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1. Introduction 

Whilst it is desirable to achieve a high level of accuracy when delivering X-rays using intensity-
modulated radiation therapy (IMRT) techniques, if exact tumour position relative to an irradiated 
volume is unknown, theoretical advantage in accuracy compared with less complex techniques may be 
compromised or even negated. Tumour position varies both between treatments (inter-fractional 
movement) and during treatments (intra-fractional movement). The movement is caused by a 
combination of daily changes in patient physiology, e.g. bladder size; continuous changes e.g. 
breathing; and also by set-up errors associated with treatment complexity. Some patient movement 
(e.g. head, arm, leg) can be limited through the use of suitable restraints. When tumour movement is 
caused by breathing, either directly, (cancer of the lung), or indirectly (structures within the thorax and 
abdomen) the problem becomes more challenging.  
To allow for uncertainty in true tumour position, a margin of error, typically between 10 and 15 mm, 1  
is added to the perimeter of a clinical target volume, the total volume being classed the planning target 
volume (PTV). Since the margin represents healthy tissue which ideally should be avoided during 
treatment, any methods which can be employed to reduce margin size will also benefit the patient. 
Breath holding has been investigated, 2  but can only be implemented for relatively short treatment 
sessions and where the patient is healthy enough to comply with the method. Where implementation of 
breath holding is impractical, accurate real-time knowledge of tumour position is vital if margin size is 
to be reduced.  
Adaptive radiation therapy (ART) 3  and image guided radiation therapy (IGRT) 4  are recent 
innovations which attempt to reduce errors by imaging the tumour, either immediately prior to (inter-
fractional), or during (intra-fractional) treatment. Ultrasound imaging, 5  cone beam CT 6  or CT scans 7  
can be used for inter-fractional tumour positioning. On-line intra-fractional organ motion detection can 
be facilitated using either fluoroscopic X-rays for observing internal markers 8  or stereoscopic video 
techniques for tracking external markers. 9  Positional information gained on-line can then be used to 
reduce treatment errors by modifying the beam position and/or cross-section in real-time. Gating 10  is a 
method whereby the treatment beam is automatically turned off if the tumour moves out of a pre-
determined gating region. Significant improvement in dose conformality with gating implemented has 
been demonstrated using a moving lung phantom with breathing simulated by the Lujan model. 11  In 
practice, however, a human patient does not conform to a fixed parameter model, the patient having 
breathing characteristics which are to a greater or lesser extent unpredictable. Assistance to minimize 
unpredictibility can be given in the form of breath training prior to treatment. There is, however, some 
evidence 9  that breath training provides no significant improvement to clinical outcome. In real-time, 
changes in breathing can be detected by markers, but there is an inevitable lag between observation 
time and system delivery time. This time delay is known as the latency of the treatment system. To 
provide an effective response to these breathing changes, some form of prediction method is therefore 
required to compensate for the system latency.  
Recent investigations 12 16−  of different prediction methods for tracking organ movement have 
demonstrated the benefits gained by using linear filters, Kalman filters and neural networks (NNs) 
compared with using no prediction method. Only Isaksson et al 14  attempt on-line adaptive updating. 
NN based methods (Kakar et al 15  use an adaptive fuzzy neural inference system, which is an 
augmented Gaussian radial basis function NN) produce the best root-mean-squared error (RMSE) 
solutions for latencies > 0.2 s. Whilst providing useful comparisons to be made with alternative 
methods, RMSE values do not, however, give any indication of the maximum error values produced by 



the methods used and can therefore potentially lead to misleading conclusions with regard to the local 
accuracy of a particular training algorithm. A large prediction error even if made for a relatively short 
period of time may cause the treatment beam to deliver a high dose to an organ at risk (OAR) with 
possibly harmful short or long-term effects. It should also be noted that although a well trained NN 
may be accurate for interpolation purposes, the same NN can potentially be extremely inaccurate when 
used for extrapolation. To avoid extrapolation errors a NN used for prediction in a non-stationary 
dynamic system should be updated regularly to account for changes in signal characteristics.  
The overall aim of this paper is to highlight potential issues with NN methods which have previously 
been employed to predict organ motion and to propose a more rigorous approach when using NNs in 
RT. To this end, the paper commences with a brief review of NN theory relevant to time series 
prediction which emphasizes the importance of choosing an appropriate algorithm for adaptive 
training. Subsequently, the performance of a time-series prediction neural network (TSP NN) 17  for 
estimating tumour marker position is assessed using three different methods to up-date parameters on-
line. Of these, the generalized regression NN has not previously been investigated for use in IGRT. 
The training data used have been previously published by George et al 18  and are taken as a benchmark 
to demonstrate the relative benefits of the different approaches when applied to the same data. In 
contrast with previous work, relative accuracy is assessed both in terms of root-mean-squared and 
maximum errors.  

2. Methods and materials 

This section presents a short introduction to NNs followed by details of the training data, NN design 
and algorithms used in the present study.  

1. Neural networks 

The neural network (NN) is a method by which a computer can be trained to ‘learn’ a relationship 
between input and output data using mathematical activation functions and coefficients (generally 
called weights) designed to simulate the interactions between neurons and synapses in the human brain. 
This makes the NN a very powerful tool in situations where an explicit functional relationship between 
inputs and outputs is non-linear and difficult to determine analytically. If sufficient input/output data is 
readily available, the training of a NN may provide the best combination of speed and accuracy to 
replicate a desired function without the requirement for intrinsic knowledge of the function from the 
operator. This does not mean, however, that NNs should be implemented without knowledge of their 
limitations. The present work aims to provide sufficient information to allow an unbiased appraisal of 
their abilities within the specific area of tumour motion prediction.  

1. Network architectures 

A NN is a combination of inputs, weights, activation functions (generally called neurons) and outputs. 
The way in which these attributes are combined defines the architecture of the NN. The most popular 
NN method for synthesizing input-output mappings is supervised learning using training data to 
construct a perceptron. The perceptron uses stochastic iterative training algorithms to produce a global 
solution to functions i.e. every input gives a unique output. It should be noted, however, that attempting 
to predict values using inputs significantly different from the original training data (extrapolation) will 
usually result in spurious outputs which may be several orders of magnitude different from the values 
desired. A perceptron consisting only of an input layer and a computational output layer of neurons is 
called a single-layer perceptron i.e. the input layer (which distributes the inputs without performing 
computation) is not counted when describing the number of layers. In general, multiple inputs may be 
linked to multiple outputs using more than one layer of neurons – any layer between the input and 
output layer is called a hidden  layer. A perceptron with at least one hidden layer is called a multi-
layer perceptron (MLP).  
Conversely, the radial basis function neural network (RBF NN) always has one hidden layer of radial 
basis function neurons and uses deterministic linear algebraic techniques to calculate network weights 
(although these are sometimes combined with stochastic methods of data selection or clustering). The 
RBF NN produces a local solution to functions i.e. outputs are bounded to be within the range of the 
training data. This property makes RBF NNs preferable for safety critical prediction. 19   
In a perceptron architecture, the activation function, f , represented by each neuron, is generally a 



non-linear squashing function  
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(1) and (2) are known as the logsig and tansig functions respectively. For a RBF NN, the most 
commonly used function is the Gaussian  
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2v σ=|| − || /c x , c being the centre of the RBF and σ  the width of the RBF, representing its 
degree of response to input vectors and influence on neighbouring layer neurons.  

2. Training data 

When NNs are required to model an input-output relationship, a set of training data is used which 
should ideally encode the mapping between all possible inputs and outputs required by the application. 
This method is known as supervised learning. Data is presented to a NN in the form of a set of inputs 
and targets (i.e. desired outputs) and a training algorithm is implemented which aims to reduce the 
value of a scalar energy function, F , generally the mean-squared error (MSE) given by  
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where it  is a target, iy  is the network response to the thi  input, and N  is the number of input-target 
data pairs. This reduction is generally achieved by iteratively changing the values of weights and biases 
within the NN until either the desired value for F  is attained or the algorithm is terminated by an 
alternative criterion, such as time restriction. Each iteration is called an epoch.  
The data used for this study have been acquired from a breathing training database collated by George 
(RGeorge@mcvh-vcu.edu) at Virginia Commonwealth University. 24 adult patients suffering from 
lung cancer were observed over a period of a year, a record being made of 331 4-minute breathing 
traces of respiratory motion using 3 types of training. None of the patients were oxygen dependant and 
all were capable of lying in a supine position without feeling pain. A marker block resting on the chest 
of each patient between umbilicus and xyphoid allowed tracking of respiratory movement in the 
anterior-posterior direction using a real-time position management system developed by Varian 
Medical Systems. The marker position was sampled at 30 Hz. Each record therefore contains 
30 4 60 7200× × =  data points. Breathing amplitude (maximum to minimum displacement in each 
4-minute trace) ranges from 8 mm to 60 mm. Isaksson et al 14  normalize their data (taken from 3 
patient records classified as ‘easy’, ‘medium’ and ‘hard-to-track’) to zero mean and unit variance to 
facilitate more stable NN learning. The method consequently uses knowledge of future patient 
breathing behaviour which is clearly unavailable in a real-time situation. In the present work 
simulations are carried out in real-time making no assumption of future breathing patterns. The data are 
not, therefore rescaled, and each NN is required to adapt to any change in breathing characteristic in the 
absence of a priori knowledge. The data are similarly not a priori sub-grouped into ‘easy’ or ‘difficult’ 
categories, on the basis that it is only after the treatment has been carried out that the degree of tracking 
difficulty can be realistically assessed. It should be noted that all patients ‘behave’ (i.e. maintain 
constant amplitude and frequency) reasonably well in the first 60 s of each record.  

2. Time-series prediction neural network 

A time series prediction, ˆ( )x t T T+ ,  seconds ahead of the present time t  is given by  
 ˆ( ) { ( ) ( ) ( 2 )x t T G x t x t x t …τ τ+ = , − , − , ,  
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where G  is the non-linear function described by the NN, τ  is the sampling period, H  is the number 
of historical samples used in combination with the present sample ( )x t , ε  is observation noise, 
usually assumed to be Gaussian and 

[ ( ) ( ) ( 2 ) ( ( 1) ) ( )]Tx t x t x t … x t H x t Hτ τ τ τ= , − , − , , − − , −x .  
The ‘black-box’ ability of an NN to model input-output mappings with little or no requirement for a 
priori knowledge has made NNs popular for both modelling and predicting time series data. 
Consequently, they are frequently used in predictive control. 17 20 21, ,  Each of the following two sections 
describes a NN design which has been demonstrated as suitable for time series prediction.   
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Figure 1. Time series prediction MLP with one hidden layer. The MLP illustrated represents a 1-D (scalar) 
predictor with 1H +  inputs, 1 output, and a hidden layer with M  neurons. f  represents a non-linear 

function, generally the logsig or tansig function (equations (1) and (2) respectively). 

1. Time series prediction MLP  

The MLP architecture to predict time series data constitutes a tapped delay line input, hidden layer the 
size of which should ideally be optimized using training data, and 1 output (Figure 1). This type of 
MLP is known as a times-series prediction (TSP) MLP. 17  Although the output need not be scalar, it 
has been shown that more precise results are obtained using individual networks for each prediction 
output i.e. MLPs with scalar outputs. 17 19,  A TSP MLP is trained by using a sequence of vectors 

1{ } 1 2H
n n R n … N+, ∈ , = , , ,x x , as inputs, and { } { ( )}n nt x t T≡ +  as targets. The accuracy of a 

TSP MLP is dependent on a number of factors:  
1. Signal characteristics  
2. Desired prediction horizon  
3. Sampling frequency  
4. Frequency of on-line updating (if any)  
5. Number of inputs ≡  number of historical points used  
6. Number of hidden neurons (if any) in network  
7. Type of training algorithm implemented  

In general, 1-3 are beyond the control of the NN designer. It should be noted that for periodic signals 
sampling frequency should be at least twice the bandwidth of the signal to avoid aliasing. 22  On-line 
updating needs to be carried out frequently if the signal is non-stationary, but this frequency may be 
restricted by the speed of the training algorithm used. Finding optimal solutions for 5-7 can be very 
time consuming. Any optimization of architecture and training algorithm is generally, therefore, carried 
out off-line, with on-line up-dating (where carried out) limited to weight changes facilitated by short 
periods of re-training. As a result, it may be difficult or even impossible for the NN to give an accurate 
response at points where there is a major change in the signal properties.    
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Figure 2. A GRNN with one output. g  represents a Gaussian activation function, S  an S -summation 

neuron, 
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=
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2. Generalized regression neural network  

The generalized regression NN (GRNN) is a modification of the standard Gaussian radial basis 
function (GRBF) NN 20  and is designed specifically to facilitate function approximation for system 
modelling and prediction. The architecture is shown in figure 2 for a scalar output. The centre, 

1 2n n … N, = , , ,c  of each GRBF is an input vector from the training set, and each weight nw  is the 

target associated with the respective input vector i.e. n nw t= . The output, y  of the GRNN is given by  
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where  
 2

1( ) exp( )ng σ= − || − || / .x c x  
The value assigned to σ  controls the generalization capability of the RBF NN. As a rule of thumb, σ  
should be greater than the minimum Euclidean distance between pairs of data and smaller than the 
maximum distance between pairs. A value commonly used is  

 maxd
C

σ =  (7) 

 
where maxd  is the maximum Euclidean distance between input vectors and C  is the number of 

GRBFs chosen for the network. 20  This value can produce a good function approximation where data 
points are evenly distributed throughout the input space. Clearly, the magnitude of the GRNN output is 
bounded by the size of the maximum value of n nw t≡  i.e.  
 arg max nn

y w| |≤ | | .  (8) 

 
This contrasts with MLP training, where there is no guaranteed a priori bound on outputs due to the 
nature of the learning process.  

3. Generalization 

Care must be taken to ensure that good generalization is built into a NN, so that when presented with a 
previously unseen input it will produce an appropriate output. In practice, unless virtual data 23  is used 
for training, the data will contain noise. The degree of noise affects the ability of a NN to model the 
true underlying input-output mapping. A NN trained to a very small error may have effectively ‘rote-
memorized’ training data (including noise) without learning the true function. To prevent this, it is 
sometimes better to interrupt training at some point before the pre-determined MSE target is reached. 
The best statistical approach is to split data into a training subset and a validation subset. 20  The first 
subset is used to train the NN, whilst the second is used to test MSE val , the validation error defined by  
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of the temporarily ‘frozen’ network at intervals in the training procedure, where valt  is a target from 
the validation set. This is known as cross-validation. If a point is reached where the error of the 
validation set begins to rise (typically, a few epochs of consecutive increasing error is necessary if 
MSE val  is not monotonically decreasing), the network training is stopped. In the context of an adaptive 
TSP MLP, the use of on-line validation data may be impractical. There are 3 options to consider:  

1. Train using the most recent data, then validate using older data  
2. Train using older data, then validate using the most recent data  
3. Train using a random selection of recent data points, then validate using the data 
unused for training  

Clearly the first two methods may give poor results for rapidly changing non-stationary signals, since 
there is no guarantee that the validation set is within the domain of the training data. The third method 
can sometimes produce an ‘average’ network which may miss a rapid change occurring in the most 
recent data samples. This is, however, the only practical method for implementing on-line where a 
signal is non-stationary, and is effective where data is noisy. In the present work, cross-validation is 
implemented by keeping 1 in 5 data points for validation purposes, whilst training the NN on the 
remaining 4 out of 5 points (see figure 3). This ratio is considered optimal for most NN training 
applications. 24  The validation points are sampled at uniform intervals to avoid the possibility of bias.   

[scale=0.6]NN 1s ampling eps.  

Figure 3. Demonstration of data sampling for validation and RBF centres. 

4. Training algorithms 

There are a large number of algorithms available to train NNs. A good introduction to several of these 
is provided by 25 . For adaptive updating of a TSP NN, a fast algorithm is required, since any delay 
limits the ability of the NN to provide accurate prediction (cf. Kakar et al 15  where training takes 

120  s on 20 s of data for 0.24 s ahead prediction). A brief description is given below of three 
training algorithms which have become popular due to their rapid convergence characteristics. The first 
two described have been used previously within the context of tumour motion prediction. 12 14,   

1. Conjugate-gradient backpropagation algorithm 

The conjugate-gradient (CG) search method has been shown to guarantee convergence to the minimum 
of a quadratic function in a finite number of iterations W≤  where W  is the number of parameters of 
the function. 26  The energy function, F , is not quadratic in the NN weights, so there is no guaranteed 
convergence of CG to the global error minimum. However, a modification of CG called conjugate-
gradient backpropagation (CGBP) can be used to train a MLP. CGBP employs a line search to find 
successive local minimum values of F . At each local minimum, the algorithm is re-set by calculating 
a new search direction until the algorithm either converges or is terminated by a suitable criterion e.g. 
time limitation or validation error. Sharp et al 12  use CGBP to train a static MLP.  

2. Levenberg-Marquardt 

The Levenberg-Marquardt (LM) algorithm 27 28,  is designed specifically to minimize the sum-of-
squares error function, using a formula that (partly) assumes that the underlying function modelled by 
the network is linear. Close to a minimum this assumption is approximately true, and the algorithm can 
make very rapid progress. Further away it may be a very poor assumption. LM therefore compromises 
between the linear model and a gradient-descent approach. A move is only accepted if it improves the 
error, and if necessary the gradient-descent model 29  is used with a sufficiently small step to guarantee 
downhill movement. The LM algorithm requires the inversion of [ ]T

k k kλ+J J I  at the thk  iteration, 

where J is the Jacobian matrix and λ  is an adjustable scalar parameter. The size of this matrix is 
dependent on the number of training pairs, N , presented to the NN and the computational cost of the 



required matrix inversion scales as 3( )O N . 30  Calculation time for an epoch using LM may therefore 

be considerably longer than that for an epoch using CGBP. For the present work, at the thk  iteration, 
the value of λ  is updated according to the rule  

 1 1

1 1

0 1
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k k k k

k k k k

F F
F F

λ λ
λ λ


 + +



+ +

= . , <
= , ≥
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LM is used by Isaksson et al 14  for on-line training of a MLP for IGRT.  

3. GRNN training 

The method for constructing the GRNN is described above. It should be noted that iterating is not 
required, so that a GRNN can be produced in considerably less time than required to produce a 
comparable TSP MLP.  

5. TSP MLP parameterization and training 

In general, one hidden layer of neurons is sufficient for all but the most complex of input/output 
relationships, 31  so is implemented for all architectures. Tansig neurons are used for the hidden layer 
and linear neurons on the output layer. Because of the large number of combinations of inputs and 
hidden neurons possible, an average is made using the first 10 s of data from a random sample of 30 
breathing traces. Since the data is sampled at 30 Hz, this translates to 10 30 300× =  data points. 
Subsequently, training is implemented for each of the breathing traces using CGBP, LM and BR using 
the following protocol:  

1. Train the TSP MLP using the first 10 s of data. CGBP and LM use 5 s of data for 
training and 5 s for validation. BR uses all 10 s for training.  
2. Subsequently up-date at 1 s intervals for 0.2 s only, using the latest 5 s of data.  

Training is first carried out using unfiltered data, then filtered data. In the present work validation is 
only used for initial training using the CGBP and LM algorithms off-line. On-line adaptation is carried 
out using a limited number of epochs for each algorithm, in order to minimize the possibility of over-
fitting.  

6. Error evaluation 

The root-mean-squared error (RMSE) between predicted and observed marker position is a standard 
metric used in IGRT. 12 13 15, ,  It is defined for N  observations by  

 2

1

1RMSE ( )
N

pred ob
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iN =
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where predx  is predicted, and obx  observed, marker position. N.B. RMSE ≡  standard deviation of the 
error vector [ ]pred ob= −e x x . When using unfiltered data for training, RMSE is calculated using the 
observed i.e. unfiltered observation so that the value is not artificially reduced. The average RMSE for 
all 331 breathing traces  
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is then used as the final RMSE measure. Error is also presented in terms of the magnitude of the 
maximum single error over all breathing traces, given by  
 arg max 1 2 331max max
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e e j …∗| | = | |, = , , ,  (13) 

 
and the average value of the maximum errors  
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All training is carried out using the Matlab ® 6.5 Neural Network toolbox version 4.0.2.  

3. Results and discussion 

Table 1. Optimization results for TSP MLPs - unfiltered data 
 

.2 s latency   
Training 
algorithm  

CG  LM  BR+CG  GRNN  No 
prediction   

RMSE  
(mm)  

0.727  1.608  0.765  0.780  1.196   

Standard 
deviation 
of RMSE 
(mm)  

0.547  10.857  0.715  0.166  0.326   

maxe ∗| |  
(mm)  

15.91  321.6  15.80  8.339  6.256   

maxe| |  
(mm)  

3.283  84.26  4.279  5.353  3.676   

No. of 
inputs  

4  3  3  2  —   

σ   –  -  –  0.031  –   
No. of 
hidden 
neurons  

8  7  8  30  —   

.4 s latency   
Training 
algorithm  

CG  LM  BR+CG  GRNN  No 
prediction   

RMSE  
(mm)  

1.092  2.267  1.341  1.696  2.276   

Standard 
deviation 
of RMSE 
(mm)  

0.700  23.87  0.879  0.505  0.652   

maxe ∗| |  
(mm)  

18.58  1750  20.78  15.83  10.90   

maxe| |  
(mm)  

4.241  158.8  6.852  4.377  5.750   

No. of 
inputs  

4  4  3  2  —   

σ   –  -  –  0.031  –   
No. of 
hidden 
neurons  

10  10  9  30  —   

 
A table of results for non-filtered data is given in table 1 with table 2 presenting the results using 
filtered data. The inferior results for the LM algorithm are attributable to much higher maximum errors 
in all four categories. This gives an indication of the unsuitability of LM as a robust algorithm for on-
line updating. Based on the RMSE criterion, both the CGBP and BR+CG algorithms are significantly 
superior to using either the LM algorithm or no prediction ( 0 006p < . ). Best RMSE results for 0.2 s 
and 0.4 s latency are obtained using BR ( 0 0071p < . ) with filtered input. This indicates that the raw 
data is noisy.  

Table 2. Optimization results for TSP MLPs - filtered data 
 



.2 s latency   
Training 
algorithm  

CG  LM  BR+CG  GRNN  No 
prediction   

RMSE  
(mm)  

0.626  0.755  0.484  0.773  1.182   

Standard 
deviation 
of RMSE 
(mm)  

0.538  5.229  0.542  0.164  0.327   

maxe ∗| |  
(mm)  

15.62  228.3  14.81  8.297  5.584   

maxe| |  
(mm)  

3.178  40.82  3.082  5.253  3.152   

No. of 
inputs  

4  3  3  2  —   

σ   –  -  –  0.023  –   
No. of 
hidden 
neurons  

8  7  8  30  —   

.4 s latency   
Training 
algorithm  

CG  LM  BR+CG  GRNN  No 
prediction   

RMSE  
(mm)  

1.202  1.614  0.970  1.688  2.264   

Standard 
deviation 
of RMSE 
(mm)  

0.931  8.402  0.783  0.502  0.652   

maxe ∗| |  
(mm)  

18.40  340.6  19.26  15.83  10.45   

maxe| |  
(mm)  

5.027  66.56  5.661  4.346  5.310   

No. of 
inputs  

4  4  3  2  —   

σ   –  -  –  0.023  –   
No. of 
hidden 
neurons  

10  10  9  30  —   

 
Analysis of maximum error results shows that using no prediction minimizes the worst prediction 
errors. The GRNN consistently produces best maximum absolute error results amongst the NN 
prediction methods. From a quality assurance standpoint, the GRNN also has an advantage over the 
MLP methods in having a bounded output. The radiobiological effect caused by any tracking errors is 
largely patient specific, which may determine which of the prediction methods, if any, should be used. 
It is clear, however, that use of the LM algorithm as the sole method for training and updating cannot 
be justified for this specific application. An investigation of the maximum magnitude of layer weights 
and biases associated with each algorithm demonstrate the very much higher magnitude of weights 
induced by training using LM. This explains the disproportionately high errors which occur as a result 
of relatively small changes in breathing pattern.    

Table 3. Analysis of weights and biases - filtered data 
 

.2 s latency   
Training 
algorithm  

CG  LM  BR+CG  GRNN   

maxweight ∗| |   1.884  28.71  9.316  12.33   
maxweight| |   1.253  7.346  4.372  7.03   

Standard 0.274  6.528  2.173  3.280   



deviation of 
maxweight| |   

maxbias ∗| |   66.38  354.8  11.81  -   
maxbias| |   30.72  37.58  2.848  -   

Standard 
deviation of 

maxbias| |   

20.03  62.48  2.536  -   

.4 s latency   
Training 
algorithm  

CG  LM  BR+CG  GRNN   

maxweight ∗| |   2.238  44.41  10.94  12.33   
maxweight| |   1.213  10.92  4.638  7.030   

Standard 
deviation of 

maxweight| |   

0.357  9.826  2.657  3.280   

maxbias ∗| |   93.28  216.7  28.00  -   
maxbias| |   28.67  41.97  5.855  -   

Standard 
deviation of 

maxbias| |   

20.83  46.52  6.418  -   

 

4. Conclusions 

A study has been made of four different algorithms used to train TSP NNs for tracking tumour 
movement by external marker. It has been found that assessing the performance of an algorithm soley 
based on RMSE can potentially lead to unsafe conclusions in terms of the relative advantage of the NN 
approach. New error criteria have therefore been devised to highlight error maxima. A hybrid 
algorithm combining BR and CGBP produces best average RMSE results. By minimizing the 
magnitude of network weights in addition to minimizing output error, average tracking error is reduced 
significantly compared with that achieved by NN training algorithms previously used in IGRT. Further 
reduction in RMSE is achieved by implementing an average filter on inputs. A future comparison of 
filters would be advantageous in order to find an optimal filter to minimize error for this application. 
Isolated relatively high error values still occur when using the BR+CG algorithm, but with an order of 
magnitude lower than those observed when using the LM algorithm. For that reason it may be 
preferable to implement the GRNN, since the maximum error can then at least be stated in advance. An 
analysis of the magnitude of NN layer weights produced using each algorithm provides some insight 
into why the LM algorithm maximum error results are higher than those produced by the other 
algorithms.  
0in0in  
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