflicting findings (37, 38, 40, 42, 47). Although variation in experimental methods and participants 141 

(i.e. differences in muscle groups tested, mode of exercise, age and gender of population) make 142 

comparisons between these studies difficult, the authors argue that the true effect of obesity on 143 

muscular endurance cannot be accurately evaluated in vivo, as irrespective of exercise intensity, 144 

musculature of the obese group will have to produce greater force to overcome greater inertia of the 145 

moving limb. Further limitations also arise when relating the principle findings of this body of work 146 

directly to skeletal muscle function.  147 

 148 

The majority of human studies measure muscular strength (39), and although this is an important 149 

mechanical parameter, dynamic power is needed for locomotion. Strength assessments largely involve 150 

gross joint movements and are influenced by neuromuscular recruitment, making it impossible to 151 

accurately examine the direct skeletal muscle and potential phenotype specific effects. Many human 152 

studies examine muscle performance normalised to body mass (1, 7, 9, 43, 47, 64), which provides 153 

little information regarding muscle quality (force relative to muscle mass). An obesity induced 154 

reduction in muscle quality could result in an increased maintenance cost due to a larger muscle mass, 155 

and consequently an increase in body mass, even before considering further lipid accumulation 156 

elsewhere in the body. Although some studies have normalised muscle performance to local and more 157 

commonly whole body lean mass (1, 7, 43, 47, 64), such assessments would not be as accurate at 158 

evaluating muscle quality as an in vitro isolated muscle approach, where whole muscle mass can be 159 

measured.  160 

 161 

Obesity has been associated with a reduction in myogenesis (4, 12), degeneration in the process of 162 

excitation contraction coupling and impaired calcium handling (8, 10, 19, 51), which may 163 

mechanistically account for a decline in contractility and muscle quality. Importantly, skeletal muscle 164 

lipid accumulation can affect metabolic capacity and phenotype composition, but the literature is 165 

equivocal with evidence of a shift to a faster, slower and no change in fibre type composition (13, 14, 166 

33, 34, 52, 59-61, 65). This ambiguity can largely be attributed to the different muscles tested, duration 167 

of the feeding period, and limitations in methods for quantifying fibre types. It has been further 168 

demonstrated that initially muscular lipid accumulation results in increases in oxidative enzymes, 169 

mitochondrial function, and slow MyHC (myosin heavy chain) expression, and in the long term, causes 170 

a reduction in oxidative enzymes, type I muscle fibre protein content, mitochondrial size and function 171 

(13). In skeletal muscle, glucose and fatty acid metabolism as well as mitochondrial function are at 172 

least partly regulated by AMP-activated protein kinase (AMPK) (46). Levels of adiponectin, a protein 173 

hormone produced by adipocytes that induces AMPK activity, are decreased by obesity in skeletal 174 

muscle (66), which may significantly influence skeletal muscle function.  175 

 176 

Despite this evidence, there is a distinct dearth of literature that directly assesses the effects of obesity 177 

on skeletal muscle contractility. Warmington, Tolan and McBennett (65) demonstrated little effect on 178 

the isometric twitch force of both whole extensor digitorum longus (EDL) and soleus muscle isolated 179 

from 5 month old genetically obese (Ob/Ob) mice when compared to a genetically normal control. 180 
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However, maximal isometric tetanus force was significantly reduced in the Ob/Ob soleus with no effect 181 

in EDL. In part, these findings were later confirmed by Bruton, Katz, Lännergren, Abbate and 182 

Westerblad (8), reporting no changes maximal isometric force, but a significant improvement in 183 

isometric force using a submaximal stimulation of whole EDL and single flexor digitorum brevis 184 

muscle fibres isolated from 3-5 month old Ob/Ob mice. Similarly, Ciapaite, van den Berg, Houten, 185 

Nicolay, van Dijk and Jeneson (10) reported that isometric twitch and tetanus force of whole EDL was 186 

unaltered in 12 week old mice that consumed either a high fat lard or high fat palm oil diet for 5 weeks. 187 

However, the peak contractile performance of the soleus muscle was significantly reduced in animals 188 

fed a high fat palm diet but unchanged in animals fed a high fat lard diet. These results indicate that the 189 

source of the lipid overload may be an important factor for determining skeletal muscle responses to 190 

obesity, and are particularly interesting given the role of soleus as a postural muscle. 191 

 192 

The effect induced by genetic obesity may be different to that imposed by dietary-induced obesity. 193 

Contractile changes outlined in isolated muscle from Ob/Ob mice occurred in conjunction with a 194 

significant reduction in muscle mass (8, 65), where changes in contractility occurred following an 195 

elevated muscle mass in the dietary induced obesity model (10). In support, the ambiguity in obesity 196 

induced phenotype changes has been in part attributed to differing response between genetically and 197 

dietary induced obese models (14). Further work is needed to quantify the effects of dietary induced 198 

obesity on isolated skeletal muscle performance given its relevance to the real world obesity problem. 199 

In addition, previous isolated muscle work has used test temperatures between 20-26˚C (8, 10) limiting 200 

the application of findings to human skeletal muscle contractility. It should be noted that the contractile 201 

performance of skeletal muscle is greatly influenced by temperature (27) and further work is needed to 202 

evaluate change is muscle contractility using a more physiologically relevant thermal environment.  203 

 204 

Measurements of maximal isometric stress reveal little about changes in dynamic muscular 205 

contractility, which is an important aspect of real-world muscle function. In vivo, locomotory muscles 206 

rarely work at constant lengths and measures of isometric force fail to consider the important 207 

integration of the force-velocity relationship, the ability of the muscle to produce work during 208 

shortening, and the passive resistance to stretch needed to accurately assess muscle power (28, 31, 32). 209 

Furthermore, demonstrated increases in muscle activation times and, more commonly, relaxation time 210 

(8, 10), will have profound effects on the ability of the muscle to produce power. The effect of obesity 211 

on the fatigue resistance of isolated skeletal muscle is also unresolved.  212 

 213 

The present study examines the effects of dietary induced obesity on the maximal power output and 214 

fatigue resistance of soleus (slow twitch), EDL (fast twitch), and diaphragm (mixed fibre type) muscle, 215 

isolated from young adult mice, at a test temperature of 37˚C. By determining MyHC expression and 216 

AMPK activity, the present study will attempt to gain a better understanding of the muscle specific 217 

mechanisms causing the hypothesised decline in contractile performance. Importantly, the present work 218 

is the first to accurately determine the obesity induced muscle specific changes in quality using the 219 

work loop technique as a more accurate assessment of real life muscle function (28, 31, 32). By further 220 

examining muscle specific changes in absolute force, power and contractile performance relative to 221 

muscle mass, findings of the present work can be better applied to the real world locomotor 222 

performance of the whole animal. The results of the present work will allow a greater understanding of 223 

the specific role of skeletal muscle in the obesity induced reduction in physical activity, and the 224 

potential that a reduction in contractile performance, including muscle quality, may be a significant 225 

contributor to the obesity problem. 226 

 227 

 228 

 229 

 230 

 231 

 232 

 233 

 234 

 235 

 236 

 237 

 238 

 239 

 240 
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 241 

 242 

 243 

METHODOLOGY 244 
 245 

ANIMAL MORPHOLOGY 246 

 247 

The procedures outlined in this study and the use of animals was approved by the ethical committee of 248 

Coventry University. At 4 weeks of age, 56 CD1 female mice (Harlan, UK) were randomly split into 249 

either an Obese or a Lean Control group. Each group were matched for body mass and snout to anus 250 

length (n=28 in each case). For the next 16 weeks the Lean Control group were kept in cages of 8-10 251 

individuals in 12:12-h light-dark cycle and were provided with water and standard lab chow (SDS 252 

maintenance diet, Dietex International LTD; calories provided by Protein 17.5%, Fat 7.4%, 253 

Carbohydrate, 75.1%; Gross Energy 3.52 Kcal/g; Metabolisable Energy 2.57 Kcal/g) ad libitum. The 254 

Obese group were kept in identical conditions, but additionally were free to consume laboratory 255 

supplied forage diet (PicoLab® Natural Sunflower; calories provided by Protein 18.0%, Fat 63.7%, 256 

Carbohydrate, 18.4%; Gross Energy 5.2 Kcal/g; Metabolisable Energy 3.8 Kcal/g). Following the 257 

treatment period, animals were weighed and snout to anus length measured. These data were then used 258 

to calculate body mass index (BMI) and Lee index (weight0.33 (g)/Naso-Anal Length (cm); 53)  of 259 

obesity for each individual. 260 

 269 

Animals were then sacrificed by cervical dislocation (in accordance with British Home Office Animals 270 

(Scientific Procedures) Act 1986, Schedule 1) and the subcutaneous fat pad around the top of the hind 271 

limbs and genitals was extracted and weighed. In addition, either whole SOL, EDL or DIA muscle was 272 

dissected from each individual in refrigerated (1-3°C) oxygenated (95% O2; 5% CO2) Krebs Henseleit 273 

solution (NaCl 118; KCl 4.75; MgSO4 1.18; NaHCO3 24.8; KH2PO4 1.18; glucose 10; CaCl2 2.54 mM 274 

in each case; pH 7.55 at room temperature prior to oxygenation). The left limb muscle or right half 275 

section of the DIA was immediately snap frozen in liquid nitrogen and stored in a -80°C freezer for 276 

later biochemical analysis. The remaining limb muscle, or a ventral section of the costal DIA, was used 277 

in the study of skeletal muscle contractility. 278 

 279 

 280 

CONTRACTILTIY MEASURES 281 

 282 

The tendon attachment at the proximal end of both the SOL and EDL were left intact and aluminium 283 

foil T-clips were wrapped around the distal tendon as close to the muscle as possible. For the DIA, 284 

aluminium foil T-clips were wrapped around the central tendon at one end, and at the opposing end, 285 

two ribs anchoring the muscle were left intact. 286 

 287 

Mechanical performance was measured using custom designed equipment. Each muscle preparation 288 

was placed in a Perspex chamber filled with circulating oxygenated Krebs maintained at a 289 

physiologically relevant 37°C. Using the intact bone or aluminium clips, the muscle preparation was 290 

attached to a force transducer (UF1, Pioden Controls Ltd, UK) and a motor (V201, Ling Dynamic 291 

Systems, UK) at each end via crocodile clips. The muscle was electrically stimulated to produce force 292 

via parallel platinum electrodes submerged in the Krebs solution inside the muscle chamber. 293 

Stimulation and length change parameters were controlled using custom written software (Testpoint, 294 

CEC, Massachusetts, USA) via a D/A board (KPCI3108, Keithley Instruments, Ohio, USA) on a 295 

standard desktop PC. 296 

 297 

Initially muscle length and stimulation amplitude (typically 12-16V for SOL and DIA, 14-18V EDL) 298 

were adjusted to produce a maximal isometric twitch response. Using these parameters, the muscle was 299 

then subjected to a train of electrical stimuli (350ms for SOL, and 250ms EDL & DIA) with 300 

stimulation frequency adjusted (usually 120Hz for SOL, 200Hz for EDL & 140Hz for DIA 301 

respectively) to evoke a maximal isometric tetanus response. Time to half peak Tetanus (THPT) and 302 

time from the last stimulus to half relaxation (LSHR) was measured for the maximal tetanus response 303 

as a measure of activation and relaxation time. A 5-minute rest period was imposed between each 304 

tetanus. 305 

 306 

The optimal muscle length (L0) for maximal twitch force, determined by the isometric tests, was 307 

measured using an eyepiece graticule fitted to a microscope and estimates of mean fibre length were 308 
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determined as 85% of the physical length for SOL and 75% for EDL (28). No such estimates of fibre 309 

length have been reported for DIA, so the physical length measurement was use to represent L0. This 310 

approach has been standard practice in previous work using these muscles (23, 28, 31, 55, 58). 311 

 312 

Muscle power output was measured using the work loop (WL) technique. The method allows a more 313 

accurate assessment of muscle power and is a closer representation of the contractile mechanics used 314 

by power producing muscles in vivo (31, 32). Unlike other isolated muscle studies in this area that 315 

examined isometric force (8, 10, 65), the WL considers the interaction of force production during 316 

shortening, the force velocity relationship and work required to re lengthen the muscle in preparation 317 

for subsequent contraction (28, 31, 32). The in vivo relevance of this technique and its application has 318 

been outlined in our previous work (29, 54, 57, 58). Each muscle is subjected to a symmetrical 319 

sinusoidal length change around the previously determined optimal length and stimulated to produce 320 

force during the shortening phase. Length changes were implemented by a motor and position of the 321 

motor arm was measured using Linear Variable Displacement Transformer (DFG5.0, Solartron 322 

Metrology, UK). Instantaneous force and velocity were sampled, throughout the length change cycle, at 323 

a rate of 10 kHz and plotted against each other to form a work loop. Net work is calculated as the 324 

positive work produced during shortening, minus the work required to lengthen the muscle.  325 

 326 

Electrical stimulation during the WL was delivered to the muscle at the optimal frequency and 327 

amplitude determined in the isometric tests. Strain (amplitude of length change), stimulus phase and 328 

burst duration were optimised to elicit maximal net work at cycle frequencies of 5Hz, 10Hz, and 7Hz 329 

for SOL, EDL and DIA respectively. Cycle frequency denotes the rate at which the work loops were 330 

performed and these cycle frequencies have been shown to elicit maximal PO in these muscles (6, 28). 331 

Typically, a strain of 0.10 of L0 was used to produce maximal net work in each muscle. As such, the 332 

muscle increased in length by 5%, shortened by 10%, then was re-lengthened by 5% back to L0. If the 333 

burst duration is too short, the muscle will not produce high amounts of force through the shortening 334 

phase (decreased positive work), too long and the muscle will be active during the re-lengthening phase 335 

(increased negative work). The optimal phase was typically -10ms for SOL, -2 ms for EDL and –5ms 336 

for DIA, indicating the start of stimulation with respect to maximal muscle length during the length 337 

change cycle. i.e. stimulation starts before maximal length is reached so that force has risen before 338 

shortening begins. The typical values for strain, burst duration and phase align with the values used to 339 

elicit maximal power output at these cycle frequencies in previous studies (23, 28, 29, 57, 58). Each 340 

muscle was subjected to four work loop cycles per run, with 5-minute rest intervals between each run.  341 

 342 

Fatigues resistance was measured by subjecting each muscle to 50 consecutive work loop cycles at the 343 

parameters that elicited maximal power output. The decline in maximal power was plotted against time 344 

until each muscle produced less than 50% of its pre fatigue maximal power output. Similar methods 345 

have been employed in previous work using the work loop technique to examine the fatigability of 346 

muscle power (23, 58). 347 

 348 

Finally, the muscle was detached from the equipment and tendons and bone removed. Each muscle was 349 

then blotted on absorbent paper, to remove excess Krebs solution, and placed on an electronic balance 350 

(Mettler Toledo B204-S, Zurich, Switzerland) to determine wet mass. Mean muscle cross-sectional 351 

area was calculated from L0, muscle mass and an assumed muscle density of 1060 kg m-3 (41). 352 

Isometric stress was calculated as maximal tetanic force divided by mean muscle cross-sectional area. 353 

Muscle power output was normalised to muscle mass to express power as Watts.kg-1. 354 

 355 

BIOCHEMISTY 356 

 357 

Fast and slow myosin heavy chain (MyHC) expression was measured to examine changes in fibre type 358 

composition and 5' AMP-activated protein kinase (AMPK) and phosphorylated AMPK were measured 359 

as an indicator of muscle metabolic responses. Proteins were extracted in RIPA buffer (Tris CL 20 360 

mM, NaCl 150 mM, EDTA 1 mM, EGTA 1mM, NP40 1%, Na deoxycholate 1%, pH 7.5) with the 361 

addition of a protease and phosphatase inhibitor cocktail (Roche, Sydney, Australia). Protein 362 

concentrations were determined by capillary electrophoresis in a "Wes" Simple Western system 363 

(Protein Simple, Santa Clara, CA, USA) according to the manufacturer's instructions. All antibodies 364 

were from Abcam (Cambridge, MA, USA), and we determined concentrations of total fast (ab51263) 365 

and slow (ab11083) skeletal myosin heavy chains, AMPK alpha 1 + 2 (ab80039), phosphorylated 366 

AMPK alpha 1 (phosphorylated at T173) and 2 (phosphorylated at T172; ab133448), and -tubulin 367 

(ab80779) as internal control (35). Note that AMPK is activated by phosphorylation so that activity of 368 
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AMPK is expressed by the ratio between phosphorylated (pAMPK) and total AMPK concentrations 369 

(63). All antibody and protein concentrations were optimized following the manufacturer's 370 

recommendations. All samples were run in duplicate and we interspersed samples from different 371 

treatments on the same plate. 372 

 373 

STATISTICAL METHOD 374 

 375 

Following appropriate checks of normality and homogeneity, morphological, contractile and protein 376 

data was analysed using two-tailed independent samples T-Tests. On the small number of occasions 377 

where the data was not normally distributed Mann-Whitney U tests were performed. Where the work 378 

loop power of the muscles extracted from obese animals was statistically different from lean controls, 379 

Spearman’s rank correlations were performed to assess the relationship between body mass and 380 

normalised work loop power to determine if the magnitude of obesity effected muscle performance. 381 

Further Spearman’s rank correlations were performed to analyse the relationship between 382 

morphological measures. 383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 

 401 

 402 

 403 

 404 

 405 

 406 

 407 

 408 

 409 

 410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 

 427 

 428 
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 429 

 430 

 431 

 432 

 433 

RESULTS 434 
 435 

MORPHOLOGY 436 

 437 

Whole animal body mass, fat pad mass, BMI and Lee index of obesity were significantly greater in the 438 

obese group when compared to controls (Table 1; Mann-Whitney P<0.001 for body mass & fat pad 439 

mass; T-Test P<0.001 for BMI & Lee Index). Body length was not significantly different (Table 1 440 

Mann-Whitney P=0.053). When broken down into each treatment group whole animal body mass, BMI 441 

and Lee index of obesity were significantly greater in the obese groups when compared to the lean 442 

controls (Table 2 P<0.05 in all cases). For both the SOL and EDL, obese muscle mass was significantly 443 

greater (Table 2 T-Test P<0.03 in each case) but muscle length was not affected (Table 2 T-Test 444 

P=0.80 for SOL; Mann-Whitney P=0.15 for EDL).  445 

 446 

Within the obese group, measures of body mass correlated well with body length and fat pad mass 447 

(Spearmans’ r> 0.4 P<0.03 in each case), In addition, fat pad mass was strongly associated with greater 448 

BMI and Lee index (Spearmans’ r> 0.7 P<0.003 in both cases).   449 

 450 

ISOMETRIC STRESS  451 

 452 

For SOL, absolute maximal isometric force was significantly higher in the obese group compared to 453 

the lean control (Fig 1B T-Test P=0.003), however maximal isometric stress was not significantly 454 

different (Fig 1A T-Test P=0.38). The absolute maximal isometric force generated by the EDL was not 455 

significantly different between the obese and the lean group (Fig 1D T-Test P=0.20), however maximal 456 

isometric stress was significantly reduced in the obese group (Fig 1C T-Test P<0.005). Similarly, the 457 

maximal isometric stress of obese DIA was significantly lower than lean controls (Fig 1E T-Test 458 

P<0.001). Absolute force and power was not assessed for the DIA as only a section of this muscle was 459 

used in the examination of contractile performance. 460 

 461 

THPT was not significantly different between the obese and the lean control group for SOL, EDL or 462 

DIA (Table 3 P>0.24 in each case). Similarly, LSHR for EDL was not significantly different between 463 

the obese and lean group (Table 3 T-Test P=0.67). In the obese SOL, LSHR was significantly 464 

prolonged (Table 3 T-Test P=0.01), whilst in obese DIA, LSHR was significantly shorter when 465 

compared to the controls (Table 3 Mann-Whitney P=0.02). 466 

 467 

WL PO & FATIGUE RESITANCE 468 

 469 

For both the SOL and EDL, absolute WL power was not significantly different between the obese and 470 

the lean groups (Fig 2B & D T-Test P>0.44 in each case). When normalised to muscle mass, SOL WL 471 

power was not significantly affected (Fig 2A Mann-Whitney P=0.30), however normalised power was 472 

significantly reduced in the obese DIA and EDL (Fig 2C & E T-Test P<0.006 in each case). For the 473 

obese group there was no significant relationship between normalised WL power and body mass for 474 

EDL (Fig 3A Spearmans’ r=-0.183 P=0.64), however Obese DIA extracted from animals with a larger 475 

body mass had significantly reduced performance (Fig 3B Spearmans’ r=-0.714 P=0.047).  476 

 477 

SOL from the obese group fatigued significantly faster than lean controls (Fig 4A T-Test P=0.002). 478 

There were no significant differences in the fatigue response for either the EDL or DIA (Fig 4B & C T-479 

Test P>0.8 in each case). 480 

 481 

 482 

PROTEIN EXPRESSION 483 

 484 

SOL in obese mice had significantly less slow MyHC/α-Tubulin (Fig 4A T-Test P=0.01); fast 485 

MyHC/α-Tubulin showed a similar trend but the data were more variable so that there was no 486 

significant difference between obese and lean SOL (Fig 4B T-Test P= 0.16), and the ratio between 487 

slow and fast MyHC did not differ (Fig 4C Mann-Whitney P=0.82). DIA had significantly greater slow 488 
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and fast MyHC/α-Tubulin in obese animals compared to the lean group (Fig 2G, H T-Test P<0.04 in 489 

each case), and there was no difference in the ratio between slow and fast MyHC between treatment 490 

groups (Fig 4I T-Test P= 0.23). Slow MyHC/α-Tubulin and Fast MyHC/α-Tubulin were not 491 

significantly different between the obese and lean EDL (Fig 4D, E T-Test P=0.83 & Mann-Whitney 492 

P=0.60 respectively), and there was no difference in the ratio between slow and fast MyHC between 493 

treatment groups (Fig 4F T-Test P=0.53) 494 

 495 

AMPK/α-Tubulin, pAMPK/α-Tubulin and pAMPK/AMPK were significantly reduced in the obese 496 

SOL group compared to lean controls (Fig 6 A, B, C T-Test P<0.007 in each case). Conversely 497 

AMPK/α-Tubulin, pAMPK/α-Tubulin and pAMPK/AMPK were significantly greater in the obese DIA 498 

(Fig 6 G, H, I T-Test P<0.03 in each case).  AMPK/α-Tubulin was lower in the obese EDL and this 499 

was approaching statistical significance (Fig 6D T-Test P=0.05), however pAMPK/α-Tubulin and 500 

pAMPK/AMPK were unchanged (Fig 6E, F T-Test P>0.05 in both cases). 501 

 502 

 503 

 504 

 505 

 506 

 507 

 508 

 509 

 510 

 511 

 512 

 513 

 514 

 515 

 516 

 517 

 518 

 519 

 520 

 521 

 522 

 523 

 524 

 525 

 526 

 527 

 528 

 529 

 530 

 531 

 532 

 533 

 534 

 535 

 536 

 537 

 538 

 539 

 540 

 541 

 542 

 543 

 544 

 545 

 546 

 547 

 548 
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 549 

 550 

 551 

 552 

 553 

 554 

DISCUSSION 555 
 556 

Our results indicate that obesity causes a decline in the contractile performance of isolated skeletal 557 

muscle. These findings are the first to offer a detailed insight into the direct changes in absolute 558 

contractile performance and muscle quality using a methodological approach which more closely 559 

represents the environmental conditions and contractile mechanics of skeletal muscle in vivo. The 560 

present findings indicate that the decline in contractile performance is likely to relate to fibre type 561 

composition, metabolic profile and the in vivo mechanical role of each muscle. 562 

 563 

THE EFFECT OF OBESITY ON MAXIMAL FORCE AND POWER 564 

 565 

The absolute isometric force of the obese SOL was significantly greater than the lean control group. 566 

This result is unsurprising given the role of SOL in postural control and proposed training stimulus 567 

evoked by the elevated body mass. Similar increases in the absolute strength of ‘antigravity’ muscles 568 

have been reported in previous in vivo literature (See review by 39). Interestingly, this increase in force 569 

producing capacity did not transfer to an increase in the absolute power output produced by SOL. 570 

These findings may suggest an obesity induced favourable adaptation for the SOL in static isometric 571 

contractions needed for such activities as quiet standing, which does not necessarily transfer to an 572 

improvement in locomotor performance given that when producing power in vivo, SOL of the obese 573 

group would be working to move a greater whole animal body mass. Isometric stress and normalised 574 

WL power were unaffected in the SOL, possibly demonstrating that the muscle quality of the obese 575 

group was maintained. Given that normalised WL power was also unaffected, one would anticipate a 576 

similar increase in absolute power given the increase in muscle mass. Surprisingly this was not 577 

demonstrated in the statistical results and maybe attributed to the large variation in this data set. 578 

 579 

The maximal isometric stress and normalised work loop power output was significantly reduced in the 580 

obese EDL. With respect to the limited changes in absolute isometric force and work loop power, and 581 

increase in muscle mass, these results infer that in the case of the obese EDL, larger muscles of poorer 582 

quality are formed to maintain the same absolute contractile performance as the lean counterparts. In 583 

vivo this would present two significant problems. Firstly, although absolute performance is maintained, 584 

larger muscles will add to the whole animal body mass thus increasing body inertia. Given this and the 585 

significant increase in body mass that will arise via adipose tissue accumulation, the maintenance of 586 

absolute force and power is likely to be inadequate given the increase in load. Similar to the EDL, 587 

isometric stress and normalised WL power of the obese DIA was significantly lower compared to the 588 

lean control group. This again suggests that there is a significant reduction in muscle quality. 589 

 590 

As expected with dietary induced obesity models, there was a large variation in the body mass for the 591 

obese group. Interestingly, the obese DIA muscles that were extracted from animals with a higher body 592 

mass had significantly lower normalised WL power. This possibly indicates a negative relationship 593 

between the quantity of adipose tissue and muscle quality for this muscle. No such effects were 594 

demonstrated for the EDL, however it is clear from the data that this response needs to be analysed 595 

using a larger sample size. Further exploration is also needed considering the distribution of adipose 596 

tissue deposits at a whole body and muscle specific level to determine whether increased body mass is 597 

linked to increased intramuscular adipose tissue. 598 

 599 

Given the mechanical role and fibre type composition of each muscle used in the present work, it is 600 

unsurprising to see a muscle specific response to lipid accumulation. With the SOL being composed 601 

primarily of slow oxidative fibres, it could be considered that this muscle already has a preferable 602 

metabolic profile to oxidise lipids, in comparison to EDL and DIA which have a relatively faster fibre 603 

type composition. Similar sentiments have been reported in previous literature (10). As such it is 604 

possible that lipid accumulation in the SOL would be less than the other muscle tested, thus potentially 605 

delaying the onset of degenerative mechanisms. Although it could be considered that the mechanical 606 

loading of the EDL and DIA may be increased (larger foot and thoracic cavity mass respectively), the 607 

magnitude of which is likely to be lower that the SOL due to its role in postural support. 608 



 11 

It is clear from the contractile evidence demonstrated here and that of previous literature (20, 50), that 609 

an increased load may evoke a substantial training stimulus to promote muscle adaptation. However, 610 

one would expect a progressive resistance training program to evoke increases in both contractile 611 

protein quantity (mass) and quality (24, 26, 49), which was not demonstrated in our obese model. This 612 

may inadvertently point to defects in the process of myogenesis which has previously been reported as 613 

a consequence of obesity (4, 12).  614 

 615 

THE EFFECT OF OBESITY ON FATIGUE RESISTANCE 616 

 617 

Although a number of in vivo studies demonstrated an obesity associated reduction in the ability to 618 

sustain locomotor performance (16, 48), and more specifically skeletal muscle force production (38), in 619 

reality this evidence tells us little about the direct effect of obesity on skeletal muscle performance. It is 620 

likely that skeletal muscle of an obese experimental group will fatigue much faster in vivo than a lean 621 

group, irrespective of exercise intensity, due to elevated body inertia. To date the effect of obesity on 622 

the fatigue resistance of isolated skeletal muscle has only been examined by Bruton, Katz, Lännergren, 623 

Abbate and Westerblad (8), who demonstrated reduced fatigue resistance of single flexor digitorum 624 

brevis fibres but no effect on the whole EDL of Ob/Ob mice following a bout of repeated tetanic 625 

stimulations at a submaximal intensity. The present findings uniquely examine the isolated skeletal 626 

muscle fatigue resistance following dietary induced obesity and using dynamic contractions to estimate 627 

changes in muscle power output. 628 

 629 

Despite the acute contractile performance of the SOL being reasonably well maintained, when 630 

subjected to a bout of repeated WL contractions, the obese SOL fatigued significantly faster than the 631 

lean control group. Such findings would indicate a significant limitation to sustained locomotory 632 

performance. Mechanistically, this may relate to the demonstrated reduction in slow MyHC expression. 633 

The ability to release and reuptake Ca2+ from and to the Sarcoplasmic Reticulum (SR) dictates the rate 634 

and magnitude of force production and relaxation. An obesity induced increase in tetanus relaxation 635 

time may point to a change in Ca2+ kinetics, particularly as previous research has demonstrated an 636 

obesity associated reduction in the function of SERCA, which is responsible for the movement of Ca2+  637 

from the cytoplasm back into the SR (19). If the muscle is still active during the re-lengthening phase 638 

of the work loop, this will significantly increase the work required to lengthen the muscle (negative 639 

work) and as a consequence, decrease the net work produced. An elevated relaxation time has been 640 

reported as a consequence of fatiguing contractions in normal conditions in some muscles (5), which 641 

given the present data is likely to be further exacerbated in the obese condition. Furthermore, obesity 642 

has been associated with a reduction in the efficacy of actin-myosin cross bridge cycling that may 643 

possibly occur independently of changes in SERCA (10, 51). 644 

 645 

Although the pattern of fatigue would appear to be unaffected in EDL and DIA, these data are plotted 646 

from 100% of maximal power obtained for each of the obese and the lean group. As such one should 647 

consider that the 100% power values for the obese group would be significantly lower in the obese 648 

group compared to the controls as outlined in the acute data. As such, if muscles of each group were to 649 

work at the same absolute intensity, the obese group would be working closer to maximum power 650 

compared to the lean group and subsequently will fatigue more quickly. 651 

 652 

This is the first evidence to demonstrate that the reduction in endurance capacity seen in vivo (16, 48) 653 

can be in part be attributed to a reduction in the fatigue resistance of skeletal muscle. The reduction in 654 

muscle fatigue resistance is likely to be further magnified in vivo by the elevated body inertia that will 655 

arise from an increase in body mass. The reduction in the fatigue resistance of the DIA could have 656 

further substantial consequences for in vivo performance. Limiting pulmonary function will 657 

subsequently affect the quantity of oxygen delivered to muscle throughout the body, and as a result the 658 

capacity to regenerate ATP. The delivery of oxygen to muscle is also fundamental for lipid oxidation, 659 

thus potentially limiting the ability to unitise lipid as an energy source during physical activity and thus 660 

further exacerbating accumulation. 661 

 662 

MECHANISMS 663 

 664 

Obesity has been shown to affect a number of important metabolic and cellular processes involved with 665 

force production. This data is vital in our understanding of mechanistic changes that occur, but given 666 

the dearth of research exploring both contractility and underpinning mechanisms, there is difficulty in 667 

mapping the muscle specific changes in contractile performance with specific mechanisms.  668 
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 669 

Although the reduction in slow MyHC expression may help to explain the reduced fatigue resistance in 670 

the SOL, the normalised force and power of the EDL and DIA occurred without a change in the ratio of 671 

fast and slow MyHC expression. Evidence examining the effect of obesity on muscle fibre type 672 

composition is varied (as discussed by 14). Although there is evidence demonstrating a shift to both a 673 

faster and slower phenotype in obese experimental groups (14, 33, 34, 52, 59, 61, 65), equally there is 674 

evidence reporting no change (13, 14, 52, 60). Interestingly, Warmington, Tolan and McBennett (65) 675 

demonstrate that despite a shift to a slower fibre type, the maximal force generating capacity of the 676 

muscle was unchanged in Ob/Ob mice. Interpretation and comparison of the evidence reported in 677 

previous literature is however subject to the same methodological discrepancies identified in studies 678 

measuring muscle performance. The present findings infer that fibre type shifts may play are role, but 679 

do not substantially explain the reduction in the obesity induced change in contractile performance. 680 

Given that the present data only examines 16 weeks of feeding, changes in fibre type expression could 681 

elicit more significant mechanical consequences following longer feeding periods. 682 

 683 

AMPK is an important regulator of energy homeostasis in the body, and more specifically, skeletal 684 

muscle (44, 46). A change in AMPK activity would result in a reduction in the ability to regenerate 685 

ATP via both glycolysis and fatty acid oxidation (44), and consequently may affect the contractile 686 

performance. Principally a change in muscular AMPK activity is likely to have little effect on the 687 

ability of the muscle to produce one off maximal force and power as the energy for this is expected to 688 

come from the small quantity of available ATP. However, the demonstrated reduced pAMPK/AMPK 689 

expression may help to further explain the significantly reduced time to fatigue in the obese SOL. The 690 

increase in pAMPK/AMPK in the obese DIA had little effect on the pattern of fatigue. Interestingly, in 691 

the obese DIA, when compared to the obese SOL, the results of the DIA may call into question the 692 

contribution of this mechanism to the given decline in obese SOL fatigability. However, it is likely that 693 

the demand for ATP per unit mass of tissue is much less in the obese DIA compared to the lean DIA 694 

given the significant reduction in normalised maximal power. Interestingly, despite a reduction in 695 

AMPK concentration in the obese EDL, pAMPK/AMPK was unchanged as was the pattern of fatigue.  696 

 697 

These findings in part support previous evidence demonstrating an obesity related changes in the 698 

metabolic profile of skeletal muscle (10, 13, 25). As indicated by (13), this response is likely to be 699 

muscle specific and its complexity relate to fibre type and duration of high fat diet consumption. 700 

Although there were some favourable effects for DIA, this had little effect on contractile performance. 701 

Irrespective of the muscle specific application, insufficient APMK activity in the muscle may further 702 

exacerbate lipid accumulation via reduced lipid oxidation and as such, may further promote the decline 703 

in contractile function through this and other mechanisms (46).  704 

 705 

As previously outlined, literature has demonstrated an obesity associated decline in muscle protein 706 

synthesis (4, 12). Degradation in the normal process of contractile protein maintenance and 707 

regeneration would have significant implications on mechanical performance. The increased quantity 708 

of both fast and slow myosin heavy chain expression in the obese DIA would conceivably contradict 709 

this previous evidence. These results would infer that the quantity of lean tissue was greater in the 710 

obese DIA, however the normalised contractile performance of this muscle was significantly reduced. 711 

In addition, the increase in the absolute force of SOL and the proposed similar concentrations on lean 712 

mass between obese and lean EDL (i.e. no change in slow and fast MyHC expression) were not 713 

coupled with improved or maintained muscle quality respectively. This suggests that although 714 

plasticity in skeletal muscle modelling is continued, the quality of the contractile protein produced is 715 

significantly reduced, thus supporting the demonstrated reduction in protein synthesis previously 716 

reported (4, 12). 717 

 718 

The results of the present work demonstrate a complex and muscle specific interaction in the down 719 

regulation of important processes that evoke contractility, which likely gives rise to the muscle specific 720 

decline in performance outlined in this study. The contribution of each of the proposed mechanisms is 721 

still unknown and is likely to change with obesity status. Furthermore, the demonstrated reduction in 722 

skeletal muscle performance may be further exacerbated in vivo given the reported changes in 723 

neuromuscular recruitment (67). As such a mechanism for the reduction in muscle quality and 724 

subsequent compensatory increase in size may be due to obesity induced denervation affecting the 725 

ability to efficiently recruit fibres. However, given the lack of studies in this area, it is not clear whether 726 

a reduction in recruitment is a cause or a consequence of the skeletal muscle obesity response. 727 

 728 
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LIMITAIONS & FUTURE DIRECTION 729 

 730 

Although isometric stress and normalised WL power provide an accurate assessment of muscle quality 731 

per unit of muscle mass, it is considered that in the obese group a smaller proportion of the total mass 732 

will be contractile protein due to the greater infiltration and accumulation of lipids. Normalising 733 

contractile performance to lean tissue mass would allow further consideration of how much the change 734 

in muscle quality is related to changes in lipid accumulation. However, there are significant 735 

methodological problems with accurately obtaining measure of muscular lipid and contractile mass. 736 

Previous work has indicated that obesity can cause a two fold increase in skeletal muscle lipid content 737 

(21). Machann, Bachmann, Brechtel, Dahl, Wietek, Klumpp, Haring, Claussen, Jacob and Schick (36) 738 

further demonstrated a muscle specific increase in the lipid content of skeletal muscle of obese 739 

individuals. The lipid content of the tibialis anterior (relatively fast twitch fibre composition) increased 740 

from 1.6% in normal weight individuals to 2.8% in obese individuals, and from 2.5% to 3.8% in the 741 

SOL. Given these findings, and that fat is less dense than lean muscle mass, it is likely the potential 742 

elevation in lipid content in the obese muscles of the present study will only be a minor contributor to 743 

the significant increase in muscle mass. As such, lipid storage itself is likely to only play a small role in 744 

the obesity associated reduction in muscle quality.  745 

 746 

Although the sinusoidal length change waveform used in the present study provides an approximation 747 

of in vivo cyclical muscle activities, it is a simplification of the length change waveforms used in real-748 

life locomotion (15). In particular during fatiguing contractions, the pattern of fibre stimulation and 749 

length change waveforms are likely to be manipulated throughout movement (62). Therefore, if a 750 

muscle is active as it begins to re-lengthen (i.e. producing too much eccentric force), the duration of 751 

stimulation is likely to be reduced in order to lessen the elevated negative work and any associated 752 

muscle damage. That considered, the model used in this study is appropriate to assess the decline in the 753 

ability of the muscle to produce maximal power during repeated contractions and is representative of 754 

the protocol used in other isolated skeletal muscle studies (23, 29, 30, 55, 56, 58).  755 

 756 

We followed published protocols in determining MyHC concentrations  (35). However, there is a 757 

suggestion in the literature (11) that using low salt buffers such as RIPA buffers underestimates the 758 

concentrations of MyHC. Our measures of MyHC concentrations may therefore be an underestimate, 759 

but this will not affect our comparisons between obese and lean individuals, or between the relative 760 

abundance of slow and fast MyHC within muscles. 761 

 762 

These results offer an important insight into the effects of obesity on the contractile performance of 763 

isolated skeletal muscle, however future work should consider examining contractile performance 764 

following a varied range of feeding periods. It is clear from the evidence in the literature that skeletal 765 

muscle mechanistic response is likely to change depending on duration of feeding and as a result it 766 

should be considered that the contractile performance will alter accordingly. Such work would be 767 

valuable in determining the muscle specific onset of obesity related changes in muscle performance 768 

and the potentially more severe implications of feeding regimes longer than that used in the present 769 

work. Given the importance of the present findings, it would also be of interest to repeat this work in an 770 

ageing animal model given the recent popularity in studies examining the relationship between obesity 771 

and sarcopenia. 772 

 773 

CONCLUSION 774 

 775 

The present findings demonstrate a muscle specific reduction in the contractile performance of isolated 776 

skeletal muscle which is likely related to a combination of in vivo mechanical role, fibre type 777 

expression and metabolic profile. The increase in the absolute isometric force of the SOL is 778 

unsurprising given the role of this muscle in postural support, however this increase occurred without a 779 

change in muscle quality (normalised force and power), potentially demonstrating detrimental effects 780 

of obesity on skeletal muscle plasticity and myogenesis. Although the absolute contractile performance 781 

of the EDL was maintained, muscle quality was significantly reduced. As such, in order for the obese 782 

group to maintain the same performance as the lean counterparts, larger muscles of lower quality were 783 

produced, thus further adding to in vivo force and power requirements needed to support and overcome 784 

the elevated whole animal body mass. The results are the first to assess the effect of obesity on fatigue 785 

resistance during power production in isolated skeletal muscle and demonstrate that obese mice would 786 

be unlikely to maintain the same absolute power output in SOL, EDL and DIA muscles for as long as 787 

lean animals. These results indicate that irrespective of the increase in body inertia, the reduction in 788 
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locomotory performance demonstrated in vivo can be in part attributed to a reduction in the fatigue 789 

resistance of skeletal muscle. The present results confirm that mechanistically, significant changes in 790 

contractile performance can occur in EDL and DIA without a change in fibre type composition. 791 

Although there is some previous evidence alluding to changes in metabolic profile, Ca2+ handling and 792 

protein synthesis, future work should focus on establishing the onset and extent of these mechanisms in 793 

relation to changes in contractile mechanics. In summary, a reduction in the contractile performance of 794 

skeletal muscle could be a significant catalyst to the negative cycle of obesity. Reducing the capacity to 795 

locomote and maintain adequate pulmonary function, is likely to contribute to a reduction in quality of 796 

life, exercise capacity and will sustain a significant calorific imbalance. 797 
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FIGURES 1127 
 1128 

Figure 1 – The effect of 16 weeks HFD on the maximal isometric tetanus stress and absolute isometric 1129 

tetanus force of isolated mouse SOL (A & B), EDL (C & D) and DIA (E) [Data represented as 1130 

Mean±SE; N=10 for SOL; N=10 for EDL lean; N=9 for EDL obese; N=8 for DIA; * represent 1131 

significant differences] 1132 

 1133 

Figure 2 – The effect of 16 weeks HFD on the maximal normalised WL PO and absolute WL PO of 1134 

isolated mouse SOL (A & B), EDL (C & D) and DIA (E) [Data represented as Mean±SE; N=10 for 1135 

SOL; N=10 for EDL lean; N=9 for EDL obese; N=8 for DIA; * represent significant differences] 1136 

 1137 

Figure 3 - The relationship between whole animal body mass and normalised work loop power for the 1138 

obese EDL (A) and DIA (B) experimental groups [N=9 for EDL; N=8 for DIA; The lines represent a 1139 

first-order polynomial fitted to the data using a least squares regression and the 95% confidence limits 1140 

of this line] 1141 

 1142 

Figure 4 - The effect of 16 weeks HFD on the fatigue resistance of maximally stimulated mouse SOL 1143 

(A), EDL (B) and DIA (C) [Data represented as Mean±SE; N=10 for SOL; N=10 for EDL lean; N=9 1144 

for EDL obese; N=8 for DIA; * represent significant differences] 1145 

 1146 

Figure 5 – The effect of 16 weeks HFD on fast and slow MyHC expression of mouse SOL, EDL and 1147 

DIA [Data represented as Mean±SE; N=6 in each case; * represent significant differences] 1148 

 1149 

Figure 6 - The effect of 16 weeks HFD on the AMPK activity of mouse SOL, EDL and DIA [Data 1150 

represented as Mean±SE; N=7 for SOL; N=6 for EDL; N=6 for DIA; * represent significant 1151 

differences] 1152 
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FIGURE 6. 1331 
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TABLES 1365 
 1366 

Table 1 - The effect of 16 weeks HFD on the anthropometric measures [Data represented as Mean±SE; 1367 

N= 30 & 29 lean & obese respectively, N=18 & 16 for lean and obese fat pad mass respectively; * 1368 

indicate significant differences between Lean and Obese groups] 1369 

 1370 

Table 2 - The effect of 16 weeks HFD on muscle group specific anthropometric measures [Data 1371 

represented as Mean±SE; N=10 for SOL; N=10 for EDL lean; N=9 for EDL obese; N=8 for DIA; * 1372 

represent significant differences between Lean and Obese groups] 1373 

 1374 

Table 3 – The effect of 16 weeks HFD on isometric time to half peak tetanus (THPT) and last stimulus 1375 

to half tetanus relaxation (LSHR) of isolated mouse SOL, EDL and DIA [Data represented as 1376 

Mean±SE; N=10 for SOL; N=10 for EDL lean; N=9 for EDL obese; N=8 for DIA; * represent 1377 

significant differences between Lean and Obese groups] 1378 
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TABLES 1425 
 1426 

 1427 

Table 1 - The effect of 16 weeks HFD on the anthropometric measures [Data represented as Mean±SE; 

N= 30 & 29 lean & obese respectively, N=18 & 16 for lean and obese fat pad mass respectively; * 

indicate significant differences between Lean and Obese groups] 

 Lean Obese 

BM (g) 38.5±1.00 52.7±2.30* 

Body Length (cm) 11.3±0.09 11.6±0.09 

BMI 0.30±0.01 0.39±0.01* 

Lee Index 0.30±0.00 0.32±0.02* 

Fat Pad Mass (g) 0.73±0.08 5.24±0.52* 
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Table 2 - The effect of 16 weeks HFD on muscle group specific anthropometric measures [Data represented as 

Mean±SE; N=10 for SOL; N=10 for EDL lean; N=9 for EDL obese; N=8 for DIA; * represent significant differences 

between Lean and Obese groups] 

 BM (g) Body Length 

(cm) 

BMI Lee Index Muscle Mass (mg) Muscle Length (mm) 

SOL L 39.7±1.93 11.2±0.24 3.15±0.13 0.30±0.01 10.1±0.02 8.96±0.07 

SOL OB 52.0±1.90* 11.5±0.20 3.93±0.15* 0.32±0.01* 13.0±0.80* 9.07±0.19 

EDL L 35.5±1.2 11.2±0.08 2.84±0.00 0.29±0.00 10.0±0.03 9.26±0.40 

EDL OB 57.5±5.61* 11.6±0.14* 4.21±0.35* 0.33±0.01* 14.4±1.97* 8.45±0.25 

DIA L 40.9±1.34 11.6±0.09 3.05±0.02 0.30±0.00   

DIA OB 47.7±2.71* 11.0±0.15 3.59±0.15* 0.31±0.00*   
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Table 3 – The effect of 16 weeks HFD on isometric time to half peak tetanus (THPT) and last stimulus 

to half tetanus relaxation (LSHR) of isolated mouse SOL, EDL and DIA [Data represented as 

Mean±SE; N=10 for SOL; N=10 for EDL lean; N=9 for EDL obese; N=8 for DIA; * represent 

significant differences between Lean and Obese groups] 

 THPT (ms) LSHR (ms) 

 Lean Obese Lean Obese 

SOL 39.1±3.5 34.4±1.1 47.2±2.5 57.1±2.6* 

EDL 17.0±1.1 17.4±1.1 13.6±1.4 14.3±0.9 

DIA 26.1±1.8 25.0±1.1 28.1±1.8 23.8±0.8* 

 1523 

 1524 

 1525 

 1526 

 1527 

 1528 

 1529 

 1530 

 1531 

 1532 

 1533 

 1534 

 1535 

 1536 

 1537 

 1538 

 1539 

 1540 

 1541 

 1542 

 1543 

 1544 

 1545 

 1546 

 1547 

 1548 

 1549 

 1550 

 1551 

 1552 

 1553 

 1554 

 1555 

 1556 

 1557 

 1558 

 1559 

 1560 

 1561 

 1562 

 1563 

 1564 



 31 

 1565 

 1566 

 1567 

 1568 

 1569 

 1570 

 1571 

 1572 

 1573 


