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Abstract. - We consider groups of interacting nodes engaged in an activity as many-body,
complex systems and analyse their cooperative behaviour from a mean-field point of view. We
show that inter-nodal interactions rather than accumulated individual node strengths dominate
the quality of group activity, and give rise to phenomena akin to phase transitions, where the
extensive relationship between group quality and quantity reduces. The theory is tested using
empirical data on quantity and quality of scientific research groups, for which critical masses are
determined.

Introduction. – In recent times statistical physics
has found applications beyond its traditional confines and
its methods have been deployed to garner new insights
in many academic disciplines [1]. These include sociol-
ogy, economics, complex networks [2] as well as in more
exotic areas [3]. Each of these disciplines involve cooper-
ative phenomena emerging from the interactions between
individual units. Microscopic physical models – mostly of
a rather simple nature – help explain how the properties
of such complex systems arise from the properties of their
individual parts.

Here we consider groups of interacting nodes engaged in
a common activity, such as research groups of interacting
scientists, as complex systems. Also in recent times, the
assessment of the relative strengths of such research groups
has grown in importance as universities, funding councils
and governments seek to decide on where to focus invest-
ment. The debate amongst policy makers is whether to
concentrate funding in relatively few well resourced insti-
tutions or to promote competition amongst a wider set,
where pockets of research excellence are found [4]. A cen-
tral question in this debate is whether there exists a critical
mass in research, and if so, what is it?

We present a simple model which captures the complex
nature of group quality as deriving both from the strengths
of its members and from the interactions between them.
We show the latter is, in fact, the dominant mechanism

(a)Laboratoire associé au CNRS UMR 7198

which drives the quality of group activity. Phenomena
akin to phase transitions are manifest in our model and
two related significant group sizes emerge: a critical mass
below which a group is vulnerable to extinction and a
higher value at which the correlation between group qual-
ity and quantity reduces. We test our theory using em-
pirical data on the quality of research groups in natural
sciences, for which we determine the critical masses.

Group quality and quantity. – The empirical work
presented here is based upon measures of research quality
as determined by the UK’s Research Assessment Exercise
(RAE) and the French equivalent, which is performed by
Agence d’Évaluation de la Recherche et de l’Enseignement

Supérieur (AERES). For the RAE, research groups were
scrutinized to determine the proportion of work which fell
into five quality levels from 4* (world leading) to 1* (na-
tionally recognized) and unclassified. Based on the result-
ing quality profiles, a formula is used to determine how
research funding is distributed. Assuming this to be a rea-
sonably reliable and robust process, we consider this as a
basis for a measurement of the quality of research groups.
If pn∗ represents the percentage of a team’s research which
was evaluated as n*, this gives that team’s overall quality
as s = p4∗ + 3p3∗/7 + p2∗/7. A naive expectation is that,
while larger quality values may be associated with older,
more prestigious institutions, these variables are otherwise
randomly distributed. Indeed, this is the picture implied
by Fig. 1(a), where quality measurements are plotted al-
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Fig. 1: Research quality s for each of 45 UK applied mathe-
matics research groups (a) arranged alphabetically and (b) as
a function of group size N . (The sample institutions include
Queen Mary, University of London (QMUL) and the Univer-
sity of the West of England Bristol (UWE).) In (b) the solid
lines are piecewise linear regression best-fits to the data and
the dashed curves represent 95% condidence intervals for these
fits.

phabetically for the 45 UK applied mathematics (which
includes theoretical physics) groups assessed at RAE. Such
plots form the basis of rankings through which the various
institutions are compared. Associated with these rank-
ings is the notion that group quality is a measure of the
average calibre of individuals forming the group, i.e., if
agi represents the strenth of the ith individual in group
g, then the strength of that group is naively given by
Sg =

∑N
i=1 agi = Nāg, where āg is the average strength

of the N individuals in the group. Defining the quality

sg of the group as its average strength per head, so that
sg = Sg/N , one is then led to the naive conclusion that
mean calibre āg is given by the group quality sg. This is
the standard conclusion from a naive approach associated
with Fig. 1(a). We will show that such a conclusion is
dangerous and wrong.

A hint at the correct interpretation is given in Fig. 1(b),
where quality measures are plotted against quantity in the
form of group sizes. Clearly there is a linear relationship
between quality s and quantity N , at least in the left part
of the curve. From a statistical physics point of view, there
is an obvious interpretation in terms of the links between
individuals. This interpretation will lead to strong and
unobvious conclusions regarding the relationship between
quality and quantity as well as to the quantification of the
hitherto intuitive notion of critical mass in research [4].

We first consider the situation where the number of

nodes N in group g is not too large, and where one may
represent the group as a graph which is complete in the
sense that it has N(N − 1)/2 active edges. With bgi,j rep-

resenting the strength of interaction between the ith and
jth individuals, the group strength is Sg =

∑N
i=1 agi +

∑N(N−1)/2
〈i,j〉=1 bgi,j = Nāg +N(N − 1)b̄g/2, where 〈i, j〉 rep-

resents the link between nodes i and j and b̄g is the av-
erage strength of interactions between them. Inspired by
molecular field theory [5], we now write the average total
strength of such complete single-cluster groups as

S ∝ āN +
b̄

2
N(N − 1), (1)

where ā and b̄ are the mean values of node and interaction
strength averaged over all groups.
In fact, since two-way communication can only be car-

ried out effectively between a limited number of nodes, it
may be further expected that, as the size N of a group
is increased, a transition point Nc is eventually reached,
beyond which the clustering coefficient of the graph de-
creases. If a given node can interact meaningfully with
at most Nc others, the group may cluster into N/(αNc)
subgroups, of mean size αNc, say, within which meaningful
interactions can take place. This is reminiscent of the de
Gennes blob picture for polymers [6]. Mean strength of the
collective due to individual strength and intra-subgroup
interaction is now S = āN + b̄N(αNc − 1)/2. Each of
the N/(αNc) subgroups may interact with strength β, say,
with the N/(αNc)−1 others. This inter-subgroup interac-
tion contributes an additional strength proportional to the
number of such inter-subgroup links. The mean strength
of a group with N > Nc is then

S ∝ āN +
b̄

2
N(αNc − 1) +

β

2

N

αNc

(

N

αNc
− 1

)

. (2)

The size Nc may thus be considered a transition point be-
tween “small/medium” and “large” groups. It marks the
number of nodes with which an individual can cooperate
in a meaningful sense.
Therefore the “mean-field” relationship between the

quality of a group engaged in a given activity and its quan-
tity or size N is

s =
S

N
=

{

a1 + b1N if N ≤ Nc

a2 + b2N if N ≥ Nc,
(3)

where a1, . . . , b2 are related to the mean individual, intra-
group and inter-subgroup interaction strengths. Continu-
ity at the breakpoint requires that

Nc =
a2 − a1
b1 − b2

. (4)

As its size grows beyond Nc, two-way collaboration be-
tween all nodes is no longer the dominant driver of quality
of the group. Interactions between subgroups may instead
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Fig. 2: Phase diagrams representing the mean total increase in strength in an activity obtained by transferring M nodes from
group II to group I. (a) If group I is initially supercritical, the positive gradient at M = 0 indicates that incremental transfer
to it from the large group is globally beneficial for the activity. (b) If group I is initially sub-critical the transfer of mass to it
from the large group is only beneficial if a sufficient number of nodes (namely Nc − NI) is involved. (c) Phase diagram when
two breakpoints are present, one at N = Nc and the other at N = Nu.

be expected to lead to a milder dependency of s on N . In-
deed, from (2), one may expect the slope b2 to decrease
with the size of the breakpoint Nc. We shall provide em-
pirical evidence in support of this and see that b2 is close
to zero for large Nc. Thus the slope to the right of the
breakpoint Nc plays a role similar to that of the order pa-
rameter in the theory of critical phenomena (we are not
interested in the thermodynamic limit here).

Critical mass. – Having quantified the notion of
large teams as those whose size exceeds the transition
point Nc, we next attempt to pin down the meaning of
the term critical mass . This is loosely described as the
value Nk of N beneath which groups are not viable in the
longer term. We refer to teams of size N < Nk as small

and groups with Nk ≤ N < Nc as medium in size. To
determine Nk, we consider groups as canonical or grand
canonical ensembles.

In the latter case, one may ask, if new nodes become
available, is it more beneficial for the strength of the entire

society in the given activity to allocate them to a small,
medium or large team? From (3), the gradient of S = sN
is aj + 2bjN , where j = 1 or 2 according to whether N <
Nc or N > Nc. The former has greater value, indicating it
is more beneficial if these new nodes are allocated to the
small/medium group, provided a1 +2b1N > a2 +2b2N or
N > Nk, where Nk is given by the scaling relation

Nk =
a2 − a1

2(b1 − b2)
=

Nc

2
, (5)

having used 4. The quantity Nk may then be considered
the critical mass for the given activity.

For the canonical approach, we may ask the comple-
mentary question: if the total number of nodes associated
with the given activity is fixed, what is the best strategy,
on average, for transferring them between small/medium
and large groups? We suppose that group I initially has
NI nodes and group II starts with NII members. Three
scenarios arise. In scenario A, group I is small/medium

and group II is large; in scenario B, both groups are large
and Scenario C is the inverse of Scenario A and needs
no further consideration. We consider the transfer of M
nodes from group II to group I. Starting with Scenario A,
the post-transfer strength of the new configuration is given
by Si(M) = ai(NI +M) + bi(NI +M)2 + a2(NII −M) +
b2(NII−M)2, where i = 1 or i = 2 for scenarios A and B as
the final configuration, respectively. Measuring the total

increase in strength due to the transfer by

∆S̃(M) =
Si(M)− S1(0)

b1NI(Nc −NI)
, (6)

and plotting this in Fig. 2(a) and (b), up to corrections
of order b2, two outcomes emerge. For scenario A the
collective increase ∆S̃ is maximized at M = −NI, which
represents the assimilation of group I into group II. For
scenario B, one finds that this maximum holds for Nc −
NI ≤ M ≤ NII − Nc, which represents any configuration
in which each group has at least Nc members.
Incremental transfer of staff from group II to group I

is governed by scenario A, the outcome of which is deter-
mined by the gradient of ∆S̃, at the initial point M = 0,

∂∆S̃

∂M

∣

∣

∣

∣

∣

M=0

=
2

NI

NI −Nk

Nc −NI
. (7)

Such a move is globally beneficial if this slope is positive.
This occurs when NI > Nk, so that group I is initially su-
percritical in size. I.e., it is sensible to promote medium-
size groups at the expense of large ones. If NI < Nk

(group I is initially subcritical), the shortest route to max-
imal performance is to conglomerate all nodes into the
large group. Instead, and to avoid extinction, group I
should strive to achieve critical mass, in which case the
previous argument prevails.

Application to research groups. – To test our the-
ory, we require a collection of small, medium and large
groups engaged in an activity in which the quality of each
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Fig. 3: Success rate or research quality s as a function of group size N for (a) physics, (b) Earth science and (c) biology. As
in Fig.1(b), the solid lines are piecewise linear regression best-fits to the data and the dashed curves represent 95% condidence
intervals for these fits.

group is measured quantitatively. As mentioned, the UK’s
academic communities provide suitable testing arenas as
the quality of research groups in many disciplines has been
measured through RAE.

A piecewise linear regression analysis is applied to data
sets corresponding to measured quality of research groups,
fitting to the form (3). In Fig. 3 the data for physics
(which includes experimental physics), Earth sciences and
biology are presented. For these, as in Fig. 1(b) for ap-
plied mathematics, the positive correlation between qual-
ity and team size reduces beyond a discipline-dependent
transition point. The statistical P -values for the null hy-
pothesis that there is no underlying correlation were less
than 0.1% in each case while the P -values for coinciding
slopes on either side of the transition point are smaller
than 0.3%. These small values indicate that we can re-
ject these hypotheses for these disciplines, in favour of the
alternative that the model is sound and that the transi-
tion points exist. The solid curves in the figures are the
piecewise linear-regression fits to the data and the dashed
curves represent the resulting 95% confidence belts. For
physics, we estimate the critical mass as Nk = 12.7± 2.4,
about twice the estimate Nk = 6.2± 0.9 for applied math-
ematics and closer to the estimate Nk = 15.2 ± 1.4 for
Earth sciences and to Nk = 10.4± 1.6 for biology.

The measured values for the slopes to the right of the
breakpoint are b2 = 0.05±0.03, 0.05±0.11 and 0.07±0.04
for physics, Earth sciences and biology, respectively. As
expected for large-Nc communities, these slopes are small
compared to that of applied mathematics, which has b2 =
0.3± 0.1 and a relatively small value of Nc.

In pure mathematics (see Fig. 4(a)) no transition point
was detected and the data is best fitted by a single line,
the intercept (28.1±2.8) and slope (0.5±0.2) of which are
comparable to the corresponding values for large applied
mathematics groups (a2 = 31.7 ± 12.8 and 0.31 ± 0.09,
respectively). These indicate that these data may also
be interpreted as belonging to large groups. Then Nc for
pure mathematics may be interpreted as being less than
or equal to the size of the smallest group whose quality
was measured, which was 4, so that Nk ≤ 2. This suggests

that local cooperation is less significant in pure mathemat-
ics, where the work pattern is more individualized. This
is consistent with experience: papers in pure mathemat-
ics tend to be authored by one or two individials, rather
than by larger collaborations. The results for chemistry
are presented in Fig. 4(b), where there is also an absence
of small groups leading to a relatively large error in the
critical mass estimate Nk = 18± 7.

The above work is based upon the measures of research
quality as determined in the UK. To check its broader
generality, we compare the results of the RAE with those
of the French equivalent, which is performed by the
Agence d’Évaluation de la Recherche et de l’Enseignement

Supérieur (AERES). In the 2008 evaluation, a method was
used which is considered more precise than that used pre-
viously and this facilitates comparison with the British
approach. However, since only 10 traditional universi-
ties were evaluated, the amount of data available for the
French system is lower than for the UK equivalent. Fur-
thermore, only a global mark is attributed to cumulated
research groupings so a fine-grain analysis at the level of
the research groups is not possible and no transition point
is measureable. Nonetheless, we translate the AERES
grades A+, A, B, C into 4*, 3*, 2*, and 1* and anal-
yse the French system for hard sciences and life sciences
to compare to the British equivalent. In Fig. 5, the stan-
dardized success rates σ = (s − s̄)/σs are plotted against
the standardized group sizes ν = (N − N̄)/σN for both
systems, where N̄ and s̄ are the mean N and s values,
respectively, and σN and σs are their standard deviations.
A convincing degree of overlap is evident.

Palla et al. analysed international networks of co-
authorship in condensed matter physics and found a differ-
ence in the endurance rates of teams with above about 20
members and teams with fewer members [7]. Endurance
over time is not the same as quality, but it may serve as a
rough guide in the sense that unsuccessful research collab-
orations are unlikely to endure and vice versa. It is there-
fore satisfactory to note that our estimate Nc = 25.4± 4.8
for physics is consistent with the observation of Ref. [7].
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Fig. 4: Assessed group quality as a function of size for (a) pure
mathematics and (b) chemistry. The former is best described
by a single straight line.

Discussion. – In analysing the relationship between
quality in an activity and quantity of parcipants, we have
considered communities as consisting of individuals col-
lected as subgroups within groups. It is a simple mat-
ter to extend these considerations to ever larger collec-
tives, formed from further hierarchies of communities with
self-similar interactions between them. In the case where
b2 6= 0, the quality plateau may occur at a larger value
N = Nu, which marks the point where inter-subgroup in-
teractions saturate. In this case, (3) is replaced by

s =







a1 + b1N if N ≤ Nc

a2 + b2N if Nc ≤ N ≤ Nu

a3 if N ≥ Nu.
(8)

This double-breakpoint scenario leads to a richer phase di-
agram, obtainable by consideration of transfer of M nodes
from group II, of sizeNII > Nu. This is plotted in Fig. 1(c)
for a super-critical group I. In Ref. [8], where a study of the
hierarchical structure of nested communities in a univer-
sity network indicated self-organization into a self-similar
structure, it was suggested that some universal mecha-
nism could be behind the evolution of social networks.
The mechanism we propose is of this type.
We have shown that there is a somewhat surprising re-

lationship between quality and quantity: in the language
of statistical physics, quality is an extensive concept. Our
study also shows that it is unwise to judge a research group
solely on the basis of its quality profile - precisely because
of this strong size dependency: small- and medium-size
groups should not be expected to yield the same qual-
ity profiles as large ones, and to compare small/medium
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(a) hard sciences
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Fig. 5: Standardized success rates σ = (s − s̄)/σs plot-
ted against standardized sizes ν = (N − N̄)/σN for France’s
AERES and the UK’s RAE for (A) the hard sciences and (B)
the life sciences. The French data correspond to the symbols ×
(blue online) and the integrated British data to + (red online).

groups to the average success rate over all research groups
in a discipline can be misleading. Indeed, Fig. 6 contains
a plot of renormalized research quality measures s − 〈s〉,
where 〈s〉 is the N -dependent expected quality value from
Eq.(3). The standard deviation and range corresponding
to this plot are 6.4 and 28.8, respectively. These values
are about half the corresponding values of 12.6 and 52.9,
respectively, for Fig. 1(a), where the data are compared to
their global average. Similar results are obtained for other
disciplines.

Our model is based on the notion that research groups
are complex systems and scientific quality is dominated
by interactions between group members rather than by the
accumulated node strengths. While the data analysis sup-
ports this hypothesis, one could, of course, consider other
possible mechanisms which drive the quality of group ac-
tivity, such as preferential recruitment of quality to qual-
ity (allowing for the average quality of individuals at some
institutions to be higher than at others) or one in which
increased quality drives increased quantity (the opposite
causal mechanism to that of our model). Or there could
be a bias in both the RAE and AERES where assessment
of research may favour larger groups. However, one would
expect such mechanisms to lead to a sustained increase of
quality with quantity and it is therefore hard to see how
these alone could account for the existence and proper-
ties of the breakpoint, which we have clearly established
through our statistical analyses. Moreover, similar anal-
yses of other fields confirm the existence of a breakpoint
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in areas far from the natural sciences reported here, e.g.,
European languages, archaelogy, philosophy and theology,
which are unlikely to have the same assessment traditions
or bias as the hard or life sciences. Of course, improvement
of the model could introduce noise and bias, but very in-
terestingly, these effects are an order of magnitude below
the basic collaborative effect.

An analysis of the type presented herein may therefore
assist in the determination of which groups are, to use
a boxing analogy, punching above or below their weight
within a research arena and should be taken into account
by decision makers when comparing research groups and
when formulating strategy. Furthermore, having estab-
lished a correlation between quality and quantity, and as-
cribing this correlation as primarily due to two-way com-
munication links, it is clear that facilitation of such com-
munication should form an important management policy
in academia. Indeed we have demonstrated that to opti-
mize overall research quality in a given discipline, medium-
size groups should be promoted while small ones must en-
deavour to attain critical mass.

To summarize, inspired by mean field theory and the de
Gennes polymer picture, we have developed a very simple
model which relates the quality of an activity to the quan-
tity of participants engaged in it. In spite of its simplicity,
this self-similar model captures the essential features of the
empirical data. It involves the treatment of collectives as
complex systems and cooperative behaviour arising from
inter-nodal interactions dominate group quality. Further-
more, these hierarchical interactions drive “phase tran-
sitions” between what may be considered small, medium
and large groups and lead to a rather rich phase structure.
In particular, quality saturates beyond a certain group size
which is related by a simple scaling relation to a critical
mass, beneath which a group is vulnerable. Considering
academia as an example of an activity where quality mea-
surements are readily available and where quantities of
participants are known, we present saturation points and
critical masses for research areas in a number of scientific
disciplines. Critical masses for other subjects area will be
presented elsewhere.
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