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Abstract: Wireless Sensor Network (WSN) is applied widelyfaod cold chain logistics. However, traditional
monitoring systems require significant real-times® data transmission which will result in heaagadtraffic and
communication systems overloading, and thus retheelata collection and transmission efficiencyisTiesearch
aims to develop a temperature Monitoring SystemFmzen and Chilled Aquatic Products (MS-FCAP) Hase
WSN integrated with Compressed Sending (CS) toowgithe efficiency of MS-FCAP. Through understagdine
temperature and related information requirementfra#en and chilled aquatic products cold chairisogs, this
paper illustrates the design of the CS model whisists of sparse sampling and data reconstryeiwhshelf-life
prediction. The system was implemented and evaluateold chain logistics between Hainan and Bgijim China.
The evaluation result suggests that MS-FCAP hagladccuracy in reconstructing temperature dataumdriable
temperature condition as well as under constanpeeature condition. The result shows that MS-FC#\aipable of
recovering the sampled sensor data accurately Hiwikrtly, reflecting the real-time temperatureacige in the
refrigerated truck during cold chain logistics, gmaviding effective decision support traceability quality and
safety assurance of frozen and chilled aquaticywisd

Keywords: Food safety and traceability; Cold chain logistidgnitoring system; Wireless Sensor Network;
Compressed Sensing

1. Introduction

Wireless Sensor Network (WSN) has been adopted @anynsectors, such as food cold chain logistics and

agriculture (e.g., Coates et al., 2013; Qi etzil14; Myo& Yoon, 2014), environmental monitoring (e.g., Weinet

al., 2012; Guobao et al.,2014), and heavy indu@ryg., Wei et al., 2013; Xiao et al., 2014). WSNaisnew

technology that combines sensor technology, emleeddmputing, networking, and wireless communicatiamd

distributed processing. It senses and collectgnmdtion of monitoring objects and sends informatimithe end-user
via wireless and multi-hop network. Wireless traission has many advantages over traditional winestmission in
terms of low maintenance cost, higher mobility t&refiexibility, and fast deployment in special asons (Qi et al.,
2011; Alayev et al.,, 2014; Suryadevara et al., 20However, a significant amount of real-time sendata

transmission will result in heavy data traffic aoekerload the communication bandwidth in WSN, angstreduce
the data collection and transmission efficiency €al., 2011; Li et al., 2012).
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Compressed Sensing (CS) is a new signal acquisiiethod which recovers a sparse signal efficieattgurately
with a relative small number of samples and ovee®some of the limitations of the classical conmgicgsschemes
(Candes and Tao, 2006; Donoho, 2006; Tsaig and lmmn2006; Haupt et al., 2008; Baraniuk et al., 20Ihe
traditional signal processing maintains that a aignust be sampled at a Nyquist rate at least titsdeandwidth in
order to be represented without error. CS provildew complexity approximation to the signal redomgion,
which benefits storage, transmission and processfngatural signals, without restricting the Nydusampling
criterion. It also brings the benefits of simplemgression in WSN without introducing excessive oarverheads,
which meets the limited resource constraint of WEMNen et al., 2012; Xiao et al., 2013; Yunhe et20)13; Caione
et al., 2014).

Quality and safety of fresh food have attracteddasing attention from around the world, especiallgmerging
economies, such as China thanks to the quicklygibving standards (Jiehong et al, 2013; ChuaneHstral., 2014).
For example, fish consumption per head in Chinaois 36.4 kg, which is twice the international aggrdor fish
consumption. However, the official data show thme inspection pass rate of aquatic products in &hiress than
95% (China Catfish Institute, 2012), putting sesidlreat to the health of consumers.

Fresh foods, such as aquatic products, are typipaltishable, with the rate of deterioration acwdieg when
temperature increases owing to a number of facsoid) as microbial metabolism, oxidative reactanrg enzymatic
activity (Raven et al., 2014; Kotta et al., 2014cPR et al., 2014). Unless appropriately packageahsported and
stored, aquatic products will spoil in very shamié¢. Therefore, an important aspect of aquatic gpetsddistribution
management is the effective monitoring of time-temapure conditions and effective temperature managé
which affect both safety and quality of aquaticcarcts (Bytnerowicz et al., 2014).

Typical aquatic products cold chain logistics mék artificial refrigeration technology to meet ismperature
requirements through temperature control. Tradiidlemperature measurement and monitoring systaoh as
temperature chart recording system, is the mostlpopreliable and accurate method to control aoduthent
temperature condition in the cold chain storage temasportation (Chen et al., 2014). However, ssydtems have
high management costs while the data collectidimis consuming. Moreover, each recorder of thostesys needs
to be connected physically to a PC and the dateatimn is manually processed, thus resulting ghlyi complicated
system structure and high rate of inaccurate dataitoring (Trebar et al., 2013; Asadi et al., 201®herefore,
automated and efficient monitoring system and &ffednformation management system are neededffectwe
cold chain logistics.

In consideration of the benefits of WSN and CSs tt@search aim to adopt WSN integrated with CShas
network infrastructure, and develops a temperaldiomitoring System for Frozen and Chilled Aquaticogcts
(MS-FCAP) in cold chain logistics. The system wasigned to monitor the real-time temperature flatitin and the
quality of frozen and chilled aquatic products htegrating the aquatic shelf-life prediction moddbreover, the
system was implemented and evaluated in cold dbgistics between Hainan and Beijing in China.

This research contributes to the field of studyhie following ways. First, the implementation o&tMS-FCAP
helps to improve the transparency and tracealfithe cold chain logistics and enables more dffeatontrol of the
quality and safety of the frozen and chilled aquptoducts. Second, the MS-FCAP pilots the seanmésgration of
WSN and CS for more effective temperature monitpiincold chain logistics. Third, the successfupiementation
of the MS-FCAP proves the feasibility of adoptingSW integrated with CS and paves the way for muathewi
application in the areas of cold chain logisticsnitaring.

The next section discusses the system analysiarhitecture. This is followed by the system modidsussion
and design. The paper then discusses the systetenmmptation and evaluation. Finally, the discussind
conclusion about this research as well as impboatior future work are presented.

—
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2. System analysis and ar chitecture design

Multiple methods proposed Cortes et al. (2014) Xiao et al. (2014) were followed to make sure teatperature
monitoring system would be designed to meet thel mé@otential users: a) Field observation for éwand chilled
aquatic products in cold chain logistics; b) Figlotvey and interviews.

2.1. Field observation for frozen and chilled aquatic productsin cold chain logistics

A field observation for frozen and chilled aquagicoducts in cold chain logistics was conducted @12 in
Hainan province, China. The purpose is to undedsthe actual process of cold chain logistics, iditig any factors
that may affect the safety and quality of aquatimdpcts. As illustrated in Figurel, the typicaldahain logistics
process consists of the following basic steps:

Sep 1. Catching the fresh fish from the farm.
Sep 2: After the catching, fresh aquatic products amsngported immediately via live or refrigerated
transportation to processing plants for furthercpssing.
Sep 3: Aquatic products processing and storage. Aquabclucts are normally divided into two categories
for processing, either segmentation (with fish esalcheek and viscera cast off) or whole fish.
Processed aquatic products are stored in coldggtanafreezer maintained in -8 or lower.
Sep 4: Transporting the frozen and chilled aquatic prtsifrom processing plants to retail stores. Iis thi
process, temperature fluctuations, such as thati@rifrom ambient temperature of aboufQo
-18C or lower, may cause safety and quality problemsduthe cold chain logistics process.
Sep 5: Display and sale of frozen and chilled aquatmdpicts by wholesalers and retailers. A large nurober
refrigerated and frozen shelves are used to keepphropriate temperature on ‘@0or lower.
Throughout the cold chain logistics, the chilled refrigerated transportation has significantly iciea on
products safety. Pathogens, such as Listeria moogeges, can grow as low as -0.4°C (Fallah et24l13).
Clostridium botulinum type E and non-proteolytipéyB and F can grow at temperatures as low as 33@lt et
al., 2013). Therefore, the ideal storage tempegatfithe frozen and chilled aquatic products shbeldnaintained in
-18C or lower to ensure the products quality and safety

Fig.1. Process of frozen and chilled aquatic product®id chain logistics

2.2. Field survey and interview

To find out more about the needs of potential ysamsinterview based semi-structured survey wasluced to
explore and identify the potential users’ functibaiad information requirements. 6 senior manageds29 first-line
managers working in the cold-chain logistics wereolved in the survey. The interviewees were agkedescribe
their routine work procesiow they normally record the temperature information in the cold chain, how they get the
shelf-life information of the frozen and chilled aquatic products, and whether they knew about wireless monitoring or
if they have ever used it, what kind of information requirements are the most concerned or expected of such systems.

The interview survey lasted for one week. The tesufl the survey also helped the researcher tdifddnnctional
and information requirements and system modulesiding of MS-FCAP, which is discussed in the system
architecture below.

2.3. System architecture

In consideration of the functional and informatimeguirements identified from the field observatiand field
survey, the MS-FCAP architecture is developed &tingj of three basic layers, namely wireless teatpee sensor



125 nodes, the aggregation node, and the Aquatic Guiidvlanagement System (ACMS) (see Figure 2).

126 ® A sensor node is a ZigBee wireless temperatureosemsle. It is deployed at the refrigerated trucktorage
127 to sense the real-time temperature data and thehteem to the network coordinator via ZigBee nekwo
128 during cold chain logistics. A number of sensoremdnd a network coordinator will make up of a WEhe
129 sensor nodes acquire and send the temperaturaftitshe successful network synchronization atidrfeo
130 sleep after the successful data sending at remtéawals.

131 ® The aggregation node consists of a network coomliremd an Advanced RISC Machines (ARM) controller.
132 The network coordinator not only creates and cdmtite entire network, but also aggregates thecsetata
133 from the sensor nodes and sends them to the ARMatien to sparse sampling. The sparse sampling &m
134 sample the sensor data and represents the orggnabr data by a relative small humber of samfles.
135 sampled data will be sent to the ACMS via Genegalket Radio Service (GPRS) module for reconstractio
136 and generating predictions of the product shedf-lif

137 ® The ACMS is responsible for data receiving, recmmtsion, and processing at the remote terminals. It
138 includes two layers: one is the server layer, whechesponsible for data receiving/storage, sampizia
139 reconstruction, aquatic products shelf-life pradictvia the data warehouse. The server layer seasdbe
140 pipeline to connect the users and the sensor naddsalso serves as the knowledge base and thd base
141 The other one is the client layer, which providesanly the real-time and shelf-life informatiorr fine users,
142 but also the user-friendly operation and configorainterface for system managers.

143 Fig.2. Architecture diagram of the MS-FCAP

144 The temperature data is transmitted to the remateitoring center via WSN integrated with CS, whinbludes

145 data sparse sampling and data reconstruction. Gbatia products shelf-life was then predicted Via shelf-life
146  prediction model (see Figure 3). The next sectisousses in more detail about the system modetedfIS-FCAP.

147 3. System modelsof MS-FCAP
148  3.1. Compressed sensing

149 Compressed Sensing (CS) ensures that the tempesignals can be acquired the global measuremeétitsa
150 low sampling rate and reconstructed with a muchllsmaumber of samples than those required by thegiist
151 theorem. This is possible only if the signals cansparse represented under certain appropriategorhl basis
152 (Candes et al., 2006; Candes and Wakin, 20068n and Wassell, 2012).

153 The sensor data = [x(1), X(2),---,X(N)]" OR" are sparse transformed by the equation (1) asifsilo
N
X=Y s¢ or x=Ws 1)
154  where ¥ = [1/11,1/12,---,1//N] , ¢, OR" is the NxN sparse matrix which is built according to the aign

155  characteristic, ands=[s,,S,,---S]", § OR", where s is the sparse representation of original sighalunder
156 the basis of V.

157 Vectory denotes the sampled data by calculating the inmetugst {wj}?":l as in equation (2).
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158 where ® = [(q,@,---% ]T isthe M xN observation matrix.

159 The sensor nodes are deployed at the refrigeratezk tor storage to acquire the temperature date Th
160 biorthogonal wavelet transform matrix is built &g sparse matr¥ , and the Gaussian random matdR is built
161 as the signal observation matrix according to émeperature signal's space-time characteristic atizee the sparse
162 sampling of the sensor data (see Figure 3). Thesegampled data are sent via the GPRS module tAGiMS for
163 data reconstruction, data storage and processidgpa aquatic products shelf-life prediction.

164 The sparse sampled daya are reconstructed by choosing the Orthogonal MagcRursuit (OMP) algorithm

165 model (Tropp and Gilbert, 200Donoho et al., 201Zhao et al., 2015) as described in equation (3)(4nd

S=argminfx|, st y=dx 3)
S

X=¥7"8 (4)

166  where X is the accuracy or approximation value reconstaitly the 2-norm optimization method. Vectsris an
167  optimization sparse representation after the sigr@nstruction.

168 The OMP is an efficient method to solve the datmnstruction problem. It is considered to beefaahd easier to
169 implement for signal recovery problems (Tropp anlb&t, 2007;Donoho et al., 201Zhao et al., 2015). The OMP
170 follows 5 steps as below:

171 ® Jep 1: Initializing the model parameters. Settirlgto be a null set and matrix] to be null to store the
172 suffix and the basis vectors of the recovery matebpectively. Setting the initial residuat y , the sparse
173 coefficients = 0, the recovery matrixT = ®¥ and iteration§ = 0.
174 ® Sep 2: Choosing the basis vectors. To choose the maximuer product value within the residual from
175 the recovery matrixT as the basis vectors. Settingto be the suffix of basis vectors, then it can thet
176 suffix value via the equation (5) as follows:

| = mia>4<ri .t >‘ (5)
177 After the calculating, updating the $e¢{| f} the matrix q = [q,ti] and the basis vectors to be zero.
178 ® Sep 3: Finding the sparse representation coefficigt argmin”y - q#ﬁ by the chosen basis vectors.

S

179 ® Sep 4 Updating the residual=y —(@s.

180 ® Sep5: Stopping the iteration when the iterations getriteximum sparse value or the sparse coefficiamleq
181 or less than reconstruction error. If not, thenneto the step 2 to continue the iteration.

182

183 Fig.3. Flow chart of the system data transmission

184

185  3.2. Shelf-life prediction model

186 The frozen and chilled aquatic products shelfdifghe length of time aquatic products may be stawhout
187 becoming unsuitable for use or consumption. Aceusdtelf-life prediction can provide aid for the ragars to
188 improve cold chain logistics processes and ensguatir products quality and safety. However, siteraperature

5



189 fluctuations in the environment occur very freqlenit is impossible to use simple mathematical resgions
190 directly to describe the time-temperature changehis study, the time-temperature change is dividéo multiple
191  shorter time intervals which are assumed to betaahsAs shown in equation (6) to (7), the Gompedaation is
192 used to describe the microbial growth kinetics urdifferent temperature and to calculate the ptedigroduct
193 shelf-life (Mosqueda et al., 2012).

M %X 2718
logN(t) =logN, + m""xx max x|Lag —-t)+1
gN(t) =log le ;{ oaN x(Lag -t) } (6)
|Ogh |ogg
S=lag-— o xfin —In—No_ |4 ™
2718x Hinax |Og max

0

194 where N(t) is the number of bacteria at time N, is the maximum number of bacteridN; is the minimum

195  number of bacteriaN, is the initial number of bacteria at=0, u,,,is the maximum bacteria growth rateag
196 s the bacteria growth delay time, arffl. is the predicted product shelf-life when the numifebacteria proliferate
197 from N, to N,. The effect of temperature on microbial growthldaoe described using the Belehradek equation

198 as shown in equation (8) and (9) (Xing et al., 2(#&hg et al., 2015).

:umax = bu max ~ (T _Tmin ) (8)

JLag=b_, x(T-T,,) ©)

199 where T is the monitoring temperaturd;

’min

is the minimum temperature when the microbial grovate is zero,

200  b,.and b, are the constant coefficient of the equations.

201 3.3.Dataanalysis

202 The Normalized Mean Square Error (NMSE) is adoptednalyze the data reconstruction error. The NNESE
203 defined in equation (10) (Candes and Wakin, 2008).
% ()= x, (n)Hp

NMSE =
[ o,

(10)

204  where X;(n) and f(j (n) are thej -th value before and after the data reconstructipris the norm. Setp =2 to

205 solve the mean square value of each element iongeatcording to the data reconstruction model.

206 In addition, the data compression ratio is usedralyze the data compression efficiency. The damapcession
207 ratio p is defined in equation (11) (Cho, et al., 2015).
N-M
p= x10%%0 (11)

208 where N is the number of original data, anlfl is the number of sampled data. The Mean Absoluter EMAE)

6
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and Mean Relative Error (MRE) are adopted to meathe accuracy of the recovered data by comparitiy the
original sensor data.

4, System design and implementation

This section discusses in more detailed in tiséegy design and implementation of the MS-FCAP, tvimcludes
the ACMS and the system hardware.

4.1. Hardware design and implementation

As shown in Figure 4, the system hardware maagudysists of the hardware of the sensor nodes amd th
aggregation nodeA sensor node is an integration of a microcontrpbletemperature sensor, and a battery power
supply. The aggregation node consists of the né&tveoordinator, the ARM controller, and the GPRS o
transmission module. The sensor node and the netwomrdinator adopt the CC2530 wireless sensoesysin a
chip, which integrates a radio frequency transcemth an enhanced 8051 microcontroller to imprave
integration and optimization of the hardware desigmre sensor node and the network coordinator appl{CC2591
as the radio frequency front end to increase #resmission distance.

A sensor node adopts the DS18B20 as the tempersdusor, of which the temperature range is betwssiC
and +125°C and the temperature accuracyti8.5°C. The aggregation node adopts the S3C2440aARM
controller to process the sparse sampling of dathta send the sampled data to the GPRS modulen@&iweork
coordinator and the GPRS module are all commurdcaith the ARM controller via the RS232 bus. The/gbal
implementation of the system hardware is illusttaiie@ Figure 5. Each sensor node with an externsdrema is
integrated in a plastic case.

Fig.4. Block diagram of the system hardware
Fig.5. Physical implementation of the sensor node harglwar

4.2. ACMS design and implementation

ACMS serves as the management system for end-Usés also responsible for maintaining the dasabof the
data received from the WSN, the reconstructed dathe sampled data, and data of aquatic produc-ife
prediction during the cold chain logistics. The AGNdrovides the function to add or edit the raw deden daily
operation and to search or review monitoring resord

ACMS adopts a 3-tier architecture, which includes User Interface tier, the Functional Logic teerd the
Database tier (see Figure 6).

(1) User Interfacetier provides a user interface for checking input datiagrity and displaying information. For
example, cold chain managers can inquire the na&l-temperature and the remaining products stelidithe cold
chain. Inquiry results can be displayed in the fmfmumerical temperature data or graphs and chahs User
Interface tier also performs the data transmisbetween users and business logics.

(2) Business L ogic tier consists of two components, is responsible faaréety of processing logics:

® System management logic component consists of 5 modules of authorization managenmmmunication

management, data management, model management riowlellge management. The authorization
management and communication management modulbareye data with the basic database in the database
tier. The data management module, the model maragemodule, and the knowledge management module
exchange data with the data warehouse, the mode| bad the knowledge base respectively.

® Data processing logic component is the system core to realize the system real-timmitoring, data

reconstruction, and shelf-life prediction. The e temperature information is exchanged betwien

7
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temperature monitoring module and data managemendtla within the system management component.
Data processing component reconstructs the sangaliedand predicts the aquatic products shelf-ifsed
on the model management module and knowledge mamggemodule in the system management
component. After data reconstruction and shelfifediction, the data processing component sengls th
real-time temperature monitoring and products difelfinformation based on model determined to user
interface tier.
Fig.6. Architecture of the ACMS
(3) Database tier consists of the following 4 independent databasbih communicate with each other and are
driven by the corresponding database managementle®ith the Business Logic tier:
® Thebasic baseis responsible for storing the authority and comitation configuration information.
® The data warehouse is responsible for storing the real-time temperatiata which include the sampled and
reconstructed temperature data.
® Theknowledge base is responsible for storing knowledge models usedifda analysis and decision making.
® Themode baseis responsible for storing the parameters and @mnsabdf system models.
SQL Server 2008 database management system ie@pplmanage all the databases. ACMS is develogied u
C# in Microsoft Visual Studio 2008 which is intetgd with the real-time monitoring chart and shé#-prediction
model powered by the Matlab M-language dynamic libiary.

5. System test and evaluation

The MS-FCAP system is designed to improve the paresicy of the cold chain logistics by better ustierding
the temperature characteristics of cold chain m®cand hence to ensure the quality and safetigeofrbzen and
chilled aquatic products. To evaluate the perforreaof the MS-FCAP system, system test and evaluatias
carried out, which is discussed in this sectione Hvaluation results were analyzed using Origin shftware
(OriginLab Corporation, Northampton, MA) and SP$80Xoftware (IBM Corporation, New York, NY, USA).

5.1. Experiment scenario

The MS-FCAP system was implemented in a Chinesatagoroducts company to monitor the cold chaindiocs
of frozen tilapia. The frozen products were kepa irefrigerated truck in 15-day transportation fidainan, China to
Beijing, China. The transportation distance is atb@760 km. The length, width and height of theigefated truck
container are 3.0 2.5mXx2.4m. 27 sensor nodes were installed in the triiure 7 indicates the sensor nodes
deployment in the refrigerated truck. Each sensderwas put into a box containing frozen and ahiliapia before
loading. One aggregation node was installed inditneer’'s cabin and the ACMS was installed in a réancontrol
center located in the company’s office.

To satisfy the low temperature storage requiremdindsfrozen tilapia transported should be kegh@&container at
-18°C during the transportation and cold chaindtgs (Qi et al., 2012 alil et al., 2013). Real-time monitor and
control of the temperature in the refrigerated krueas carried out. The sensor nodes were calibraséth the
Resistance Temperature Detector calibrator (FMkeshington, USA) before deployed.

The temperature sample interval of the sensor nadessset to 1 second, and the data sending intefviie
aggregation node was set to 1 minute. The lengttatef sending packet was 9 Bytes, which includedsémsor ID
(1 Byte), the temperature data (4 Bytes) and theefdyavoltage (4 Bytes). The aggregation node aggjes and
sparse sampling the temperature data acquired thhen27 sensor nodes for every sample interval ¢bred, and
transmits the sampled data to the ACMS for datanstcuction, and products shelf-life prediction Hie GPRS
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module for every data sending interval (1 minuldje aggregation node also stores the original testye data to

test and evaluate the data reconstruction errdewviné sparse sampling of temperature data is lm@inged out.
Fig.7. Wireless temperature sensor nodes deploymeneirefrigerated truck

The temperature distribution acquired from the-MSAP was analyzed to improve the transparencyhef t
temperature in the cold chain logistics and theatigyproducts shelf-life predictions were also gmedl according to
the experiment scenario.

5.2. Data reconstruction error analysis

The cold chain for the frozen and chilled tilapieeds the pre-cooling step after loading to coeltemperature
down to -18°C from the ambient temperature, whaltes around 2 hours. After pre-cooling, the tempegastays
constant at -18°C, which is referred to as the tzorigemperature condition, and then unloading ¢\etral., 2011).
The pre-cooling and unloading steps are referredstthe variable temperature condition. The datansruction
model was run at the ACMS to recover the sampléal. dane of the sensor nodes, located nearby thetdaeflect
the worst case temperature condition in refrigerdteck, was dedicated to analyze the temperatgenstruction
error in the cold chain. The absolute error withinfg surface between reconstructed and originalptrature is
shown as Figure 8.

Fig.8. The absolute error between reconstructed andhatitgmperature data in the cold chain

During the experiment,N is about 1620 andM is 256 (see also equation (1) and (2)). The NMSEaMm
Absolute Error (MAE), Mean Relative Error (MRE) mconstructed temperature data, and data compnerssgio
under variable and constant temperature condidomslescribed in Table 1.

Tablel
Errors of the reconstructed temperature data watlgable and constant temperature conditions

Conditions NMSE (%) MAE (°C) MRE (%) Data compressratio (%)
Variable temperature 8.42 0.56 7.03 84.19
Constant temperature 0.76 0.12 0.66 84.19

The NMSE, MAE and MRE of reconstructed temperatiata are 8.42%, 0.56°C and 7.03%, respectivelyrunde
variable temperature condition, while they are @7®.12°C and 0.66% respectively under constanpé¢eature
condition. The data compression ratios under bathditions are 84.19%. Therefore, the accuracy dh da
reconstruction under variable temperature conditotower than that under constant temperature iiond The
reason is that the temperature is in continuowdftion under variable temperature condition, dtel the system
is unable to sparse sampling as well because oftdimperature variation. However, the result of tlaa
reconstruction error analysis still satisfies tbal mpplication in cold chai{@i et al., 2011; Xiao et al., 2014).

The results show that the data reconstructed modeld recover the sampled temperature accuratety an
efficiently, which reflected the real-time tempenat variation in refrigerated truck and thus segisthe monitoring
requirements of cold chain logistics.

5.3. Temperature distribution analysis
The monitoring data results show that WSN and AGCMfsked well at the sample interval and the datalisgn

intervals set previously. The temperature distidyuin refrigerated truck could be real-time morg via the sensor
nodes installed. The lateral view and the top vigfmthe temperature field in truck container undenstant



325
326

327
328
329
330
331
332
333

334

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356

357

358

359
360
361
362
363

temperature condition are illustrated in Figure 9.
Fig.9. The lateral view (a) and top view (b) of the tenapere field in refrigerated truck

Specifically, the temperature near the container d® about -16.4°C and inside the container isuabb8.5°C.
After evaluating the truck container, it was foutheit the temperature near the door being higher that on the
inside because the refrigerator is installed ingitlthe container, and the cold winds are unevdigyributed, and
thus result in spatial differences in the tempegadlistribution (Cruz et al., 2009; Tarrega et 2011;Liu et al.,
2014). The results show that the MS-FCAP could ideeomplete and accurate temperature monitorifogriration
in cold chain, so that to provide the more effextbafety and quality assurance for the frozen diltkd aquatic
products in the cold chain.

5.4. Shelf-life prediction

The shelf-life of aquatic products was predictedoading the determination of spoilage organism #yedresults
of fitting curve. The Total Viable Count (TVC) am$eudomonas spp. spoilage organism for tilapia determined
at the laboratory in Beijing between the year 012@nd 2013 according to the literatures (Gram &3111996;
Boari et al, 2008; Xing et al., 2013).

Tilapias, which were almost the same size about480Y, were put into constant temperature incubator
(DPJ-100, Shanghai, China) witfCQ 5°C, 10C, 15C, 20C and the variable temperature respectively for a@éu
days. The Total Viable Count (TVC) and Pseudomamgs were determined from the samples every 48shdime
determination was composed of the following steps:

Sep 1: Weighing tilapias for about 25g from each incubdipaseptic operation every time.

Sep 2: Mincing by the meat grinder (TS-22, Beijing, Chindh sterilization.

Sep 3: Putting minced tilapia into 225mL conical flask kit sterile physiological saline and several glaesrls.

Sep 4. Shaking fully on the shaker (VS-10, Beijing, China)

Sep 5: Diluting with 10 times volume.

Sep 6: Determining the TVC using the pour method on ptatent agar (Oxoid CM463, Hampshire, UK).

Sep 7: Determining Pseudomonas counts using the spreés plethod on agar base (Oxoid CM733, Hampshire,

UK) with CFC (cetrimide fucidin cephalosporin)esgtive supplement (Oxoid SR103, Hampshire, UK).

The TVC growth kinetics at various temperatureshiswn as Figure 10. The fitting coefficients ofetatination
are about 0.996, 0.974, 0.994, 0.996 and 0.993ride 5°C, 10C, 15C and 20C temperature respectively. The
initial bacteria number is 5.1bg CFU/g and the maximum number is 20Ibg CFU/g. It can be seen that the
number of TVC increases with the storage time galyeHowever, the maximum growth rate is larged alne lag
phase is shorter when the temperature is highemg(>&t al., 2013). The initial TVC number under was
temperature conditions are almost identical bec#us#s the same amount of samples were weigheel.€filect of

temperature onu, and Lag at various temperatures is shown as Figure 11.t&mperature has a good linear

relation with the maximum Pseudomonas growth natg and growth delay timkag, whose coefficient of

determination is about 0.973.

The TVC growth kinetics at variable temperaturshswn as Figure 12. The variable temperature wasal®d
according to the actual aquatic products cold ¢hexid the TVC and Pseudomonas counts were detatraméhe
same steps mentioned above. The coefficient ofmétation is about 0.956. It can be seen that timber of TVC
also increases with the storage time, but slowen that above ‘0. The calculated minimum Pseudomonas growth
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temperatureT . is about -0.11Z according to the equation (8) and (9). This is rafigct of the psychrophilic

bacteria. The psychrophilic bacteria will increastivity at below OC, but be inhibited at the normal temperature.
However, it has little impact on the quality of atja products because of the slower psychrophdictdria growth
rate compared with the Pseudomonas spp. (Fardg2&i0s).

The shelf-life prediction model, integrated theedetined kinetic parameters, was performed by ACNIse
calculated results interface is shown in FigureTh8. evaluation results show that the aquatic przdsbelf-life
prediction model built on the MS-FACP could be usedredict the remaining shelf-life of the aguatioducts
during cold chain logistics and provide the effeetdecision support for the frozen and chilled giguaroducts
managers in cold chain.

Fig.10. The TVC growth curve at various temperatures

Fig.11. The effect curve of temperature an, and Lag at various temperatures

Fig.12. The TVC growth curve at variable temperature
Fig.13. The calculated results interface of aquatic prtgiskelf-life prediction

5.5. System evaluation

System evaluation measures the current performandeprovides the basis for the improvements of cbiain
management for frozen and chilled aquatic prodant$echnological capacity, performance and systélization
which brought by the MS-FCAP as well as the defetthis system prototype.

Managers and workers from the enterprise wereddvio take part in a committee to evaluate theesysind
discuss the system performance and form a consigiew on how this system should be perfected tprave
management efficiency of frozen and chilled aquattaducts.

Table 2 shows the efficiency and performance aisalysfore and after the MS-FCAP implementationjeteth
shows the suggestions for the MS-FCAP improvemedtperfection.

Table2
Performance analysis before and after the MS-FCGAfeimentation
D Content | Before | | After |
implementation implementation
1 Cold chain logistics temperature monitoring Null Real-time
2 Number of the data transmission Large Decrease
3 Data compressed sensing transmission Null Rieal-ti
4 Efficiency of WSN-based monitoring system Low Hig
5 Cold chain logistic traceability Null Real-time
6 Shelf-life prediction for the aquatic products INu Real-time
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Table3
Suggestions for the improvement and perfection StIMCAP

ID Suggestion Suggestion type
1 Increase the WSN immunity and stability on-site undétional

2  Reduce theconomic cosand size of WSN hardware Non-functional
3 Reduce the sample data number in further Nontitormed

4 Increase the data reconstruct accuracy andesftigiin further Non-functional
5 Improve certain system operation to be easier -Nbational

According to the data reconstruction error, temjueeadistribution and system evaluation analysiS, rGethod
enables the sensor data being transmitted withatively small number of samples and reconstruleés Sparse
sampled data with high accuracy and efficiencycWhimproves the efficiency of WSN-based monitoraygtem for
frozen and chilled aquatic products in cold chajdtics.

6. Conclusions

This paper presents the design of the MS-FCAP sy$tased on WSN and CS, which was implemented and

evaluated in cold chain logistics from Hainan toijiBg. The WSN technology enables a real-time sersia
acquisition without complicated network infrastuet The CS method enables the sensor data being fittetsto
the ACMS with a relatively small number of sampéesl reconstructs the sparse sampled data withadghracy
and efficiency. The aquatic product shelf-life potidn function can help the cold chain managersday out
real-time monitoring of the products shelf-life, that to more effectively control the safety analgy of the aquatic
products in the cold chain logistics.

The data reconstruction error analysis and the ¢eatpre distribution analysis suggest that the NCZJF could
recover the sampled sensor data accurately andeetfy with reasonable error terms. It is alsowehdhat the
reconstructed temperature data can reflect thetirmaltemperature variation and spatial temperatifferentiations
in the refrigerated truck during the cold chainistigs, and thus satisfies the cold chain logistiesnitoring
requirements in practice. Moreover, the aquatidpets shelf-life prediction results indicate tha taquatic products
shelf-life prediction model built in the MS-FCAPrcée used to predict the microbial growth and #maining
shelf-life of the aquatic products during the colféhin logistics.

The system implementation and evaluation suggesthle MS-FCAP is an effective quality managemeat that
enables real-time temperature monitoring and dHelfrediction of the aquatic products in the coldhin logistics.
Compared with traditional monitoring systems, th8-MICAP can be used to provide more effective datisupport
for managers and traceability of the frozen antlathaquatic products in the cold chain.

Although the MS-FCAP is developed to monitor aquatioducts cold chain logistics, the system archite and
system models can be exploited by future reseagabrepractitioners in developing monitoring systeémperform
wider cold chain monitoring tasks. The successftdgration of CS with WSN in MS-FCAP, also paves way for
CS to be applied to other areas of application tiestd huge amounts of data collection from the wensdes.
Furthermore, building on MS-FCAP system architextamd system models, future researcher could afsore the
possibility of combining multiple kinds of sensdrsthe system, such as sulfur-dioxide and oxygers@s, to
examine and implement integrated multi-sensors tsadéhe cold chain logistics.
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Tablel
Errors of reconstructed temperature data undeabi@riand constant temperature conditions

Conditions NMSE (%) MAE (°C) MRE (%) Data compressratio (%)
Variable temperature 8.42 0.56 7.03 84.19
Constant temperature 0.76 0.12 0.66 84.19
Table2
Performance analysis before and after the MS-FG#Rementation
D Content | Before | | After |
implementation implementation
1 Cold chain logistics temperature monitoring Null Real time
2 Number of the data transmission Large Decrease
3 Data compressed sensing transmission Null Raal ti
4 Efficiency of WSN-based monitoring system Low Hig
5 Cold chain logistic traceability Null Real time
6 Shelf-life prediction for the aquatic products INu Real time

Table3

Suggestions for the improvement and perfection SERCAP

ID Suggestion Suggestion type
1 Increase the WSN immunity and stability on-site unétional

2 Reduce the economic cost and size of WSN hardware Non-functional
3 Reduce the sample data number in further Nontifume

4  Increase the data reconstruct accuracy andesftigiin further Non-functional
5 Improve certain system operation to be easier -Npational
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1. Improving efficiency of a WSN-based temperature Monitoring System using CS.
2. Implemented in actual aguatic cold chain between Hainan and Beijing in China.
3. Modelsinclude sparse sampling, data reconstruction and shelf life prediction.

4. System is capable of recovering sampled sensor data accurately and efficiently.

5. Providing effective decision support for aquatic products quality and safety.



