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Abstract 

Palladium diffusion in germanium is fundamentally and technologically important as 

it has an extremelly low activation energy and this can impact metal induced lateral 

crystallisation to produce large grain crystals. Recent theoretical studies calculated 

that the activation energy of migration of palladium in germanium is 0.03 eV.  This 

constitute the experimental determination of the palladium diffusion properties very 

difficult. In the present study we calculate palladium diffusivity in germanium by 

employing theoretical results and comparing to the diffusion of copper in germanium. 

Finally, by employing a thermodynamic model we derive a relation describing 

palladium diffusivity to bulk materials properties. 
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1. Introduction 

 In the past years has germanium (Ge) has been considered as a rival to silicon 

(Si) for nanoelectornic devices as it has low dopant activation temperatures, superior 

carrier mobilities, and smaller band-gap [1-5].  Although Ge was important in the 

early days of the semiconductor industry it was abandoned because of its poor quality 

native oxide (GeO2) [1].  The introduction of high-k gate dielectric materials has led 

to the reconsideration of Ge as it eliminated the need for a good quality native oxide 

in advanced nanoelectronic devices [6-8].    

 In the past years there has been a concerted effort by the community to 

investigate diffusion processes in Ge [9]. There is consensus that self-diffusion and 

most diffusion processes in Ge are mediated by vacancies [10-16], contrary to Si 

where self-interstitials also influence defect processes [17,18].  From the p-type 

dopants indium is transported with a vacancy-mechanism and boron diffusion is 

interstitial and very slow [5,15].  The diffusion of n-type dopants (P, As, and Sb) is 

very important for  n-type Ge-MOSFET with the most recent experimental and 

density functional theory (DFT) results being in agreement that it is vacancy-mediated 

[13,16].  

 Metal atom diffusion is an exception as interstitial-related mechanisms can be 

prevelant [19-21].  It has been experimentally determined that copper interstitials 

(Cui) in Ge diffuse via direct interstitial or dissociative mechanisms and these are 

faster as compared to vacancy-mediated mechanisms [19-21].  The diffusion of Pd in 

Ge has not been investigated experimentally although it is important for the 

production of large grain crystals through the process of metal induced lateral 

crystallisation (MILC) [22]. In a recent hybrid density functional theory study, Tahini 

et al. [19] calculated that the direct interstitial mechanism is energetically favourable 
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for Pd diffusion in Ge and that the activation energy of migration for this process is 

only 0.03 eV.  This very low activation energy verifies the extremely fast transport of 

Pd in Ge and justifies in part the absence of experimental studies. Given that in the 

study of Tahini et al. [19] the Pd diffusion mechanism was identified to have similar 

features with Cu (for which there exist reliable experimental results [21]) we will 

propose in the present study a way to calculate the Pd diffusivities.  Finally, the Pd 

diffusion properties will be connected to the bulk properties via a thermodynamic 

model. 

  

2. Relation between Pd and Cu diffusivities 

 The diffusion coefficient D of a dopant in a solid can be defined by: 

   𝐷 = 𝑓𝑎02𝜈𝑒
−𝑔

𝑎𝑎𝑎

𝑘𝐵𝑇                                                              (1) 

Where  𝑓  is the diffusion correlation factor (depends upon the diffusion mechanism 

and the structure), 𝑎0 is the lattice constant, 𝜈 is the attempt frequency and 𝑘𝐵 is 

Boltzmann’s constant. 

 The calculation of the pre-exponential factor involves the diffusion 

correlation factor (which is dependent upon the diffusion mechanism and the crystal 

structure) and the attempt frequency. The attempt frequency for Pd in Ge is given by: 

           𝜈 = 𝜈𝐷�
𝑚𝑃𝑃
𝑚𝐺𝐺

                                                      (2) 

where 𝜈𝐷 is the Debye frequency, 𝑚𝑃𝑃 and 𝑚𝐺𝐺 are the masses for Pd and Ge 

respectively. 

 In a recent hybrid DFT study, Tahini et al. [19] calculated that Pd and Cu 

diffusion in Ge is via the direct interstitial mechanism with similar features. 

Consequently, the diffusion correlation factor 𝑓 that depends upon the diffusion 



 4 

mechanism and the structure is the same for both the Pd and Cu direct interstitial 

diffusion. Considering Eqs. (1) and (2) the Pd diffusivity (𝐷𝑃𝑃) and Cu diffusivity 

(𝐷𝐶𝐶) are linked by: 

   𝐷𝑃𝑃 = 𝐷𝐶𝐶�𝑚𝑃𝑃
𝑚𝐶𝐶

𝑒
𝑔𝐶𝐶
𝑎𝑎𝑎−𝑔𝑝𝑃

𝑎𝑎𝑎

𝑘𝐵𝑇                                                         (3) 

 In previous work it was determined by Bracht [21] that Cu interstitial diffusion 

in Ge is described by the Arrhenius relation: 

         𝐷𝐶𝐶 = 3.2𝑒−
0.18 𝐺𝑒
𝑘𝐵𝑇  ∙ 10−7𝑚2𝑠−1                                            (4) 

Therefore, by considering Eqs. (3) and (4) and the activation energy of migration 

derived by Tahini et al. [19] the Pd diffusivity is given by: 

         𝐷𝑃𝑃 = 4.14 𝑒−
0.03 𝐺𝑒
𝑘𝐵𝑇 ∙ 10−7𝑚2𝑠−1                                       (5) 

Figure 1 is the Arrhenius plot for Pd and Cu interstitial diffusion coefficients in Ge. 

It can be concluded from this figure that Pd diffusivities in Ge are lower than Cu. Pd 

diffusivities with respect to temperature are very small reflecting the extremely low 

activation energy of migration.  

 

3. Connecting point defect parameters with bulk properties  

In the present study we will employ the model by Varotsos and Alexopoulos 

(refered thereafter as the cBΩ model) [23-29] to interconnect the defect Gibbs energy 

gi (i = defect formation f, self diffusion activation act, or migration m) with the bulk 

properties. In the cBΩ model it was proposed that gi is proportional to the isothermal 

bulk modulus B and the mean volume per atom Ω, with c being the constant of 

proportionality The cBΩ model has been used for the study of the point defect 

processes in numerous materials [30-35]. Here we describe using the cBΩ model the 
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Pd intersitial diffusion coefficients in Ge using the isothermal bulk modulus and the 

mean volume per atom.   

In the cBΩ model the defect Gibbs energy gi is related to the bulk properties of the 

material via the relation [23-29]: 

gi = ciBΩP                                                                      (6) 

Therefore, by Eqs. (1) and (6): 

  𝐷 = 𝑓𝑎02𝜈𝑒
−𝑎

𝑎𝑎𝑎𝐵Ω
𝑘𝐵𝑇                                                         (7) 

Here the mean value method [33-35] is used to limit the dependence of  𝑐𝑎𝑎𝑎 upon 

experimental uncertainties in the determination of the diffusivities, the expansivity 

and isothermal bulk modulus.  In the mean value method a linear behavior of 𝑙𝑙𝐷𝑃𝑃 

with respect to 𝐵Ω
𝑘𝐵𝑇

  indicates that the cBΩ model is valid with the slope being  𝑐𝑎𝑎𝑎 

(refer to Eq. 7).   There is indeed a linear relation between 𝑙𝑙𝐷𝑃𝑃 with respect to 𝐵Ω
𝑘𝐵𝑇

 

that can be described by: 

𝐷𝑎𝐵𝑐𝑃𝑃 = 3.94𝑒−
0.0026𝐵Ω
𝑘𝐵𝑇  ∙ 10−7𝑚2𝑠−1                   (8) 

Table 1 reports characteristic calculated Pd diffusion coefficients in Ge 

alongside the elastic and expansivity data [36-39] used in the cBΩ model. This table 

shows that the cBΩ model is in excellent agreement with the calculated diffusion 

coefficients of Pd in Ge.  Differences between the calculated diffusivities and those 

calculated within the cBΩ model are less than 1%.   

 

4. Conclusions 

 In the present study we employed previous experimental and theoretical 

results to calculate the diffusivity of Pd in Ge for a range of temperatures. The 

extremely low activation energy of migration of Pd in Ge is a paradigm and the 
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present approach can be extended to systems were the experimental determination of 

dopant diffusivities is difficult.  At any rate the present calculations are a first 

approximation and experiments will be required to determine the diffusivities of Pd in 

Ge.  Finally, we calculated a relation within the cBΩ model to calculated the Pd 

diffusivity. This can be extended in future work to investigate other defect properties 

related to Pd in Ge. 
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Table 1. Characteristic calculated Pd diffusion coefficients in Ge alongside the elastic 

and expansivity data [36-39] used in the cBΩ model. 

T 

/K 

B 

/1011Nm-2 

Ω 

/10-29m3 

𝐷𝑃𝑃  

/10-7m2s-1 

𝐷𝑎𝐵Ω𝑃𝑃
 

/10-7m2s-1 

827 0.709 2.289 2.72 2.72 

877 0.703 2.292 2.78 2.79 

925 0.697 2.294 2.84 2.85 

975 0.690 2.298 2.90 2.90 

1026 0.684 2.300 2.95 2.95 

1074 0.678 2.303 2.99 3.00 

1126 0.671 2.306 3.04 3.04 

1176 0.665 2.309 3.08 3.08 
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Figure 1 The Arrhenius plot for the calculated Pd diffusion as compared to the 

experimental Cu diffusion in Ge determined by Bracht [21].   
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