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A Fast Geometric Defuzzication Operator for Large Scale
Information Retrieval

Simon Coupland, David Croft and Stephen Brown

Abstract—In this paper we explore the centroid defuzzication
operation in the context of specific data retrieval application. We
present a novel implication and centroid defuzzication approach
based on geometric fuzzy sets and systems. It is demonstrated
that this new approach requires fewer operations and results
in a significant reduction in processing time in our application.

I. INTRODUCTION

Many Gallery, Library, Archive and Museum (GLAM)
institutions posses sizeable collections of heritage objects
and in recent years considerable effort has been expended
in digitising information related to these heritage resources.
Digitisation projects are conducted for a variety of reasons,
typically focused on conservation, research and collection
accessibility [1], but the result is that tens of millions (at
least) of collection items exist digitally [2].

There is growing consensus among museum professionals
and users about the importance of data integration between
different collections to allow cross searching and data cluster-
ing that extends beyond the limited powers of basic keyword
searching ([3], [4], [5], [6]. ”‘The nature of humanities
data (being fuzzy, small scale, heterogeneous, of varying
quality, and transcribed by human researchers) as opposed
to scientific datasets (large scale, homogenous, numeric, and
generated or collected/sampled automatically), means that
novel computational techniques need to be developed to
analyse and process humanities data for large scale projects”’
[7].

Although cross-collection searches were always possible
even with non-digitised objects, the reality is that they were
very time and resource intensive and had, therefore, to be
limited to both scope and number. Digitised heritage collec-
tions offer the possibility of easier cross collection searching.
This would allow humanities researchers to investigate a
broader range of sources and to conduct their investigations
faster. Although the potential for cross-collection searching
within GLAM collections is considerable, the nature of
the information to be searched makes this a challenging
problem. Record information within GLAM collections, is
often imprecise and of uncertain accuracy. Coping with these
issues requires elements from multiple domains, including
but not limited to, Short Text Semantic Similarity (STSS),
approximate string matching and fuzzy logic.
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Our previous research has demonstrated that semi-
automated co-reference identification between GLAM col-
lection records is possible despite the difficult nature of
record information [8]. Having demonstrated its feasibility,
our current focus is on implementing a system for ongoing
and sustainable linkage of records in real heritage collections.
At the present time we have records from fourteen different
collections, amounting to more than 1.4 million.

The overall record similarity approach being used has been
described in greater detail previously [8], although it has
subsequently undergone further refinements. Of importance
to this paper is that the final stage of the record pair
comparison process is a Mamdani Fuzzy Inference System
(FIS) which produces a defuzzified centroid. Whilst the sets
and rules used by that FIS are very simple and have a
low computational costs, the sheer number of comparisons
to be made means that the cumulative time required for
defuzzification is considerable.

Under our co-reference identification process, the total
number of pair comparisons needed to compare r records is
r2−r. Assuming that we wish to find co-reference candidates
for every one of the ≈ 1.4 million records collected as part of
this project so far, a total of 1.96×1012 comparisons would
be required.

While the centroid was initially calculated using a dis-
cretisation approach in order to demonstrate that the rest
of the co-reference approach was working as expected, this
approach was (as expected) time consuming. Geometric
defuzzification promises to be significantly cheaper com-
putationally than discretisation techniques, but even with
geometric approaches the number of comparisons represent
a significant processing and therefore time cost. In order
to process our large number of records is was therefore
necessary to optimise every stage of processing as much as
possible.

In this paper we describe the minimal computational cost
geometric defuzzification process we use in order to produce
dramatic processing throughput improvements for the overall
co-reference identification process.

The reminder of the paper is structured as follows: Section
II presents related work which underpins our new approach,
Section III presents the novel geometric implication and
defuzzification approach, Section IV presents a comparison
between our approach and a discrete implementation and
finally Section V concludes this work.



II. RELATED WORK

The approach presented in this paper is a form of geo-
metric fuzzy sets and systems approach first outlined in two
papers by Coupland et al [9], [10]. Geometric fuzzy systems
treat fuzzy sets (including type-2 interval and general) as
geometric objects made up of simple geometric primitives.
Coupland et al considered line segments as their geometric
primitive when dealing with type-1 fuzzy sets. This required
line segment intersection calculations [11] and a modified
version of the Bentley-Ottman plane sweep algorithm [12]
to compute logical operations on fuzzy sets. However, in
this paper we use triangles as our geometric primitive and
rely on the simple fact that a triangles area is given by half
it’s base times it’s height and the centroid of a triangle is
given by the arithmetic mean of it’s three apexes. As with
all geometric fuzzy system we restrict ourselves to only
using Mamdani style rule based systems and only using
minimum and maxmium for t-norms and t-conorms. We also
only consider the centroid defuzzifier. The main reason for
this is that we found it worked well in our application and
therefore our motivation for this work was simply to improve
computation time. There are a number of other approaches to
defuzzification which are efficient (centre of sums, mean of
maxima, height. See [13] for details), however we wished to
maintain the behaviour of our prototype rule base so therefore
stuck to the centroid.

III. FAST DEFUZZIFICATION ALGORITHM

We now examine how to perform the geometric impli-
cation and centroid defuzzication for triangular membership
functions. We do not cover all potential combinations, how-
ever we cover all those required for our application.

A. Centroid of a Single Symmetrical Triangle

Consider the fuzzy set whose membership function is
a single symmetrical triangle depicted in Figure 1. The
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Fig. 1. A Single Symmetrical Triangular Fuzzy Set.

membership function of this set is simply a triangle, therefore
it’s area is half the base length multiplied by the height.
The centroid can be calculated as the mean of the three
co-ordinates which make up the triangle. The area and the
centroid of this fuzzy set are given in equations 1 and 2.

A =
e− s

2
(1)

C =
e+m+ s

3
(2)

where A is area and C is the centroid. For this triangle e−
m = s−m, therefore the centroid is simply m. Now suppose
this set is used as a consequent of a Mamdani style rule
with a firing strength of µ. Such a situation is depicted in
Figure 2(a). The shape of the resultant consequent set is a
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Fig. 2. A Single Symmetrical Triangular Consequent Fuzzy Set Under
Firing Strength µ.

trapezoid which is shown as the grey shaded area in Figure
2(a). This trapezoid shape can be easily constructed from
two triangles. If we take the triangle depicted in Figure 2(a)
from the triangle in Figure 1 we arrive at the trapezoid which
would result from the impaction of the rule firing strength µ
on the triangular consequent set. The area of this set is given
by subtraction of the triangle areas. The area of the smaller
second triangle is given by equation 3.

A =
(e− s)× (1−µ)

2
× (1−µ) (3)

Notice that the base of the second triangle is calculated by
multiplying the base of the original triangle by (1−µ), with
(1−µ) being a simple scalar. We can rewrite the area of the
resultant trapezoid as:

A =
(e− s)× (1−µ)2

2
(4)

The centroid of the trapezoid is clearly given by:

C =
e+m+ s

3
= m (5)

B. Centroid of a Non-Contained Pair of Symmetrical Trian-
gles

Of course, in a Mamdani system consequent fuzzy sets
must also be combined with the logical AND before de-
fuzzifcation. Therefore, the next situation we are concerned
with is a pair of triangular fuzzy sets under firing strengths
of µ1 and µ2 respectively. We begin by looking at a pair of
symmetrical triangles where s1 ≤ s2, m1 ≤ m2 and e1 ≤ e2 as
depicted in Figure 3 which we will refer to as non-contained.

The particular pair of triangles in Figure 3 can be de-
constructed into five separate triangles which can be used
to calculate the area and centroid of the resultant set. For
the sake of generality we must include a sixth triangle not
immediately apparent in Figure 3. In Figure 3 both µ1 and µ2
are greater than the y-component of the point where the line
segments (m1,e1), (s2,m2) intersect. This may not always be
the case as demonstrated by the pair of triangles depicted in
Figure 4.



s1 m1 e1

0

1
µ

s2 m2 e2

µ1
µ2

(c)

s1 m1 e1

0

1
µ

s2 m2 e2

µ1
µ2

(a)

s1 m1 e1

0

1
µ

s2 m2 e2

µ1
µ2

(e)

s1 m1 e1

0

1
µ

s2 m2 e2

µ1
µ2

(d)

s1 m1 e1

0

1
µ

s2 m2 e2

µ1
µ2

(b)

s1 m1 e1

0

1
µ

s2 m2 e2

µ1
µ2

(f)

1 2

3 4

5

6

Fig. 5. A Second Pair of Symmetrical Triangular Fuzzy Sets.

s1 m1 e1

0

1
µ

s2 m2 e2

µ1

µ2

h1

i1

Fig. 3. A Pair of Symmetrical Triangular Fuzzy Sets.
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Fig. 4. A Second Pair of Symmetrical Triangular Fuzzy Sets.

A pair of symmetrical triangular fuzzy sets may be broken
down into six triangles. The first two triangles are straight-
forward: s1,m1,e1 (Figure 5 (a)) and s2,m2,e2 (Figure 5
(b)). The second two triangles are used to form trapezoids
formed by the application of the implication operator with
the respective rule firing strengths of µ1 (Figure 5 (c)) and

Triangle Area Centroid

1
(e1−s1)

2 m1

2
(e2−s2)

2 m2

3
(e1−s1)×(1−µ1)

2

2 m1

4
(e2−s2)×(1−µ2)

2

2 m2

5
(e1−s2)

2 ×h1 i1

6
(e1−s2)×(h1−(h1∧(µ1∨µ2)))

2

2 i1

TABLE I
AREAS AND CENTROID OF THE TRIANGLES MAKING UP TWO
NON-CONTAINED INTERSECTING SYMMETRICAL TRIANGLES.

µ2 (Figure 5 (d)). The final pair of triangles we have to
consider are formed by the intersection of the original two
triangles. Clearly, the intersection of two triangles results in a
triangle (Figure 5 (e)), however it may be that the implication
operator also acts on this triangle resulting in a sixth and
final triangle (Figure 5 (f)). The areas and centroids of each
of these triangles are given in table I. When the situation
depicted in Figure 3 occurs, the area of triangle 6 will be 0
and not contribute towards the centroid calculation.

The centroid C of the final consequent set is given by the



weighted average of each triangles area (equation 6).

C =

C1 ×A1 +C2 ×A2 −C3 ×A3 −C4 ×A4 −C5 ×A5 +C6 ×A6

A1 +A2 −A3 −A4 −A5 +A6

(6)

However, we are concerned primarily with operational effi-
ciency, our goal is to minimise computation time and we will
modify equation 6 to make use of any precomputed values
we can. Let α and β be precomputed values as follows.

α = A1 ×C1 +A2 ×C2 −A3 ×C3 (7)

β = A1 +A2 −A3 (8)

Note that all terms in equations 7 and 8 are known before-
hand and are listed in Table I, therefore the centroid can be
given by equation 9.

C =
α−C4 ×A4 +C5 ×A5 −C6 ×A6

β−A4 +A5 −A6
(9)

C. The Centroid of A Fully Contained Pair of Symmetrical
Triangles

We now move on to look at a pair of symmetrical triangles,
which we refer to as fully contained, where m1 ≤ s2 ≤ e1,
m1 ≤ m2 ≤ e1 and m1 ≤ e2 ≤ e1 as depicted in Figure 6.
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Fig. 6. A Pair of Fully Contained Symmetrical Triangular Fuzzy Sets.

The centroid of the conjunction of these two triangular
fuzzy sets can be calculated from five triangles. Table II gives
the area and centroid of each of these triangles and Figure 7
depicts the fourth and fifth triangles in Table II. The overall
centroid is given by equation 10.

C =
A1 ×C1 −A2 ×C2 +A3 ×C3 −A4 ×C4 −A5 ×C5

A1 −A2 +A3 −A4 −A5
(10)

Equation 10 can be extended to include the implication
operation We however, leave this to the reader.

D. Centroid of Four Non-Contained Symmetrical Fuzzy Sets

We move on to look at the exact problem faced in our data
retrieval application, namely an efficient way of calculating
the centroid of the output of four Mamdani rules. In our
rule base the four fuzzy sets happen to be symmetrical and
non-contained and this is the reason we have pursued the
efficient defuzzication approach in the way described in this
paper. Figure 8 depicts this situation where each of the four
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Fig. 7. A Pair of Fully Contained Symmetrical Triangular Fuzzy Sets.

Triangle Area Centroid

1
(e1−s1)

2 m1

2
(e2−s2)

2 m2

3
(i3−i1)

2 × (1−h1) m2

4
(i2−i1)

2 × (h2 −h1)
i1+i2+i2

3

5
(i3−i2)

2 × (h2 −h1)
i1+i2+i2

3

TABLE II
AREAS AND CENTROID OF THE TRIANGLES MAKING UP TWO FUZZY

CONTAINED INTERSECTING SYMMETRICAL TRIANGLES.

rules has some firing strength (µ1 . . .µ4) which is implied
across the respective consequents which are then combined
and defuzzified. For this problem we must use 14 separate
triangles to calculate the implication and defuzzification
operation. These triangles follow from the triangles we used
to calculate implication and centroid for a pair of non-
contained symmetrical triangles. The areas and centroids of
each of these 14 triangles are listed in Table III.

The only terms unknown before the implication and de-
fuzzification are the rule firing strengths µ1 . . .µ4. Any area or
centroid listed in Table III not containing these terms can be
computed ahead of time. This means all centroids are known
ahead of time and areas 1 . . . 7 may be precomputed and may
the combination of these first seven areas and centroids. In
addition several components (i.e. (e1 − s1)) of the remaining
areas may be precomputed. Let α and β be precomputed
terms given by equations 11 an 12 respectively.

α =
4

∑
i=1

Ci ×Ai −
7

∑
i=5

Ci ×Ai (11)

β =
4

∑
i=1

Ai −
7

∑
i=5

Ai (12)

The final centroid may then be given by equation 13. It
is this equation which is used in the following section to
achieve a reduction in the computation time of a large
scale data retrieval application where all terms which can
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Fig. 8. Four Fully Contained Symmetrical Triangular Fuzzy Sets.

Triangle Area Centroid

1
(e1−s1)

2 m1

2
(e2−s2)

2 m2

3
(e3−s3)

2 m3

4
(e4−s4)

2 m4

5
(e1−s2)

2 ×h1 i1

6
(e2−s3)

2 ×h1 i2

7
(e3−s4)

2 ×h1 i3

8
(e1−s1)×(1−µ1)

2

2 m1

9
(e2−s2)×(1−µ2)

2

2 m2

10
(e3−s3)×(1−µ3)

2

2 m3

11
(e4−s4)×(1−µ4)

2

2 m4

12
(e1−s2)×(h1−(h1∧(µ1∨µ2)))

2

2 i1

13
(e2−s3)×(h2−(h2∧(µ2∨µ3)))

2

2 i2

14
(e3−s4)×(h3−(h3∧(µ3∨µ4)))

2

2 i3

TABLE III
AREAS AND CENTROID OF THE TRIANGLES MAKING UP FOUR
INTERSECTING NON-CONTAINED SYMMETRICAL TRIANGLES.

Number of Operations
Operation Novel Approach 201 Points 10 Points

+ 14 402 22
− 7 0 0
× 21 201 11
/ 8 1 1
∧ 3 804 44
∨ 3 603 33

TABLE IV
A COMPARISON OF THE COMPUTATIONAL COMPLEXITY OF OUR

APPROACH WITH THE STANDARD APPROACH WITH TWO LEVELS OF
DISCRETISATION.

be precomputed are precomputed.

C =

α−
11
∑

i=8
Ai +

13
∑

i=12
Ai

β−
11
∑

i=8
Ai +

14
∑

i=12
Ai

(13)

We now examine the computational complexity of our
novel implication and defuzzification operation. We com-
pare the number of operations required to compute the
centroid using this new operation with the standard level
of discretisation used in Matlab. Matlab by default will
divide a consequent domain into 201 discrete points. For
four Mamdani rules this will require the minimum of each
point with the firing strength to be taken, the maximum
of all these needs to be taken before the weighted sum
of each pair is calculated. We also consider a much lower
level of discretisation: 11 discrete points in the domains
which we consider to be too coarse to be practical, but
useful in the comparison of computational complexity. Table
IV summarises the number of operations required for each
approach in terms of +, −, ×, /, ∧ and ∨. Clearly our
novel approach has a much lower computational complexity



TABLE V
AVERAGE PROCESSING TIME REQUIRED.

Records Time (seconds)
Discrete Geometric

10 10.92 9.87
55 11.00 9.99
100 11.10 10.13
550 12.84 11.82
1000 15.99 14.16
5500 125.13 73.19

10000 375.56 196.97
55000 6368.61 2040.13

which we go on to demonstrate within an application in the
following section. In terms of the accuracy of the results, as
the approach taken is geometric the results are completely
accurate [14], by definition more accurate than any discrete
approach can be.

IV. TESTING

In order to measure the performance improvement offered
by our geometric implementation, the overall co-reference
identification system was run using both defuzzification
approaches and the time required for it to finish processing
was recorded in each case.

It was expected that the processing time required would
increase exponentially as the number of records being
processed increased. It was also expected that the geometric
defuzzification approach would produce significantly faster
processing times.

The system was run against groups of 10, 55, 100, 550,
1000, 5500 and 10000 records. The same records were used
in testing both defuzzification methods and each test was run
10 times to produce a mean average for each set of records
processed.

Testing was conducted on an Intel 3.10GHz quad core
machine (i5-2400) with 8GB of RAM. As the co-reference
identification software is multi-threaded, it was allowed to
use all cores. When defuzzifying using a discrete approach,
201 points were used for each centroid calculated.

The average processing time results can be seen in table
V. Based on our results we are able to make predictions for
the time required to process full sets of records. Assuming
1.4 million records and using the discrete defuzzification
approach, a total processing time of 3525517 seconds (40.8
days) is predicted. Using geometric defuzzification, that time
is reduced to only 849318 seconds (9.8 days).

V. CONCLUSION

In this paper we have given a novel method for calculating
the implication and centroid in a Mamdani system using tri-
angular membership functions and minimum and maximum.
We have not examined every case, however we have covered
every circumstance required in out particular application,
information matching and retrieval across museum collec-
tions. Our method requires less computation than a discrete
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approach resulting in a significant increase of processing
speed in our application. In future work we will show how
the approach can be used, how it can be generalised and what
the performance implications of doing so are.
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