

Erratum: Glassy Chimeras could be blind to quantum speedup: Designing better benchmarks for quantum annealing machines [Phys. Rev. X 4, 021008 (2014)]

Weigel, M., Katzgraber, H. G., Machta, J., Hamze, F. and Andrist, R. S.

Published PDF deposited in Curve January 2016

Original citation:

Weigel, M., Katzgraber, H. G., Machta, J., Hamze, F. and Andrist, R. S. (2015) Erratum: Glassy Chimeras could be blind to quantum speedup: Designing better benchmarks for quantum annealing machines [Phys. Rev. X 4, 021008 (2014)]. PHYSICAL REVIEW X, volume 5 : 019901

DOI: 10.1103/PhysRevX.5.019901 URL: <u>http://dx.doi.org/10.1103/PhysRevX.5.019901</u>

Publisher: American Physical Society

This article is available under the terms of the Creative Commons Attribution 3.0 License.

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.

CURVE is the Institutional Repository for Coventry University

http://curve.coventry.ac.uk/open

Erratum: Glassy Chimeras could be blind to quantum speedup: Designing better benchmarks for quantum annealing machines [Phys. Rev. X 4, 021008 (2014)]

Martin Weigel,¹ Helmut G. Katzgraber,^{2,3,4} Jonathan Machta,^{4,5} Firas Hamze,⁶ Ruben S. Andrist⁴ (Octomore Collaboration)

¹Applied Mathematics Research Centre, Coventry University, Coventry CV1 5FB, United Kingdom ²Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843-4242, USA

³Materials Science and Engineering Program, Texas A&M University, College Station, Texas 77843, USA

⁴Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA

⁵Physics Department, University of Massachusetts, Amherst, Massachusetts 01003, USA

⁶D-Wave Systems, Inc., 3033 Beta Avenue, Burnaby, British Columbia, V5G 4M9, Canada

(Received 19 December 2014; published 30 January 2015)

DOI: 10.1103/PhysRevX.5.019901

Subject Areas: Computational Physics, Condensed Matter Physics, Quantum Information

In Ref. [1], Katzgraber *et al.* studied Ising spins on the Chimera topology [2] of the D-Wave Two quantum annealing machine both in the spin-glass (SG) as well as the ferromagnetic (FM) sector. For the simulations in the FM sector, the following critical parameters based on simulations of systems of up to N = 3200 spins were computed: $\beta_c^m = 0.2402(3)$, $\nu_m \approx 1$, and $\eta_m \approx 2/5$. Here, $\beta_c^m = 1/T_c^m$ is the inverse critical temperature, ν^m the critical exponent of the FM correlation length, and η^m the critical exponent associated with the FM susceptibility. Using single-cluster updates [3], Monte Carlo simulations of up to N = 131072 spins in the FM sector have been performed. A detailed finite-size scaling analysis of the specific heat, the magnetization, the susceptibility, and the Binder parameter and related cumulants, as well as three logarithmic derivatives of the magnetization together with an analysis of cross-correlations [4,5], leads to the following estimates of the critical parameters: $\beta_c^m = 0.2411929(26)$, $\nu_m = 0.9980(15)$, and $\eta_m = 0.2513(14)$. Hence, the critical exponents of a FM Ising model on the Chimera lattice are in agreement with the exact values for the two-dimensional (2D) Ising model, namely, $\nu_{2D} = 1$ and $\eta_{2D} = 1/4$ [6]. Therefore, both models share the same universality class [7]. Figure 1 illustrates the perfect agreement between our new simulations and the exact values. Plotted are the FM susceptibility at its maximum, i.e., for $\beta = \beta_{max}(N)$, vs the number of spins, where $\chi_m(\beta = \beta_{max}) \sim (\sqrt{N})^{2-\eta_m}$.

FIG. 1. Log-log plot of the FM susceptibility at its peaks $\chi_m(\beta = \beta_{max})$ as a function of the effective linear system size \sqrt{N} . The data fall onto a straight line, showing that corrections to scaling are very small. The dashed line has slope $2 - \eta = 7/4$.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.

Indeed, the dashed line has slope $2 - \eta_{2D} = 7/4$ and is a guide to the eye. We would like to conclude by emphasizing the following points.

- (1) For the FM sector, only the critical exponent η_m is incorrect in Ref. [1], as well as the claim that the universality class of FM Ising models in 2D and on the Chimera topology might be different.
- (2) For the SG sector, $\eta_q = 0$ or close to 0 is plausible. However, simulations to verify these exponents would be difficult.
- (3) The main conclusions of Ref. [1] remain unchanged.
- (4) We would like to caution researchers seeking quantum speedup based on systems with 512 qubits or less because, while corrections to scaling are weak, they seem to persist up to large system sizes.

M. W. and H. G. K. acknowledge support from the European Commission through the International Research Staff Exchange Scheme (IRSES) network "Dynamics of and in Complex Systems" (DIONICOS) under Contract No. PIRSES-GA-2013-612707. H. G. K. acknowledges support from the National Science Foundation (Grant No. DMR-1151387) and would like to thank Bruichladdich Dist. for providing continued inspiration. J. M. acknowledges support from the National Science Foundation (Grant No. DMR-1208046).

- [1] H. G. Katzgraber, F. Hamze, and R. S. Andrist, *Glassy Chimeras Could Be Blind to Quantum Speedup: Designing Better Benchmarks for Quantum Annealing Machines*, Phys. Rev. X 4, 021008 (2014).
- [2] P. Bunyk et al., Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor, IEEE Trans. Appl. Supercond. 24, 1 (2014).
- [3] U. Wolff, Collective Monte Carlo Updating for Spin Systems, Phys. Rev. Lett. 62, 361 (1989).
- [4] M. Weigel and W. Janke, Cross Correlations in Scaling Analyses of Phase Transitions, Phys. Rev. Lett. 102, 100601 (2009).
- [5] M. Weigel and W. Janke, Error Estimation and Reduction with Cross Correlations, Phys. Rev. E 81, 066701 (2010).
- [6] J. M. Yeomans, Statistical Mechanics of Phase Transitions (Oxford University Press, Oxford, England, 1992).
- [7] After Ref. [1] was published, Dr. Peter Young pointed out to us that the exponent was possibly wrong. His educated guess is indeed borne out by our corrective analysis presented here.