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Graphical Abstract 

 

Abstract 

Exhaust gas fuel reforming has been identified as a thermochemical energy recovery technology with 

potential to improve gasoline engine efficiency, and thereby reduce CO2 in addition to other gaseous 

and particulate matter (PM) emissions. The principle relies on achieving energy recovery from the hot 

exhaust stream by endothermic catalytic reforming of gasoline and a fraction of the engine exhaust gas. 

The hydrogen-rich reformate has higher enthalpy than the gasoline fed to the reformer and is 

recirculated to the intake manifold, i.e. reformed exhaust gas recirculation (REGR).  

The REGR system was simulated by supplying hydrogen and carbon monoxide (CO) into a conventional 

EGR system. The hydrogen and CO concentrations in the REGR stream were selected to be achievable in 

practice at typical gasoline exhaust temperatures. Emphasis was placed on comparing REGR to the 

baseline gasoline engine, and also to conventional EGR. The results demonstrate the potential of REGR 

to simultaneously increase thermal efficiency, reduce gaseous emissions and decrease PM formation.  
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EGT Exhaust Gas Temperature 
EVC Exhaust Valve Closing 
GDI Gasoline Direct Injection 
GNMD Geometric (particle) Number Mean Diameter 
HC Hydrocarbon 
IMEP  Indicated Mean Effective Pressure 
IVO Intake Valve Opening 
MFB Mass Fraction Burned 
NOx Oxides of Nitrogen 
PFI Port Fuel Injection 
PM  Particulate Matter 
PMEP Pumping Mean Effective Pressure 
REGR  Reformed Exhaust Gas Recirculation  
SMPS Scanning Mobility Particle Sizer 
TWC Three Way Catalyst 
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1. Introduction 

Increasingly stringent legislation relating to vehicle emissions and fuel economy in recent years has led 

to the automotive industry introducing a wide variety of new technology into production vehicles. 

Exhaust gas fuel reforming is one technique proposed for exhaust energy recovery [1, 2]. The 

thermodynamic benefit of exhaust gas fuel reforming depends on the dominance of two endothermic 

chemical reactions, known as steam reforming ((1) and dry reforming ((2). These reactions convert 

hydrocarbon (HC) fuel, in this application gasoline, into hydrogen and carbon monoxide, extracting 

energy from the exhaust stream in the process; the aim is to produce gaseous reformate fuel with 

higher enthalpy than the HC fuel supplied to the reformer. Reactants required in order to initiate the 

two reforming reactions are water and carbon dioxide, both of which are supplied by the engine 

exhaust gas. Any oxygen contained in the exhaust gas, typically less than 1% for a gasoline engine, will 

be consumed by full or partial oxidation ((3). These are exothermic reactions which may reduce the 

process efficiency; they can, however, be useful by raising the local catalyst temperature to increase 

reformer yields. The water-gas shift reaction ((4) occurs more readily later in the reforming process 

when the CO concentration has increased, and is beneficial to hydrogen yield but mildly exothermic. 

𝐶𝐻1.92 + 𝐻2𝑂 
 

→ 𝐶𝑂 + 1.96𝐻2 (1) 

𝐶𝐻1.92 + 𝐶𝑂2  
 

→ 2𝐶𝑂 + 0.96𝐻2 (2) 

𝐶𝐻1.92 +
1

2
𝑂2  

 
→ 𝐶𝑂 + 0.96𝐻2 (3) 

𝐶𝑂 + 𝐻2𝑂 
 

→ 𝐶𝑂2 + 𝐻2 (4) 

Fuel reforming technology also provides the possibility of further engine efficiency improvements due 

to the attractive combustion properties of hydrogen, as well as simultaneous benefits provided by 

charge dilution. Previous research into the effects of hydrogen enhanced (undiluted) gasoline 

combustion has indicated faster combustion rates [3] and increased combustion efficiency, while higher 

peak cylinder temperature and pressure increases the formation of oxides of nitrogen (NOx)[4]. When 

coupled with charge dilution, hydrogen enhancement has been shown to stabilise combustion and 

extend the dilution limit for excess air [5] and EGR [6], in one case with concentrations of less than 1% 

by volume in the combustion charge [7]. There may be additional benefits to indicated efficiency and 

NOx emissions, dependent upon the exact charge composition and engine operating condition. 

The composition of reformate is heavily dependent upon the reaction temperature, as well as: catalyst 

formulation; reactor design; the HC fuel and feed gas compositions; and catalyst ageing (e.g. thermal 

deactivation/ sintering, coking and sulphur poisoning). All of these factors must be considered in future 

reformer development. There have been various studies [8-10] that have used idealised, high quality 

reformate compositions in combustion studies which are not practical for fuel reforming at typical 

gasoline engine exhaust temperature. Reforming studies have shown that currently achievable 

hydrogen and CO yields are in the range of 5-10% [11, 12]. 

EGR can be beneficial to engine operation with improved fuel economy and reduced NOx emissions 

across the engine range. At low load this is mainly due to reduced pumping work and lower heat losses, 

and at high load significant fuel savings can be attributed to a number of factors: higher heat capacity of 

the charge results in lower knock tendency and improved combustion phasing [13, 14] (advancing 

ignition towards the optimum timing); lower exhaust gas temperature can eliminate the requirement 
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for fuel enrichment at high engine speed/load [15]; and lower combustion temperatures reduce heat 

losses. There is also a higher value of the ratio of specific heats of the combustion charge with EGR 

which increases the ideal thermodynamic efficiency. This value is higher both for the raw charge 

mixture, and during combustion due to lower combustion temperature. Further to this, the elimination 

or reduction of knock tendency [16] may permit increased compression ratio, improving efficiency at all 

operating conditions. 

The maximum dilution rates used in gasoline engines are limited by the deterioration of combustion 

stability. Hydrogen can enable higher dilution rates to be used in gasoline engines and so reformed 

exhaust gas recirculation (REGR) offers the potential to equal or excel the engine efficiency benefits of 

EGR, in addition to achieving heat recovery from the exhaust stream.  

In addition to these benefits, EGR has been shown to reduce particulate matter (PM) emissions from 

port fuel injected [17-19] and direct injected [20] gasoline engines, and so EGR may assist in achieving 

particle number emission targets due to be introduced to Euro 6c regulations in 2017, and CARB LEV III. 

PM mass reductions of 65% were demonstrated with a gasoline direct injection (GDI) engine using 

cooled, external EGR [20], with a similar trend for internal EGR. Elsewhere though, EGR has been 

reported to increase particle number emissions from a port fuel-injected (PFI) engine [21]. Hydrogen 

enhancement has been shown to reduce PM formation in GDI engines [3, 22] and so it may be expected 

that REGR will result in further reductions over conventional EGR.  

On-board generation of hydrogen-rich gas has been investigated using various types of prototype fuel 

reformer in the past [9, 23-26], in some cases with particular focus on cold-start performance [27, 28]. 

Elsewhere, in-cylinder reforming has been employed in a system known as dedicated EGR [29] which 

uses rich combustion in one cylinder of a multi-cylinder engine to generate hydrogen rich EGR, similarly 

to REGR. 

The aim of this paper is to establish the fuel efficiency and emissions performance of a multi-cylinder 

GDI engine operating with REGR from an exhaust gas fuel reformer. To achieve this, bottled 

hydrogen/CO was added to conventional EGR to generate a reformate-like mixture containing 

representative concentrations of the diluent gas species, namely CO2, nitrogen and water vapour. This 

allowed the engine efficiency, combustion performance and gaseous and PM emissions with REGR to 

be compared to the baseline gasoline engine, and also to performance with conventional EGR. 

2. Experimental setup and test conditions 

Engine: The engine used for this study was a 2 litre, four-cylinder GDI engine with dual scroll 

turbocharger, side-mounted solenoid injectors and a centrally located spark plug. Aftertreatment 

consists of a conventional three-way catalyst (TWC) and so the engine uses a homogeneous, 

stoichiometric combustion strategy. A camshaft driven high pressure pump feeds the fuel rail and varies 

the fuel pressure with engine operating condition. In production specification the engine does not use 

external EGR, instead utilising dual variable cam timing to induce internal EGR when required. For this 

study a high pressure EGR loop was installed to allow for a direct comparison of REGR to conventional 

EGR. An EGR heat exchanger fed with engine coolant passively cooled the re-circulated gas before being 

introduced into the intake manifold. An air to water heat exchanger cooled the intake air to control 

charge temperature measured at the inlet port. A variable area flow meter measured the flow of pre-

mixed hydrogen and carbon dioxide into the EGR stream to generate a gas composition representative 

of reformate. This was introduced after the EGR valve but well upstream of the intake manifold. A 
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schematic of the engine configuration is detailed in Figure 1. Further details of the engine specification 

are listed in Table 1. 

 
Figure 1 - Test Schematic 

Table 1 - Engine specification 
Compression Ratio 10:1 
Bore x stroke 87.5 x 83.1mm 
Turbocharger Borg Warner k03 
Rated power 149 kW at 6000 rpm 
Rated Torque 300 Nm at 1750-4500 rpm 
Engine management  Bosch ME17 

Cylinder pressure measurements were taken from cylinder four using an AVL piezo-electric pressure 

transducer and charge amplifier, referenced to the engine cycle using a Baumer 720 pulse per 

revolution magnetic encoder. An absolute pressure transducer located in the intake runner close to the 

port entry was used to reference the cylinder pressure trace to the intake manifold pressure at BDC 

after the intake stroke. 

Emissions analysis: Engine out gaseous emissions were measured using a Horiba MEXA-7100DEGR, 

which also measured the intake manifold CO2 concentration in order to calculate the charge dilution 

rate according to (5. PM was sampled using a TSI scanning mobility particle sizer (SMPS) consisting of a 

series 3080 electrostatic classifier, a 3081 Differential Mobility Analyser and a 3775 Condensation 

Particle Counter. The sample and sheath flow rates were set such that the measurement (particle 

diameter) range was nominally 10-407nm. A TSI rotating disk thermodiluter provided 30:1 dilution at 

150°C. The SMPS sampled exhaust stream after the TWC due to its influence on removing HC species 

which act as precursors to volatile particle formation [30], and can become a significant source of 

variation in measurements. 

Charge Dilution Rate, % =
(𝐶𝑂2)𝑚𝑎𝑛𝑖𝑓𝑜𝑙𝑑

(𝐶𝑂2)𝑒𝑥ℎ𝑎𝑢𝑠𝑡
𝑥100 (5) 

Engine conditions: The engine conditions selected for investigation were: 35 Nm/3 bar indicated mean 

effective pressure (IMEP) at 2100 rpm, which represents a key steady state condition in the urban 

section of the new European drive cycle for a typical mid-size/large family vehicle with this 2 litre 

engine; and 105 Nm/7.2 bar IMEP at 2100 rpm which is typical of the highest load transient in the extra-

urban drive cycle. The baseline condition was compared to each EGR and REGR condition with the 

TWCTurbo -

charger

Air boxEGR CoolerH2 + CO

Charge 

Cooler
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ignition timing optimised with the minimum advance for maximum torque. Injection timing, fuel 

pressure and other engine parameters were held at the standard calibration values, with the exception 

of cam phasing which was varied in one part of the study in order to investigate the effects of reducing 

internal EGR at low engine load. Engine performance was assessed at increasing EGR and REGR rates 

until the deterioration of combustion stability limit was reached, defined by the coefficient of variation 

(COV) of IMEP exceeding 5%. 

Reformate composition: A fixed 3:1 hydrogen/CO ratio would be used throughout the study, based on 

typical Platinum-Rhodium reformer catalyst performance in the region of 500°C which was anticipated 

to be the least favourable, but functional temperature for reforming with a GDI engines at low engine 

load. The flow rate of the hydrogen/CO gas mixture was adjusted at each test point so that the total 

volumetric combustible gas fraction in the REGR was 0.05 or 0.1. Therefore, the hydrogen 

concentration in the REGR stream at each condition would be 3.75% or 7.5% respectively, with 1.25% or 

2.5% CO. For the 7.2 bar IMEP test condition, higher combustible gas fractions of 0.1 and 0.15 were 

used. This was based on the knowledge that higher exhaust and reformer temperature leads to 

increased hydrogen and CO yields [11]. The hydrogen concentration in the combustion charge at each 

test point is shown in Table 2, which also specifies the energy fraction of the total fuel supplied as 

reformate (hydrogen and CO) for each test. 

Table 2 - Hydrogen Concentration in REGR stream and intake at the low load test condition 
 REGR Combustible 

Gas Fraction  

Percentage REGR 

7% 14% 21% 28% 

REGR stream 

hydrogen, % 

0.05 3.8% 

0.1 7.5% 

Intake hydrogen 

concentration, % 

0.05 0.2% 0.5% 0.7% 1.0% 

0.1 0.5% 1.0% 1.5% 2.0% 

Reformate energy 

fraction, % 

0.05 1.6% 3.7% 6.1% 8.8% 

0.1 3.2% 7.3% 12.5% 17.7% 

3. Experimental results 

3.1 Low-load engine performance and gaseous emissions with REGR 

Initially the engine retained the standard calibration cam timings, which employ a late, high overlap 

configuration that results in a high residual gas fraction for reduced pumping work and NOx formation 

at low engine load. 

At standard calibration cam timing indicated efficiency (Figure 2a) was increased initially with EGR due 

to reduced pumping work and lower heat losses. As the EGR rate was increased further the efficiency 

dropped off due to a reduction in combustion stability to the point of misfire (Figure 2b). Combustion 

durations increased monotonically with dilution rate, more significantly for the initiation phase than the 

main combustion phase; these are represented by the 0-10% mass fraction burned (MFB) and 10-90% 

MFB durations in Figure 2c and d. This deterioration in combustion speed was associated with the 

increasing inert gas fraction. 

Significantly increased unburned HCs at the higher EGR rates were caused by the deterioration of 

combustion stability and the resulting misfire (Figure 2e). Lower in-cylinder temperature with EGR also 

reduces the rate of post-combustion HC oxidation. As expected, NOx emissions dropped with increasing 

EGR (Figure 2f). This is again due to reduced combustion temperature which decreases the rate of NOx 
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formation. The thermal dilution effect of the inert gases in the charge with EGR (i.e. greater total heat 

capacity), and the reduction of the heat release rate, lower the in-cylinder temperature. This counters 

any incremental increase in temperature due to higher cylinder pressure (associated with greater 

charge mass) or advanced ignition timing. EGR dilution also leads to a slightly lower oxygen 

concentration in the charge and the exhaust stream; if the oxygen concentration is also lower while the 

temperature is sufficiently high for NOx formation, then it follows that the rate of NOx formation would 

be reduced.  

  
  

  

  
Figure 2 - Effect of EGR and REGR dilution rate on various engine performance parameters: a) indicated 
efficiency, b) combustion stability, c) combustion initiation, d) combustion duration, e) THC emissions 
and f) NOX emissions. Standard calibration cam timing (solid lines), cam timings for low internal EGR 

(dashed lines) 

The indicated efficiency for REGR was slightly lower relative to EGR for the same dilution rate, until the 

combustion stability with EGR deteriorated. For REGR the COV of IMEP remained below 5%, indicating 
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that the hydrogen/CO in the REGR had a stabilising effect on combustion. These figures also show that 

an incremental increase in combustion rate was achieved with REGR relative to EGR, for a given dilution 

rate. This was attributed to the beneficial combustion properties of hydrogen, in particular the higher 

laminar flame speed [9], which explains the large reduction in the flame initiation period (MFB 0-10%) 

when combustion is primarily laminar. 

The mechanisms for reducing NOx formation with EGR are also applicable to REGR due to the very 

similar charge composition, and the net result is again significantly reduced NOx emissions with respect 

to the baseline condition. However, the higher adiabatic flame temperature of hydrogen and CO 

compared to gasoline results in higher in-cylinder temperature, leading to slightly increased NOx 

formation rate for REGR relative to EGR. For the same reason HC oxidation is increased and HC 

emissions are lower. 

From the results obtained with the standard cam timings it was clear that the level of internal EGR 

should be reduced in order to increase the achievable REGR rate, and increase the concentration of 

hydrogen and CO in the charge. 

In order to reduce the internal EGR rate and enable greater external dilution, various cam timings were 

tested with reduced overlap and positioned closer to top dead centre (TDC). The relative amount of 

internal EGR at each setting was gauged by observing the change in combustion rate and NOX 

emissions, as well as considering the effect on indicated efficiency and intake manifold pressure. The 

valve timings for the low internal EGR condition were selected as inlet valve opening (IVO) at -10° and 

exhaust valve closing (EVC) at 8° after TDC. 

Altering the cam timings to the low internal EGR setting when there was no external charge dilution 

reduced the indicated efficiency (Figure 2a), primarily due to lower intake manifold pressure which 

increased the pumping work. The introduction of external dilution improved indicated efficiency 

monotonically up to the dilution limit which was extended to 21% for EGR and 28% with REGR. The 

peak efficiency achieved with the EGR dilution method was very similar for both cam timings, albeit 

while using very different external EGR rates. This implies that the total dilution rates (internal + 

external EGR) are similar in both cases, supported by comparable emissions and combustion results 

(Figure 2b-f). 

It is apparent that the presence of hydrogen and CO in REGR does not lead directly to improved 

indicated efficiency relative to EGR, however the possibility to operate the engine with higher overall 

dilution rate does. This is also combined with significantly reduced NOX emissions and moderately 

increased HCs.  

In these tests the engine used the standard ignition system and spark plug, and single-pulse direct fuel 

injection for a homogenous charge mixture. High energy ignition systems are able to increase the 

dilution tolerance with EGR [31] and this could be expected to translate to increasing REGR tolerance. 

Utilising dual injection to generate a partially stratified charge has been shown to benefit combustion 

stability and fuel economy with an EGR diluted charge [32]. The application of these methods to the 

REGR case could yield further efficiency improvements. 
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3.2 Mid-load engine performance and gaseous emissions with REGR 

The following section presents results for the engine operating at a higher, mid-load condition of 

105Nm/7.2 bar IMEP at 2100 rpm. The target dilution rate was 21%, the maximum achievable with the 

high pressure EGR loop under these manifold conditions. The ignition timing was set for either optimum 

combustion phasing (defined by MFB50% = 8° ± 2°aTDC) or knock limited spark minus 2° crank angle. 

Table 3 defines the conditions for the 7.2 bar IMEP tests and the results are summarised in Table 4. 

Combustion was stable for all test conditions at this engine load. 

Table 3 - Test conditions at 7.2 bar IMEP, 2100rpm 

Test point 
Dilution 
rate, % 

%H2 in 
REGR 

%CO in 
REGR 

%H2 
Intake 

%CO 
Intake 

REGR 
Energy, % 

Ignition, 
°bTDC 

MAP 
(bar) 

Baseline  0 0 0 0 0 0 21 0.85 

EGR 21 0 0 0 0 0 44 1.00 

REGR (0.1) 20 8.1 2.7 1.8 0.6 9 33 1.01 

REGR (0.15) 20 11.9 4.0 2.8 0.9 15 31 1.02 

Table 4 - Summary of results for 7.2 bar IMEP at optimum ignition timing [indicated engine efficiency 

(ηind), percentage increase in efficiency (Δηind), brake specific emissions, combustion efficiency (ηcomb), 
exhaust gas temperatures (EGT) and pumping work (PMEP)] 

Test Point ηind Δηind (%) 
BSHC 

g/kWh 
BSNOx 
g/kWh 

BSCO 
g/kWh 

ηcomb 
EGT (Pre-
turbine) 

EGT (Post-
TWC) 

PMEP 
(bar) 

Baseline  0.340 0 2.4 16.0 28.6 0.960 743 727 -0.47 

EGR 0.356 +4.7 3.9 2.6 20.6 0.962 655 645 -0.34 

REGR 0.1 0.357 +4.8 3.3 2.7 17.5 0.967 661 642 -0.33 

REGR 0.15 0.354 +4.0 3.0 3.0 16.4 0.970 658 635 -0.31 

The effect of EGR on combustion was, as expected, to reduce the burn rate. As was the case at lower 

engine load this was most significant in the ignition phase of combustion, indicated in Figure 3 by longer 

MFB 0-10% duration. Figure 3 also shows that the trend was similar but less pronounced for the main 

combustion phase duration. 

 
Figure 3 - Combustion phase durations 

BSHC emissions were almost doubled by EGR due to lower cylinder temperatures and reduced 

oxidation rate, however combustion efficiency was maintained (Table 4). This can be attributed to the 

simultaneous reduction in CO emissions, which also reduces the estimated value for hydrogen 
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concentration in the exhaust stream ((6). Together these offset the change in combustion efficiency ((7) 

due to increased unburned HCs.  

Similarly to the low engine load results, the presence of hydrogen and CO in the charge for REGR 

influenced combustion by increasing the burn rate towards that of the baseline case, and resulted in 

further improvements to combustion efficiency. Slightly higher combustion temperatures relative to 

EGR led to an incremental increase in NOx formation and HC oxidation rates, with corresponding 

changes to specific emissions values. Despite this, REGR offers greater than 80% reduction in BSNOX 

compared to the baseline. 

The simultaneous reduction of CO and slightly increased NOx with REGR may have implications for TWC 

operation with regards to the suitable ratio of reducing and oxidising species in the feed gas. The CO: 

NOx ratio remains favourable (in fact being increased when compared to the baseline) to remove NOx 

by the CO reduction mechanism. It may be the case that complete conversion of CO (and HCs) is not 

possible if NOx becomes too low, in which case more oxygen should be made available in the exhaust 

stream. This may be achieved with engine control by shifting the stoichiometry fluctuations in the lean 

direction. This would also restore the overall reducing/oxidising balance by incrementally increasing 

NOx formation and reducing CO and HCs. 

Estimated exhaust stream hydrogen 
concentration, H2,EX (ppm) 

= 10000 ∗ [
(𝐶𝑂𝑒𝑥 , % ∗ 𝐻2𝑂𝑒𝑥 , %)

3.5 ∗ 𝐶𝑂2𝑒𝑥 , %
] (6) 

 

Combustion 
efficiency, ηcomb = 1 −  [

(𝐿𝐻𝑉𝑔. 𝑚̇𝐻𝐶,𝑒𝑥 + 𝐿𝐻𝑉𝐻2. 𝑚̇𝐻2,𝑒𝑥 + 𝐿𝐻𝑉𝐶𝑂. 𝑚̇𝐶𝑂,𝑒𝑥)

(𝑇𝑜𝑡𝑎𝑙 𝑓𝑢𝑒𝑙 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑, 𝑀𝐽/𝑠)
] (7) 

The improvement to indicated efficiency with EGR (Table 4) was attributed to the optimised 

combustion phasing and slightly lower pumping work due to the increased intake manifold pressure. In 

addition, lower combustion temperatures reduce the rate of heat loss from the combustion chamber. 

Indicated efficiency for REGR with both compositions was similar to that of EGR. It seems that the 

addition of hydrogen and CO provides no further efficiency benefit for the same recirculation rate. The 

incremental improvement in combustion efficiency with REGR was not sufficient to improve indicated 

efficiency compared to EGR.  

Dilution with either EGR or REGR allowed for the combustion phasing to be advanced closer to the 

optimum, apparent by the advancement of the MFB50% timing from 12° aTDC (knock limited) for the 

baseline to 7° aTDC for each of the other conditions, visible in the MFB curves of Figure 4. This agrees 

with previous research that has shown EGR dilution [15, 32, 33] and hydrogen enhancement [8, 34] to 

be effective for attenuating knock. 

Figure 4 also shows that higher peak cylinder pressures are generated with dilution, which is due to the 

increased charge mass relative to the baseline. Studying the rate of heat release curves it is seen that 

the baseline gasoline combustion process is appreciably retarded from the optimum (due to knock) 

meaning that the combustion process is releasing energy most quickly once the piston is too far into 

the expansion stroke. This ultimately reduces efficiency as it is a poor approximation of the idealised 

constant volume combustion process which is characteristic of the Otto cycle. Although the maximum 

rate of heat release is lower with diluted combustion, the position of the maximum is advanced much 

closer to TDC. It is also obvious that the hydrogen and CO in REGR results in a higher maximum rate of 
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heat release than for EGR, meaning that marginally less energy is released during the compression 

stroke and later in the expansion stroke, and so represents a closer approximation to constant volume 

combustion. 

 
Figure 4 – In-cylinder pressure, Rate of heat release and Mass Fraction Burned curves for Baseline 
gasoline combustion, and diluted combustion with EGR and REGR 

3.3 Particulate Matter (PM) emissions 

At elevated engine load, PM formation in GDI engines becomes more significant. The formation of PM 

by nucleation of volatile species in the exhaust stream, and the adsorption of volatile species onto 

existing particles are processes that occur primarily during cooling and dilution of the exhaust gas [35]; 

for instance at the tailpipe exit, or in the PM sampling system. In these experiments, the PM sampling 

system was positioned after the TWC to minimise the influence of these two mechanisms on 

measurement variability, on the basis that the TWC has removed a large proportion of the volatile 

fraction from the exhaust stream. Heated dilution also aimed to limit nucleation mode particle 

formation.  

Figure 5 illustrates the benefit that both EGR and REGR have on reducing total PM number and mass 

relative to the baseline gasoline condition. Further to that, REGR results in lower PM compared to EGR. 

This reduction in PM with EGR dilution is opposite to when cooled EGR is used in diesel engines. 

Because the average exhaust stream oxygen concentration is low and essentially fixed (0.5 - 0.8% for 

effective TWC operation), and the combustion temperatures with EGR are lower, it follows that the rate 
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of PM oxidation in the end gas is reduced which should then cause an incremental increase in PM 

emissions. This is clearly not the dominant effect, and so there must be other mechanisms leading to 

reduced PM emissions. Hedge et al conclude in their work that “EGR significantly inhibits the nucleation 

of the particles, to the extent that it overcomes the decrease in post-flame oxidation and the increased 

potential for agglomeration” [20]. There has been only a limited amount of research that demonstrates 

this effect of EGR on PM emissions in GDI engines, and as yet no fundamental research has established 

the exact mechanisms at work. That said, the reduced in-cylinder temperature with EGR will inhibit 

both soot formation and oxidation. 

  
Figure 5 - Total PM number (a) and mass (b) concentration for a range of conditions at 7.2 bar 

IMEP/2100rpm 

Another reason for lower PM formation can be attributed to the fact that EGR improves engine 

efficiency. Therefore, for a given engine load, a smaller quantity of fuel is injected into the cylinder 

compared to the baseline condition and will lead to proportionally less PM being formed. 

As well as this, in order to maintain engine load with the induction of EGR the charge mass must be 

increased by raising the intake manifold pressure. The rate of mass transfer (and therefore kinetic 

energy) through the intake valve must be higher than for the baseline case. The influence of greater 

charge motion could be improved mixing, fuel vapourisation and charge homogeneity. Although this 

effect is difficult to quantify without thorough experimental or simulation effort, it could feasibly be 

leading to an incremental reduction of locally fuel rich regions where particles are formed.  

A clear reduction in PM formation occurs with REGR due to the presence of hydrogen and CO. This 

reduction is seemingly monotonic as the reformate quality improves, i.e. the hydrogen and CO 

concentration increases. This is partly due to the decreasing proportion of the total fuel injected as 

gasoline, meaning that there is less liquid fuel to be vaporised and, as a result, fewer fuel droplets 

should remain once combustion begins. The incrementally higher combustion temperature due to 

higher hydrogen and CO flame temperatures will also assist in HC and PM pre-cursor oxidation. 

Because of the fixed hydrogen: CO ratio in these tests is not possible to determine the individual 

contribution from either species on influencing PM formation. Previous research into hydrogen blended 

gasoline combustion [36] has indicated that hydrogen initiates a significant reduction in nucleation 

mode particles. Guided by work elsewhere on soot formation in ethylene-hydrogen flames [37], they 

concluded that hydrogen addition inhibits soot nucleation by slowing or reversing the hydrogen 

abstraction reaction, the mechanism by which polycyclic aromatic hydrocarbons grow to form soot. It 

seems likely that this route to reduced PM formation is applicable here.  
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Fundamental combustion studies have proven CO addition to ethylene [38] and acetylene [39] flames 

to be effective for reduced PM formation. Although these works derived that the chemical effect of CO 

is to enhance PM formation, overall PM formation was reduced due to the dominance of the dilution 

and thermal effects. The application of the current study differs in that the molar concentration of CO is 

low (<1%) and the large proportion of CO2, H2O and nitrogen in the charge will render the dilution and 

thermal effects of the CO insignificant. It is possible then that the chemical effect of CO will lead to an 

incremental increase in PM formation in this case, but it is offset by the presence of hydrogen. 

The advanced ignition timing shift required for diluted combustion will tend to increase PM formation 

to some degree by allowing less time for charge mixing, meaning that more locally fuel-rich regions 

remain during combustion. This effect should not be as pronounced for the ‘homogeneous charge’ GDI 

engine compared with stratified charge GDI or diesel engines as the early injection timing (~295° bTDC 

in this case) means that the increment of time lost for charge mixing will be small relative to the overall 

time between injection and ignition. Ignition timing variation also alters the prevailing in-cylinder 

conditions during combustion and post-combustion which has a significant influence on the formation 

and destruction of soot pre-cursors and soot, and therefore may influence overall PM emissions more 

than the charge mixing effect. This will be considered in a future investigation. 

Figure 6 and Figure 7 plot the particle size distributions (number and mass concentration). These are 

included to provide information on the influence of REGR on particle size, which is important when 

considering the negative health and environmental effects of PM. Particles with smaller diameter are 

considered more detrimental to health. The distributions show no obvious bi-modal distribution 

normally associated with the nucleation and accumulation modes. A similar, uni-modal particle size 

distribution has been seen with post-TWC exhaust sampling from a PFI gasoline engine [21]. The 

geometric number mean particle diameter (GNMD) for the baseline case was 58nm, and the addition of 

EGR reduced the GNMD to 51nm. This was due to the reduced particle formation resulting in a lower 

tendency to form larger particles by accumulation, rather than an increase in particles with smaller 

diameter.  An increase in primary particles with larger diameter might reasonably be expected here 

because the lower post-flame temperature with EGR increases the rate of particle surface growth [19] 

as well as decreases the rate of particle oxidation, but this effect doesn’t appear to be leading to a 

larger GNMD. The addition of hydrogen and CO in the charge does not influence the mean particle 

diameter with respect to EGR, but serves to further reduce the particle count across the range. 

The concentration of particles with diameter above 200nm is very low for EGR and REGR, whereas for 

the baseline condition particles are measured in greater numbers up to 250nm. This effect is due to the 

reduced particle formation with EGR and REGR meaning there is a lower probability of agglomeration to 

form the larger particles. The significance of this can be seen in the particle mass distributions of Figure 

7, with a greater contribution of these large particles to the total particulate mass concentration. 
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Figure 6 - Number particle size distributions for the Baseline, EGR and REGR conditions 

 

 
Figure 7 - Mass particle size distributions for the Baseline, EGR and REGR conditions 

3.4 Estimated system efficiency 

The following section provides an estimate of the total engine-reformer system efficiency, accounting 

for the exhaust heat recovery that might be achieved by the reforming process which is not included in 

the engine (indicated) efficiency calculation. First, the reforming process efficiency was calculated; this 

accounts for the enthalpy increase of the portion of gasoline that is converted by the reformer to 

gaseous fuel, and excludes any gasoline that breaks through unreacted. This approach was most 

suitable here because the simulated reformate contains no HC component. Therefore, HCs that would 

enter the combustion chamber as part of the reformate following a real reforming process were, in 

these tests, supplied as normal via the fuel injector. Experimental data from reformer catalyst 

development was applied to (8 to give an estimate of the reforming process efficiency, where LHVx is 

the lower heating value of species x, 𝑚̇𝑔,𝑟𝑒𝑓,𝑖𝑛 represents the mass flow of gasoline into the 

experimental reformer, and the mass flows of hydrogen, CO and methane are products in the 

reformate. The reformer process efficiency can be considered a fuel enthalpy multiplier which 

represents the change in total fuel enthalpy during the reforming process, and as such may be less than 

or greater than 1. The reformer efficiency was calculated to be ηref = 1.1 at 550°C with 5000ppm 

feedgas fuel. 

𝜂𝑟𝑒𝑓 =  
𝐿𝐻𝑉𝐻2. 𝑚̇𝐻2 + 𝐿𝐻𝑉𝐶𝑂. 𝑚̇𝐶𝑂 + 𝐿𝐻𝑉𝐶𝐻4. 𝑚̇𝐶𝐻4

𝐿𝐻𝑉𝑔. (𝑚̇𝑔,𝑟𝑒𝑓,𝑖𝑛 − 𝑚̇𝑔,𝑟𝑒𝑓,𝑜𝑢𝑡)
 

(8) 
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The estimate of engine-reformer system efficiency was then calculated using (9 for the best performing 

REGR condition at each load tested. Table 5 details the estimated indicated system efficiency results 

alongside the indicated engine efficiency (ηeng,ind ). This relates to the engine performance as used in 

this study, operating with gasoline, hydrogen and CO to simulate reforming. The indicated system 

efficiency (ηsys,ind) assumes the engine operates with an integrated reformer with a reformer process 

efficiency of (ηref) 1.1 and 1.3. The larger value represents a more optimistic value for reformer 

performance, which may be achieved with operation at higher temperature or following further 

catalyst development. Delta engine and system efficiencies (Δη) are relative to the baseline gasoline 

engine performance at each engine load, and predict the potential benefit of using a fuel reformer with 

a GDI engine to improve fuel efficiency. 

𝜂𝑠𝑦𝑠,𝑖𝑛𝑑 =  
𝑊̇𝑖𝑛𝑑

𝐿𝐻𝑉𝑔. 𝑚̇𝑔,𝑒𝑛𝑔 + (
𝐿𝐻𝑉𝐻2. 𝑚̇𝐻2 + 𝐿𝐻𝑉𝐶𝑂. 𝑚̇𝐶𝑂

𝜂𝑟𝑒𝑓
)

 (9) 

Table 5 - Estimated total indicated engine-reformer system performance (ηsys,ind)  

Engine condition ηeng,ind Δηeng,ind 
ηref = 1.1 ηref = 1.3 

ηsys,ind Δηsys,ind ηsys,ind Δηsys,ind 
3 bar IMEP, 2100 rpm, 
28% REGR (0.1), IVO = 

-10°/EVC = 8° 
0.299 +7.9% 0.303 +9.1% 0.308 +11.1% 

7.2 bar IMEP, 2100 
rpm, 20% REGR (0.1) 

0.357 +4.8% 0.360 +5.7% 0.365 +7.1% 

Finally, it is well known that diluted combustion leads to lower exhaust gas temperature (EGT), which 

clearly has implications for the operation of an exhaust gas heated fuel reformer. For example at the 

3bar IMEP engine load the EGTs (pre-turbine and post-TWC) were reduced from around 650°C for the 

baseline condition to 550°C for REGR.  Use of REGR resulted in a slight increase in pre-turbine EGT 

relative to EGR (Table 4) due to higher combustion temperature. One result that wasn’t anticipated was 

the influence of REGR on lowering the post-TWC EGT. The oxidation of unburned combustion products 

normally induces a rise in temperature across the TWC, but because the REGR combustion process is 

more complete and the exhaust contains lower HCs this effect is reduced and the resulting EGT is 

lower. This fact could be important for future reformer design and integration.  

4. Conclusions  

The potential benefits of an integrated engine-fuel reformer system have been demonstrated with 

these tests, which have used bottled hydrogen/CO and EGR gases to generate reformate with realistic, 

achievable compositions. In doing so, REGR performance was compared to that with EGR and to the 

baseline GDI engine.  

In all cases REGR improves indicated engine efficiency relative to the baseline gasoline engine. REGR 

can outperform conventional EGR due to extension of the dilution limit. This is coupled with largely 

reduced NOX emissions and moderately increased HCs with respect to the baseline condition. EGR and 

REGR also work to reduce or eliminate knock. 

Both EGR and REGR reduce PM number and mass emissions across the range of studied particle 

diameters. The inclusion of hydrogen and CO in REGR leads to lower PM relative to EGR. The results 
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indicate an additive benefit is achieved by combining the mechanisms for reducing PM formation with 

EGR and hydrogen. 

Variable cam timing offers an advantage by extending the maximum achievable REGR rate by utilising 

cam timings for low internal EGR. In the case of operation with an integrated, exhaust heated fuel 

reformer this would increase the reformed fuel fraction, maximising the potential for exhaust energy 

recovery. 
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