
Formation mechanism of hairpin 
vortices in the wake of a truncated 
square cylinder in a duct 
Dousset, V. and Potherat, A. 
Author post-print (accepted) deposited in CURVE June 2015 
 
Original citation & hyperlink:  
 
Dousset, V. and Potherat, A. (2010) Formation mechanism of hairpin vortices in the wake of 
a truncated square cylinder in a duct. Journal of Fluid Mechanics, volume 653 : 519-536. 
http://dx.doi.org/10.1017/S002211201000073X 
 
 
Publisher statement: © Cambridge University Press 2010. 
 
 
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright 
owners. A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge. This item cannot be reproduced or quoted extensively 
from without first obtaining permission in writing from the copyright holder(s). The 
content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the copyright holders.  
 
 
This document is the author’s post-print version, incorporating any revisions agreed during 
the peer-review process. Some differences between the published version and this version 
may remain and you are advised to consult the published version if you wish to cite from 
it.  
 
 
 
 
 
 

CURVE is the Institutional Repository for Coventry University 
http://curve.coventry.ac.uk/open  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CURVE/open

https://core.ac.uk/display/228145708?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1017/S002211201000073X
http://curve.coventry.ac.uk/open


Formation mechanism of hairpin vortices in the

wake of a truncated square cylinder in a duct

Vincent DOUSSET and Alban POTHÉRAT
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Abstract

We investigate the laminar shedding of hairpin vortices in the wake of a truncated square
cylinder placed in a duct, for Reynolds numbers around the critical threshold of the onset of
vortex shedding. We single out the formation mechanism of the hairpin vortices by means of
a detailed analysis of the flow patterns in the steady regime. We show that unlike in previous
studies of similar structures, the dynamics of the hairpin vortices is entwined with that of the
counter-rotating pair of streamwise vortices, which we found to be generated in the bottom
part of the near wake (these are usually referred to as base vortices). In particular, once
the hairpin structure is released, the base vortices attach to it, forming its legs, so these are
streamwise, and not spanwise as previously observed in unconfined wakes or behind cylinders
of lower aspect ratios. We also single out a trail of Ω-shaped vortices, generated between
successive hairpin vortices through a mechanism that is analogous to that active in near-wall
turbulence. Finally, we show how the dynamics of the structures we identified determine the
evolution of the drag coefficients and Strouhal numbers when the Reynolds number varies.

1 Introduction

Flows past a truncated cylinder are involved in a wide variety of problems dealing with the design
of e.g. buildings, ship funnels or chimney stacks. The typical values of the Reynolds number Re
considered in these problems are greater than 104. In contrast, though relevant with probes used in
intrusive measurement methods (Bühler et al., 2008) and heat transfer in electronic circuit boards
(Nakamura & Igarashi, 2004), the flow dynamics at lower Re, i.e. up to 103, have been scarcely
investigated.

In these regimes, four main structures are generated in the cylinder wake: the horseshoe system,
the free shear layer stretching from the cylinder free end, those stretching from both cylinder lateral
faces and a system of trailing vortices. By convenience, we assume that the cylinder is mounted
on the bottom wall.

The horseshoe pattern results from the interaction between the boundary layers arising respec-
tively at the cylinder upstream face and at the bottom wall (Baker, 1979; Lin et al., 2008). It is
formed by a system of swirls generated by flow separation at the cylinder front that spirals around
the cylinder. It remains steady for Re < 1500 without any restriction on the thickness of the wall
boundary layer (Lin et al., 2008).

The system of trailing vortices consists of two pairs of counter-rotating streamwise vortices
located below the cylinder tip and above the cylinder base, respectively. According to their location,
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they are referred to as tip and base vortices. In both cases, their origin still remains an open
question. From experimental flow visualisations in the wake of a truncated circular cylinder at
Re > 104, Etzold & Fiedler (1976) and Park & Lee (2000) suggested that the tip vortices were
generated above the upper cylinder face from the rolling-up of the lateral ends of the upper free
shear layer, while Kawamura et al. (1984) interpreted them as resulting from the tilting of the
lateral free shear layers in the vicinity of the cylinder free end. From experimental measurements
in the same configuration at Re > 104, Sumner et al. (2004) suggested that the tip vortices had
nothing to do with the lateral free shear layers. Investigating experimentally the flow past a
truncated square cylinder for 200 < Re < 104, Wang & Zhou (2009) drew the same conclusions
as Kawamura et al. (1984). On the other hand, little information is available on the base vortices.
Etzold & Fiedler (1976), Sumner et al. (2004) andWang & Zhou (2009) agree that they result from
the tilting of the lateral free shear layers in the vicinity of the bottom wall. Etzold & Fiedler (1976)
furthermore indicated that the base vortices were initially aligned along the spanwise direction and
then tilted along the streamwise axis between the mid-span and the free end. The cylinder aspect
ratio γ, defined as the ratio of the cylinder height h to the characteristic length of its cross-
section d, determines which of the tip or the base vortices prevail in the wake (Sumner et al., 2004;
Wang & Zhou, 2009). Also, increasing the thickness of the boundary layer at the bottom wall
strengthens the base vortices (Wang et al., 2006).

Since the horseshoe structure remains steady for Re < 1500, any vortex shedding occurring in
this regime is fed by the free shear layers only and the cylinder aspect ratio γ determines whether
the vortex shedding is asymmetric, symmetric or absent. For high values of γ, the vortex shedding
is governed only by the lateral free shear layers and an asymmetric Kármán-like vortex street is
observed (Liu et al., 2005; Sakamoto & Arie, 1983; Wang & Zhou, 2009). For intermediate values,
the transition to unsteadiness leads to a symmetric vortex street formed by hairpin vortices aligned
on the wake centreline (Sakamoto & Arie, 1983; Sakamoto et al., 1987). Finally, small values of γ
prevent any kind of vortex shedding (Kawamura et al., 1984; Nakamura & Igarashi, 2004).

The critical values of γ separating these regimes depend on the shape of the cylinder cross-
section. The latter affects the shape of the free shear layers as well as the position of the wake
structures with respect to one another and thereby the mode of vortex shedding (Sakamoto & Arie,
1983; Sakamoto et al., 1987). Also, the thickness of the boundary layer at the bottom wall has
a noticeable influence on the determination of the critical values of γ (Sakamoto & Arie, 1983;
Kawamura et al., 1984).

The formation mechanism of the Kármán vortices relies on the alternate roll-up and shedding
of the lateral free shear layers as in non-truncated cylinder wakes. In contrast, there has not been
yet any clear agreement on the scenario leading to the symmetric hairpin vortex street. From
experimental investigations, Sakamoto & Arie (1983) suggested that both lateral free shear layers
joined the top one to form a single entity in the near-wake and as the latter became unstable, an
arch-type vortex was formed and released in the wake. This view is supported by Hwang & Yang
(2004) who performed numerical simulations of the flow past a truncated square cylinder with γ =
0.5 for Re ≤ 2000 and by experimental flow visualisations by Wang & Zhou (2009) at Re = 221.
The latter authors also included the tip and base vortices within the arch-vortices released in the
wake. Yanaoka et al. (2007) simulated the flow past a truncated square cylinder featuring γ = 1
at Re = 500 and claimed that hairpin vortices were originally vortices that detached from the free
shear layer stretching from the cylinder free end and then grew into hairpin vortices. Until now
though, the generation mechanism of hairpin vortices in the wake of a truncated cylinder has never
been the object of any dedicated study so it remains rather unclear.

In this article, we investigate the wake of a truncated cylinder of square cross-section using three-
dimensional direct numerical simulations. Our goal is to clarify the dynamics of the formation of
hairpin vortices. Our approach relies on a detailed analysis of the flow structures in the steady
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regime. We restrict our investigations to cylinder wakes confined in a duct of rectangular cross-
section, in which the inlet velocity profile is a well defined paraboloid flow. Under these conditions,
the scenario we shall bring forward is new and differs from those inferred in previous works in several
points. In addition, we have detected a set of Ω-shaped vortices forming between two successive
hairpin vortices. We shall also give the details of the mechanism of their formation. The present
flow configuration and the numerical set-up are introduced in section 2. In section 3, we identify
the steady flow patterns and their dynamics throughout the steady flow regime. Section 4 is
dedicated to the description of the formation and release of hairpin vortices at the onset of vortex
shedding. The formation of the Ω-shaped vortices and the effects of increasing Re within the
unsteady regime are also detailed in this section. Finally, in section 5, we show how the evolution
of the flow coefficients is affected by the flow dynamics and, in particular, how the appearance
of secondary recirculation regions on the cylinder lateral faces noticeably affects the viscous drag
coefficient.

2 Configuration and numerical set-up

2.1 Configuration

We consider the flow of an incompressible fluid (density ρ, kinematic viscosity ν) past a truncated
square cylinder in a rectilinear duct of rectangular cross-section as shown in figure 1. A square
cylinder (width d and height h) is mounted on the duct bottom wall at equal distance from both
duct side walls. The upstream cylinder face is normal to the streamwise direction taken along the
x−axis. The cylinder axis is parallel to the z−axis. The origin of the frame of reference is located
at the centre of the upper cylinder face. The duct height (resp. width) along the z−axis (resp.
y−axis) is 2a (resp. 2b). The present configuration features h = 4d, 2a = 8d and 2b = 10d, which
yields a transverse (resp. spanwise) blockage ratio βt = d/2b = 0.1 (resp. βs = h/2a = 1/2) and a
cylinder aspect ratio γ = h/d = 4. βt is low so that it does not have any noticeable effect on the
horseshoe system (Ballio et al., 1998), while the effects of the spanwise flow confinement shall be
discussed throughout this study.

2.2 Flow equations and numerical set-up

We study the flow using three-dimensional direct numerical simulations with a finite-volume code
based on the OpenFOAM 1.4.1 framework (Weller et al., 1998). The flow motion is governed by
the Navier-Stokes equations (1) and (2), written in their non-dimensional form as:

∇ · u = 0 (1)

∂u

∂t
+ (u · ∇)u =

1

Re
∇2u−∇p, (2)

where u and p are the velocity and the pressure fields, respectively, and Re = U0d/ν (U0 is the
maximum velocity at the inlet).

The numerical domain is 15d long upstream and 30d long downstream the cylinder. A no-
slip impermeable boundary condition is imposed at all walls through a homogeneous Dirichlet
condition and a homogeneous Neumann condition is applied for the velocity at the outlet. This
geometry ensures that the outlet boundary has no noticeable feedback onto the cylinder wake as
it is located more than 25d away from the cylinder (Sohankar et al., 1998). Preliminary numerical
computations at a prescribed Re are performed in the duct with the cylinder absent. The resulting
velocity profile of the fully-established flow in the cross-section is used as the inlet boundary
condition for the velocity in the three-dimensional simulations with the cylinder present. For the
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Figure 1: Configuration of the study: (a) top view; (b) side view.

pressure field, a homogeneous Neumann condition is imposed at all boundaries but at the outlet
where a homogeneous Dirichlet condition is applied. The flow equations (1) and (2) are solved in a
segregated way and the PISO algorithm as detailed in Weller et al. (1998) is used to deal with the
pressure-velocity coupling. Second-order discretisation using central difference schemes in space
and a quadratic backward scheme in time has been used on a non-uniform Cartesian mesh.

The numerical code has been successfully tested on the two-dimensional flow past a square
cylinder at Re = 150 (Doolan, 2009) and by simulating the three-dimensional flow past a non-
truncated square cylinder at Re = 200 as described in Mück et al. (2000). The latter test has
been performed on a non-uniform mesh featuring 1.4 × 106 points, i.e. slightly less points than
in Mück et al. (2000). The non-dimensional minimum grid size was set to 0.03 so that a better
resolution of the boundary layer was achieved than in Mück et al. (2000), whose computations were
performed on a fully uniform mesh. We have observed mode-A flow patterns together with dislo-
cated Kármán vortices as in Mück et al. (2000). Our computed values of the Strouhal coefficient
St = fd/U0 = 0.164 and the pressure part of the drag coefficient CDp = 2FD/(ρU2

0
hd) = 1.70 (f

is the vortex shedding frequency and FD the force obtained by the integration of the pressure field
over the cylinder surface) have recovered the values of Mück et al. (2000) within 1% and 3% respec-
tively, which ensures that the present numerical code addresses the dynamics of three-dimensional
cylinder wakes within a fully satisfactory accuracy.

We have then implemented a test to estimate the required number of mesh nodes for the
simulations with the truncated cylinder wake. The main characteristics of the tested meshes are
provided in table 1. In the plane normal to the cylinder axis, we have taken over the same mesh
as that used in the test on the non-truncated cylinder wake which have yielded very satisfactory
results. We have then varied the number of points along the z−axis and the distance δz between
the cylinder top face and the grid point nearest to it. We have simulated the flow at Re = 200 over
1000 turnover times tu = d/U0 and derived the total drag coefficient CD = 2Fx/(ρU

2

0
hd) (Fx is
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Meshes M1 M2 M3
Number of nodes along ez 32 64 96
δz 0.06 0.03 0.02
Total number of nodes 7.4× 105 1.5× 106 2.2× 106

ǫst = |1− St(Mi)/St(M3)| 0.10 0.03 /
ǫcd = |1− CD(Mi)/CD(M3)| 3.51× 10−3 3.05× 10−3 /

Table 1: Main characteristics of the different meshes and errors in drag coefficient CD and Strouhal
number St relative to M3 mesh at Re = 200. δz is the non-dimensional distance between the upper
cylinder face and the grid point nearest to the latter face. All meshes feature 135 and 120 non-
uniformally distributed nodes along the x- and y-axes, respectively.

the streamwise component of the total force exerted by the flow on the cylinder) and the Strouhal
number St in each case. We have found that both the errors in CD and St relative to mesh M3
decreased with the number of nodes, which shows good convergence. In order to save CPU time
and keep a reasonable accuracy in our computations, we shall perform all our simulations with M2
mesh.

A final validation test has been performed on the configuration of Liu et al. (2005). The authors
investigated the flow past a truncated circular cylinder with aspect ratio γ = 10 between two infinite
parallel impermeable walls placed at the cylinder bottom end and at 5 cylinder diameters above the
cylinder free end. We have simulated the flow at Re = 100 using the same geometry, computational
domain and boundary conditions. For this test, we have designed a structured mesh consisting of
a polar mesh embedded in a square of two cylinder diameter width and a rectangular Cartesian
grid covering the rest of the computational domain. The mesh contains about 1.8×106 nodes with
a non-dimensional minimum grid size of 0.02 between the cylinder upper face and the grid point
nearest to it. We have computed the Strouhal number at Re = 100 and found St = 0.1431 which
represents an error of 1.34% compared to the value of St = 0.145 in Liu et al. (2005). In addition,
our simulations have recovered a uniform spanwise distribution of the Strouhal number along the
cylinder span in agreement also with Liu et al. (2005).

In summary, our code has been successfully validated on two different configurations of flow past
a truncated cylinder involving either a transverse or a spanwise flow confinement. In both cases
the unsteady flow dynamics have been accurately captured by the computation of the Strouhal
number. We shall now consider the truncated cylinder wake in a rectangular duct in which the
flow is confined along both transverse and spanwise directions.

2.3 Vortex identification

To explain the formation mechanism of hairpin vortices, we need to identify flow structures and,
in particular, vortices. Establishing an objective definition of a vortex has been the subject of
several studies in the literature. Jeong & Hussain (1995) have assessed different approaches of
identification and tracking of vortical structures. One of them is based on the analysis of the
eigenvalues of the symmetric tensor S2 + Ω2, where S and Ω are the respective symmetric and
antisymmetric part of the velocity gradient tensor ∇u. In this approach, a vortex core corresponds
to a pressure minimum not induced by viscous effects nor unsteady straining. It is defined as a
connected region with two negative eigenvalues of S2+Ω2. A vortex is therefore detected at a given
location in the fluid domain if the median eigenvalue, denoted λ2, is locally negative. This approach
is particularly efficient at spotting ring-type vortices (Jeong & Hussain, 1995). Unfortunately, it
delivers no information on the rotation directions of the vortical structures. For this reason, flow
patterns will also be characterised by iso-surfaces of vorticity, especially in the unsteady flow
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Figure 2: Steady flow patterns at Re = 100. Iso-surfaces of λ2 = −0.05 (a) and kinematic
streamlines with horseshoe pattern in pink, trailing vortices in green, streamlines rejoining the
stagnation points on the upstream cylinder face in cyan, head vortex in red, spanwise vortices in
blue, black streamlines are only deflected by the cylinder wake without noticeably influencing it:
three-dimensional (b), side (c) and top (d) views.

regime. In the steady one, we will analyse the streamlines, since they match the flow trajectories
(Chong et al., 1990).

3 Steady flow regime

We have performed nine successive simulations at increasing Re for 10 ≤ Re ≤ 400. Unsteady
flows have been computed over a total simulation time close to 1000tu. Our computations have
yielded a steady flow regime for Re ≤ 150 and an unsteady regime for Re ≥ 200. In no case does
the resulting flow feature any closed streamlines, in line with the findings of Hunt et al. (1978).

3.1 Flow patterns at Re = 100

Figure 2(a) shows the steady flow patterns at Re = 100 depicted by iso-surfaces of λ2 = −0.05,
i.e. less than 0.2% of the absolute minimum in λ2, and by kinematic streamlines in figures 2(b-d).
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In figures 2(b-c), one sees that the black streamlines that are simply deflected around the wake
structure separate from those that enter it at saddle point S1 located at x = −1/2 − xu in the
centre-plane (y = 0). All streamlines other than the black ones enter the wake structure.

3.1.1 Streamlines originating in the upstream centre-plane

Pink and green streamlines originate in the upstream centre-plane (y = 0), follow a similar path
around the cylinder and separate at saddle point S2 located at x = 1/2 + xd in the centre-plane
(y = 0) (Hunt et al., 1978; Sau et al., 2003). Pink lines depict the horseshoe pattern as shown
in experiments by e.g. Lin et al. (2008). The front horseshoe swirl, denoted HS in figure 2(a),
is observed upstream of the cylinder base at x = −1. The green set of streamlines impacts the
bottom duct wall downstream of a nodal point of attachment Na just in front of the upstream
cylinder face, as observed in Hwang & Yang (2004). It then recirculates behind the cylinder within
the horseshoe pattern where it reaches two foci, denoted F1 and F2 in figure 2(d), and subsequently
spirals upwards and eventually tilts along the x−axis to create a pair of counter-rotating stream-
wise vortices. This corresponds to the base vortices identified by Etzold & Fiedler (1976) and
Sau et al. (2003). The foci were also detected in numerical simulations by Hwang & Yang (2004)
and Yanaoka et al. (2007), but were not linked to the formation of base vortices. At Re = 100,
these vortices are very weak so that they only induce a weak pressure minimum that is difficult to
capture with the iso-surfaces of λ2. Far upstream, in the centre-plane (y = 0), the border between
the pink and green sets of streamlines is located at z = h1 − γ and the upper border of the green
set at z = h2 − γ.

Interestingly, we did not isolate any streamwise tip vortices, whether in the iso-surfaces of λ2

or in kinematic streamlines. There are two probable reasons for this. Firstly, the spanwise flow
confinement imposes a strong spanwise velocity gradient similar to that induced in thick boundary
layers and Wang et al. (2006) showed that the thickening of the bottom boundary layer enhanced
the base vortices at the expense of the tip ones. Secondly, the present cylinder aspect ratio is rather
low and no tip vortices have been observed in simulations run with a low aspect ratio (Sau et al.,
2003; Yanaoka et al., 2007).

A third set of streamlines (in cyan) originating within the centre-plane (y = 0) just above the
green set of streamlines at (h2 − γ ≤ z ≤ h3 − γ) ends at a line of front stagnation points on the
upstream cylinder face along the wake centreline. A half-saddle point S3, indicated in figure 2(b),
is detected along this line of stagnation points slightly below the cylinder tip.

3.1.2 Streamlines rejoining the centre-plane downstream

Blue and red streamlines rejoin the centre-plane (y = 0) downstream of the cylinder. Blue stream-
lines originate upstream, below those generating the horseshoe pattern [see figure 2(c)] but slightly
off the wake centreline [see figure 2(d)]. On the one hand, the streamlines located just upstream
of S2 head upwards and back upstream along the wake centre-plane behind the cylinder and sepa-
rate into two substreams at half-saddle point S4 on the downstream cylinder face [see figure 2(c)].
The lower substream is deflected by this downstream face outwards the wake along the y-axis and
eventually carried away by the free stream to form a pair of counter-rotating spanwise vortices.
The upper substream heads towards the cylinder tip where the free stream takes it away along
the wake centreline. On the other hand, the blue streamlines located just downstream of S2 head
upwards and downstream until they reach the free stream where they tilt along the x−axis.

A gap between the blue streamlines moving upstream and downstream is observed at the rear
of the cylinder slightly below the cylinder tip where a transverse vortex is seen [red lines in figure
2(c-d)]. This head vortex consists of a pair of symmetric transverse vortices located at short
distance off the wake centreline and connected to a single transverse vortex at the wake centreline.
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Only the right part of the head vortex, denoted HV, is visible on the λ2-iso-surfaces from figure
2(a). The streamlines enter this three-vortex structure at the periphery of the symmetric vortices,
spiral towards the axis and exit at the periphery of the centre vortex onto the wake centreline.
Note that the head vortex is not generated by streamlines curling from the cylinder free end as
in Hunt et al. (1978), Slaouti & Gerrard (1981) and Wang & Zhou (2009), but from streamlines
circulating upwards from the cylinder bottom half as in Sau et al. (2003) and Yanaoka et al. (2007).

Throughout this description of the flow topology at the bottom duct wall and cylinder faces at
Re = 100, we have isolated three nodal points (Na, F1, F2), two saddle points (S1, S2) and two
half-saddle ones (S3, S4). This topology thus satisfies the mathematical criterion established by
Hunt et al. (1978).

Finally, two free shear layers arise from the lateral downstream edges of the cylinder and stretch
on both sides of the wake (see z−vorticity contours in figure 3). Due to the presence of the bottom
duct wall and the free shear layer stretching from the top trailing edge of the cylinder, their
streamwise length is reduced at both their ends and reaches its maximum in the vicinity of the
base vortices. We insist that all the steady flow patterns detected in the present computations are
generated exclusively by streamlines engulfed under these lateral free shear layers.

3.2 Effect of increasing Re within the steady flow regime

As Re is increased within the steady flow regime, the sets of streamlines rejoining the line of
stagnation points at the cylinder upper face extends downwards, while the upstream spanwise
extension of the set of streamlines generating the base vortices (green lines) shrinks and that
feeding the horseshoe pattern (pink lines) broadens. The increase of Re therefore implies an
increase of h1 and a shrinking of both h2 and h3.

The overall shape of the horseshoe pattern however hardly changes: the main swirl HS [see
figure 2(a)] drifts slightly upstream as observed also in Baker (1979) Hwang & Yang (2004) and
Sau et al. (2003), but S2 barely moves, i.e. xu increases and xd changes little. The base vortices
gain in strength and entangle with the spanwise vortices in the vicinity of the foci F1 and F2, which
get closer to the rear cylinder face as Re is increased.

At Re = 150, secondary recirculation regions appear on both lateral and top faces of the
cylinder. The lateral recirculations are made of stretched and twisted blue streamlines and the
top one results from flow separation at the cylinder top face as in Yanaoka et al. (2007). The top
recirculation deflects the outer stream further up, which, combined with the increased strength of
the head vortex, results in the latter shifting into a position higher than the cylinder tip in the late
stages of the steady flow regime. In this regime, the head vortex also moves farther downstream.
Finally, at Re = 150, the pair of symmetric vortices forming the head vortex merges into the
centre-plane (y = 0) so that the streamlines are taken away downstream once they come out of
the eye of this single remaining structure.

4 Unsteady flow regime

4.1 Description and formation mechanism of the symmetric vortex street

at Re = 200

At Re = 200, unsteadiness appears through a periodic laminar symmetric shedding of hairpin
vortices aligned on a single row along the wake centreline. This vortex shedding has been observed
in experiments by Sakamoto & Arie (1983) and Sakamoto et al. (1987) and numerical simulations
by Hwang & Yang (2004) and Yanaoka et al. (2007). The formation and release of hairpin vortices
depicted by iso-surfaces of vorticity field and of λ2 = −0.5 (0.5% of its absolute minimum) are
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Figure 3: Vortex street at Re = 200 depicted by iso-surfaces of non-dimensional vorticity ω (a-c)
and λ2 = −0.5 (d-f) at t = 1349tu (top), 1351tu (middle) and 1353tu (bottom). ωx = 2.5 (resp.
ωx = −2.5) in yellow (resp. cyan); ωy = 5 in green; ωz = 5 (resp. ωz = −5) in red (resp. blue).
The red lateral free shear layer is not shown in (b). TV, LV and RV are vortical structures shed
from the top, left and right free shear layers, respectively. BR and BL are the base vortices. SR and
SL are the secondary streamwise vortices clearly visible on λ2-iso-surfaces but not on vorticity iso-
surfaces where their locations are indicated by dashed arrows. Red and blue arrows on (d) indicate
the jets induced by the base and hairpin vortices respectively, whose interaction participates to the
generation of Ω-shaped vortices. Supplementary movie 1 (available at journals.cambridge.org/flm)
shows an animation of the vortex street at Re = 200.
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represented at three successive time instants during the formation and release of the hairpin vortices
at Re = 200 in figures 3(a-f).

At t = 1349tu, one observes a hairpin vortex in the early stage of its formation in the near
cylinder wake and a freshly released, fully formed, hairpin vortex in the far wake. Three distinct
vortical structures denoted TV, LV and RV, respectively originating from the top, left and right
free shear layers, are singled out in figure 3(d). TV indirectly results from the mutual interaction
of the base vortices BR and BL, shown in figure 3(a), that generates an upwards jet between
them and lifts the tail of the top free shear layer. This results in an inversion of the curvature
of the latter which becomes unstably curved (Liou, 1994), and leads to the breakaway of its tail
(TV). At t = 1351tu, two secondary counter-rotating streamwise vortices, denoted SR and SL
in figures 3(b-f), then rise just upstream of the structure shed from the top free shear layer and
wrap around the base vortices, while TV, LV and RV have gathered into a single bow of vorticity.
The subsequent pairing between both the base and the secondary streamwise vortices eventually
triggers the symmetric shedding of structures LV and RV from both lateral free shear layers [blue
and red iso-surfaces in figure 3(c)] observed at t = 1351tu. At this moment, the head of the hairpin
vortex is completely formed and taken away by the free stream, while the base vortices detach to
join the head of the hairpin vortex and form its legs visible on the hairpin vortex present in the
far wake in figure 3(d).

Our computations show that the hairpin vortices are not generated only by the destabiliza-
tion of the top free shear layer as suggested in Hwang & Yang (2004) and Yanaoka et al. (2007).
Instead, they result from the smooth assembling of structures shed from the initially steady flow
patterns. The head of the hairpin vortex is formed from the smooth assembling of vortical struc-
tures detached from the top and lateral free shear layers. The hairpin vortices observed in the
present simulations differ from the arch-type vortices detected in experiments by Sakamoto & Arie
(1983) and Wang & Zhou (2009). Firstly, due to the spanwise velocity gradient imposed by our
flow confinement, the hairpin head is located at the downstream end of the structure. The free
stream velocity is higher in the vicinity of the cylinder tip so that the hairpin head, located in
this region, is carried away further downstream than the rest of the hairpin structure. Secondly,
the hairpin legs are almost parallel to the streamwise axis and not aligned along the spanwise
direction as those of the arch-type vortices. In our configuration, the hairpin legs are indeed the
base vortices which are oriented along the streamwise axis, whereas those of the arch-type vortices
are the spanwise vortices shed from the lateral free shear layers. Thirdly, in our configuration,
neither the legs nor the spanwise vortical part of the hairpin vortex grow a posteriori from the
structure shed from the top free shear layer, as claimed in Yanaoka et al. (2007). Instead, both
these structures are present in the very first steps of the formation of the hairpin vortices. This
shows that the base vortices play an active part in the vortex shedding mechanism as in the flow
past a trapezoidal tab (Dong & Meng, 2004; Yang et al., 2001), but unlike in Sakamoto & Arie
(1983) and Wang & Zhou (2009). In the last two studies though, the inlet velocity is almost span-
wise invariant and the shedding results from the interaction between the top and lateral free shear
layers only.

4.2 Formation and release of secondary Ω-shaped vortices

We have described how the hairpin vortices are generated and released in the cylinder wake. In
the unsteady regime, the structures that take part in their formation were detected by plotting
iso-surfaces of vorticity and λ2 for reasonably high values of these quantities. We shall now refine
our analysis and track weaker structures by bringing the threshold values of λ2 and of the vorticity
closer to zero for the flow at Re = 200.

Figure 4(a) shows the three-dimensional vortex street at t = 1353tu depicted by iso-surfaces
of λ2 = −0.03 and two-dimensional vorticity iso-surfaces in three different planes are presented in
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Figure 4: (a) Iso-surfaces of λ2 = −0.03 at Re = 200 and t = 1353. Fields of non-dimensional (b)
x-vorticity in plane A (x = 12.9) with |ωx| ≤ 2, (c) z−vorticity in plane B (z = 0) with |ωz| ≤ 1.5
and (d) y−vorticity in plane C (y = 0) with |ωy| ≤ 1.8 (minimum and maximum values in blue and
red, respectively). Thick white lines on (b-d) are the intersected λ2−iso-surfaces. H1 and H2 are
two successive hairpin vortices, Ω1, Ω2 and Ω3 three Ω-shaped vortices, SR and SL the respective
left and right secondary streamwise vortices and BR and BL the respective left and right base
vortices (see also figure 3).
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figures 4(b-d). One observes a chain of Ω-shaped vortices between two successive hairpin vortices,
denoted H1 and H2. Three such Ω-shaped vortices, denoted Ω1, Ω2 and Ω3, are detected in figure
4(a). The strength of these vortices decreases with their distance to the downstream hairpin vortex.
They are located in (y, z)-planes and their bottom ends are connected to the secondary streamwise
vortices, denoted SR and SL in figure 4(d). The Ω-shaped vortices are mirror images of the hairpin
vortex as they all rotate in the sense opposite to it, as shown by figures 4(b-d). Vortex streets
involving hairpin vortices and secondary reverse vortices (i.e. rotating in the opposite sense to
that of the hairpin head) have been observed in the flow past a trapezoidal tab in experiments
(Yang et al., 2001) and numerical simulations (Dong & Meng, 2004). Reverse vortices detected in
the latter configuration were however located below the line of hairpin vortices by contrast with our
observations where hairpin and reverse vortices are all aligned. The simulations by Dong & Meng
(2004) have yet clearly established the Ω-shape of the reverse vortices as in our case.

The formation of Ω-shaped vortices follows from a mechanism encountered in turbulent bound-
ary layers in channel flows described in e.g. Zhou et al. (1999). During its downstream motion,
the head of the hairpin vortex broadens and induces a backwards streamwise jet through the head
[blue arrow in figure 3(d)]. The pair of streamwise vortices forming the legs of the hairpin vortex
generates an upwards jet between them [red arrow in figure 3(d)]. The shearing between the latter
jet and the one induced by the head of the hairpin vortex causes the formation of a bridging shear
layer between both streamwise vortices. This shear layer subsequently rolls up into an Ω-shaped
vortex in the (y, z)-plane. This mechanism is active all along the legs of the hairpin vortex and
leads to the formation of several Ω-shaped vortices between two successive hairpin vortices.

Importantly, the generation of Ω-shaped vortices is a direct consequence of the streamwise
orientation of the hairpin legs. This mechanism is thus absent in configurations where arch-type
vortices have been observed (Sakamoto & Arie, 1983; Wang & Zhou, 2009).

4.3 Effect of increasing Re on the vortex street

At Re = 250, the mechanism of formation and release of hairpin vortices described previously
remains unchanged, but the shape of the hairpin vortices becomes irregular and weak spanwise
oscillations of the base vortices are observed. The latter oscillations disturb the shedding of the
top and lateral free shear layers so that the vortex street turns slightly asymmetric as shown in
figure 5(a). For Re ≥ 300, these oscillations gain in intensity. The legs of the hairpin vortices
do not split at the same z−coordinate anymore, while their head turns into a chaotic aggregate
of structures shed from the free shear layers. Hairpin vortices are therefore released alternately
on either side of the wake centreline and so a fully asymmetric vortex street is observed as seen
in figure 5 (b). The chain of Ω-shaped vortices is still observed in this regime, but their shape is
irregular too and their orientation follows that of the hairpin vortex that creates them. A similar
evolution of the vortex street with increasing Re has been described by Yamada et al. (1993) in
experiments of the flow past a square plate. The gradual change from a regular to a chaotic vortex
street for 200 ≤ Re ≤ 400 is illustrated in figure 6 by the respective time histories of the total drag
coefficient CD, introduced in section 2.2.

5 Flow coefficients

5.1 Drag coefficients

The variations of the total drag coefficient CD with Re are presented in figure 7(a). One observes
that CD decreases within the steady flow regime and slightly increases in the unsteady one. These
variations reflect the dynamics of the vortex formation region as in the two-dimensional square
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Figure 5: Vortex street at Re = 250 and t = 1410tu (a) and Re = 300 and t = 1044tu (b).
(left) Iso-surfaces of λ2 = -0.5 (a) and -0.7 (b) and (right) fields of ωx = ±3.75, ωy = 6.25 and
ωz = ±6.25 (a) and ωx = ±4.25, ωy = 9.25 and ωz = ±9.25 (b) in yellow and cyan, green, red and
blue, respectively.
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cylinder wake (Sharma & Eswaran, 2004). In steady regimes, it encompasses the pair of spanwise
recirculation regions, while in unsteady ones it includes the formation region of the hairpin vortices.
In both cases, this region induces an adverse pressure gradient. The increase ofRe within the steady
regime results in the streamwise elongation of the symmetric steady recirculation regions. This
enhances the adverse pressure gradient which gradually counter-balances the streamwise pressure
gradient induced by the duct flow and thus leads to the decrease in the total drag coefficient CD.
In the unsteady flow regime, the mechanism is reversed as the formation region of the hairpin
vortices shrinks, hence the increase in CD. Remarkably, the present values of CD obtained with a
cylinder spanning over half the duct height are about half of those obtained with a non-truncated
cylinder (Sohankar et al., 1999).

The viscous component of the drag coefficient is defined as CDv = 2Fv/(ρU
2

0
dh) where Fv is

the viscous force acting on the cylinder. We have reported its variations over the cylinder span at
different Re in figure 7(b). One can identify three regions along the span: two narrow ones close to
the respective cylinder ends and a larger one between them (Liu et al., 2005). CDv exhibits peak
values just where the flow around the cylinder is fast, i.e. below the cylinder free end and at short
distance of the bottom duct wall within the horseshoe region. In contrast, CDv remains rather
constant in the mid-span region where the flow recirculates much more slowly. The corresponding
values are therefore significantly smaller than the peak values reached in both end regions. One
observes also that CDv turns negative for (−0.4 ≤ z/h ≤ −0.13) at Re = 200 and that the
z−range with negative CDv widens as Re is increased. This feature results from the appearance
and subsequent widening of the secondary recirculation regions at the cylinder lateral faces for
Re ≥ 150. The associated counter-flow induces advert friction at the side walls that reduces the
overall value of CDv to the point of making it negative. This effect was detected in two-dimensional
square cylinder wakes by Sharma & Eswaran (2004).

5.2 Spanwise lift coefficient

We define the spanwise lift coefficient Cz = 2Fz/(ρU
2

0
d2) where Fz is the z−component of the force

exerted by the flow on the cylinder. The evolution of Cz computed only on the upper cylinder face
versus Re is reported in figure 7(c). By definition, Fz results from the integration of the pressure
force on the cylinder upper face and is defined up to a constant determined by the value of the
reference pressure. As a consequence, only the variations of Cz reflect the flow dynamics, while
its absolute values shall be regarded relatively to the reference pressure. In particular, the sign of
Cz bears no significance. Cz decreases in the steady regime and slightly increases in the unsteady
one. As for the drag coefficient, the decrease of Cz results from the lengthening of the spanwise
recirculation regions at the back of the cylinder. The reason for its increase is the appearance of the
secondary recirculation over the cylinder upper face that induces an adverse pressure gradient. The
destabilization of the top free shear layer in the unsteady regime for Re ≥ 200 slightly enhances
this trend throughout the unsteady regime.

5.3 Strouhal numbers

The frequency of the symmetric (resp. asymmetric) mode was obtained from the time history of the
total drag coefficient CD (resp. lift coefficient CL = 2Fy/ρU

2

0
dh where Fy is the y−component of

the force exerted by the flow on the cylinder). We were then able to calculate the Strouhal numbers
associated to the respective frequencies of the symmetric and asymmetric modes. Their dependence
on Re is presented in figure 7(d). At Re = 200, the vortex street is indeed perfectly symmetric
so the asymmetric mode is absent. At Re = 250, a slight asymmetry is observed in the wake
due to the appearance of the small vertical oscillations of the base vortices. These oscillations are
enhanced when Re is further increased until the wake becomes chaotic and completely asymmetric.
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average value of CDv is used in the unsteady flow regime). (c) Spanwise lift coefficient Cz on the
cylinder upper face and (d) Strouhal numbers St associated to the symmetric and asymmetric
modes versus Re. The dashed line on (a) and (c) separates the steady and the unsteady flow
regimes.

When the wake is symmetric at Re = 200, only the symmetric mode is present with an associated
St = 0.07. When the asymmetric mode appears at Re = 250, its associated St is much lower
(St = 0.01) but increases with Re. As the wake becomes more asymmetric, the Strouhal number
associated to the symmetric mode collapses down to values below those of the asymmetric one.

6 Conclusions

We have investigated the flow past a truncated square cylinder in a duct of rectangular cross-
section using three-dimensional direct numerical simulations for Re ≤ 400. Figure 8 summarises
the main flow regimes we have encountered. The steady regime has been thoroughly scrutinised
and the flow patterns identified. The present computations have shown that these patterns were
all generated by sets of streamlines flowing around the cylinder foot and underneath the lateral
free shear layers. In particular, in our configuration, the spanwise flow confinement induces an
important spanwise shear that promotes the development of the base vortices at the expense of
the tip ones. Also, we have singled out the appearance of secondary recirculation regions at the
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Figure 8: Summary of the main flow features observed in the present simulations.

lateral and upper cylinder faces for Re ≥ 150.
At Re = 200, the flow unsteadiness leads to a symmetric vortex street formed by a single row

of hairpin vortices aligned on the wake centreline. We have detailed a formation mechanism of the
hairpin vortices resulting from the smooth assembling of structures shed from the initially steady
flow patterns. This scenario has never been exposed so far and differs from those given in previous
works (Hwang & Yang, 2004; Sakamoto & Arie, 1983; Yanaoka et al., 2007; Wang & Zhou, 2009).
To partly explain this difference, we have stressed the effects of the vertical flow confinement
which enhances the base vortices and induces a more efficient entrainment of the head of the
hairpin vortices. The latter is therefore located at the downstream end of the hairpin and the legs
are almost parallel to the streamwise axis. Also, we have detected the formation of a chain of
Ω-shaped vortices as a consequence of the streamwise orientation of legs of the hairpin vortices.
The Ω-shaped vortices are well known in turbulent boundary layers and their formation stems from
the same mechanism as in this classic case. For Re ≥ 250, the appearance and enhancement of
vertical oscillations of the base vortices causes the vortex street to turn asymmetric and irregular,
while hairpin vortices become chaotic aggregates of structures.

We have reported the evolutions of a set of flow coefficients with Re. Firstly, the spanwise lift
coefficient has been found to increase when the recirculation appeared on the top face. Secondly,
the transition to asymmetry in the unsteady wake has been shown to induce a collapse in the
Strouhal number that reflected the disappearance of the symmetric mode associated with the
hairpin vortex shedding we have identified.

Finally, although we have clearly identified the dynamics of the hairpin vortices, questions
about the respective influences of the various parameters set in our numerical computations are still
open. Firstly, the influence of the cylinder aspect ratio γ would require a parametric investigation.
Although it is well accepted that γ determines whether the onset of vortex shedding gives rise
to hairpin or Kármán vortices, the effect of γ within any of these regimes is yet to be clarified.
Secondly, we have used physical walls at the outer boundaries of our domain. Though physically
realistic, both the transverse and spanwise confinements should be subject to a thorough scrutiny
to determine their effects on the stability and the shape of the hairpin vortices. The transverse
confinement in the present configuration is low enough to neglect its effects. One may however
expect valuable information on whether moderate transverse blockage improves the stability of
the hairpin vortices. By contrast, we have shown that the spanwise blockage had a significant
influence on the flow dynamics. One could expect a lighter spanwise confinement to minimise the
role of the base vortices in these dynamics and result in a modification of the overall shape of
the hairpin vortices which could be closer to the arch-type vortices observed in experiments by
Sakamoto & Arie (1983) and Wang & Zhou (2009).

Supplementary movie available at journals.cambridge.org/flm
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