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 12 

Abstract: Wireless Sensor Network (WSN) is applied widely in food cold chain logistics. However, traditional 13 

monitoring systems require significant real-time sensor data transmission which will result in heavy data traffic and 14 

communication systems overloading, and thus reduce the data collection and transmission efficiency. This research 15 

aims to develop a temperature Monitoring System for Frozen and Chilled Aquatic Products (MS-FCAP) based on 16 

WSN integrated with Compressed Sending (CS) to improve the efficiency of MS-FCAP. Through understanding the 17 

temperature and related information requirements of frozen and chilled aquatic products cold chain logistics, this 18 

paper illustrates the design of the CS model which consists of sparse sampling and data reconstruction, and shelf-life 19 

prediction. The system was implemented and evaluated in cold chain logistics between Hainan and Beijing in China. 20 

The evaluation result suggests that MS-FCAP has a high accuracy in reconstructing temperature data under variable 21 

temperature condition as well as under constant temperature condition. The result shows that MS-FCAP is capable of 22 

recovering the sampled sensor data accurately and efficiently, reflecting the real-time temperature change in the 23 

refrigerated truck during cold chain logistics, and providing effective decision support traceability for quality and 24 

safety assurance of frozen and chilled aquatic products. 25 

 26 
Keywords: Food safety and traceability; Cold chain logistics; Monitoring system; Wireless Sensor Network; 27 

Compressed Sensing 28 

 29 

1. Introduction 30 

Wireless Sensor Network (WSN) has been adopted in many sectors, such as food cold chain logistics and 
31 

agriculture (e.g., Coates et al., 2013; Qi et al., 2014; Myo & Yoon, 2014), environmental monitoring (e.g., Weimer et 
32 

al., 2012; Guobao et al.,2014), and heavy industry (e.g., Wei et al., 2013; Xiao et al., 2014). WSN is a new 
33 

technology that combines sensor technology, embedded computing, networking, and wireless communication, and 
34 

distributed processing. It senses and collects information of monitoring objects and sends information to the end-user 
35 

via wireless and multi-hop network. Wireless transmission has many advantages over traditional wire transmission in 
36 

terms of low maintenance cost, higher mobility, better flexibility, and fast deployment in special occasions (Qi et al., 
37 

2011; Alayev et al., 2014; Suryadevara et al., 2015). However, a significant amount of real-time sensor data 
38 

transmission will result in heavy data traffic and overload the communication bandwidth in WSN, and thus reduce 
39 

the data collection and transmission efficiency (Qi et al., 2011; Li et al., 2012). 
40 
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Compressed Sensing (CS) is a new signal acquisition method which recovers a sparse signal efficiently, accurately 
41 

with a relative small number of samples and overcomes some of the limitations of the classical compression schemes 
42 

(Candes and Tao, 2006; Donoho, 2006; Tsaig and Donoho, 2006; Haupt et al., 2008; Baraniuk et al., 2010). The 
43 

traditional signal processing maintains that a signal must be sampled at a Nyquist rate at least twice its bandwidth in 
44 

order to be represented without error. CS provides a low complexity approximation to the signal reconstruction, 
45 

which benefits storage, transmission and processing of natural signals, without restricting the Nyquist sampling 
46 

criterion. It also brings the benefits of simple compression in WSN without introducing excessive control overheads, 
47 

which meets the limited resource constraint of WSN (Chen et al., 2012; Xiao et al., 2013; Yunhe et al., 2013; Caione 
48 

et al., 2014). 
49 

Quality and safety of fresh food have attracted increasing attention from around the world, especially in emerging 
50 

economies, such as China thanks to the quickly rising living standards (Jiehong et al, 2013; Chuan-Heng et al., 2014). 
51 

For example, fish consumption per head in China is now 36.4 kg, which is twice the international average for fish 
52 

consumption. However, the official data show that the inspection pass rate of aquatic products in China is less than 
53 

95% (China Catfish Institute, 2012), putting serious threat to the health of consumers.  
54 

Fresh foods, such as aquatic products, are typically perishable, with the rate of deterioration accelerating when 
55 

temperature increases owing to a number of factors, such as microbial metabolism, oxidative reaction, and enzymatic 
56 

activity (Raven et al., 2014; Kotta et al., 2014; Pack et al., 2014). Unless appropriately packaged, transported and 
57 

stored, aquatic products will spoil in very short time. Therefore, an important aspect of aquatic products distribution 
58 

management is the effective monitoring of time-temperature conditions and effective temperature management, 
59 

which affect both safety and quality of aquatic products (Bytnerowicz et al., 2014). 
60 

Typical aquatic products cold chain logistics utilizes artificial refrigeration technology to meet low-temperature 61 

requirements through temperature control. Traditional temperature measurement and monitoring system, such as 62 

temperature chart recording system, is the most popular, reliable and accurate method to control and document 63 

temperature condition in the cold chain storage and transportation (Chen et al., 2014). However, such systems have 64 

high management costs while the data collection is time consuming. Moreover, each recorder of those systems needs 65 

to be connected physically to a PC and the data collection is manually processed, thus resulting in highly complicated 66 

system structure and high rate of inaccurate data monitoring (Trebar et al., 2013; Asadi et al., 2014). Therefore, 67 

automated and efficient monitoring system and effective information management system are needed for effective 68 

cold chain logistics. 69 

In consideration of the benefits of WSN and CS, this research aim to adopt WSN integrated with CS as the 
70 

network infrastructure, and develops a temperature Monitoring System for Frozen and Chilled Aquatic Products 
71 

(MS-FCAP) in cold chain logistics. The system was designed to monitor the real-time temperature fluctuation and the 
72 

quality of frozen and chilled aquatic products by integrating the aquatic shelf-life prediction model. Moreover, the 
73 

system was implemented and evaluated in cold chain logistics between Hainan and Beijing in China. 
74 

This research contributes to the field of study in the following ways. First, the implementation of the MS-FCAP 
75 

helps to improve the transparency and traceability of the cold chain logistics and enables more effective control of the 
76 

quality and safety of the frozen and chilled aquatic products. Second, the MS-FCAP pilots the seamless integration of 
77 

WSN and CS for more effective temperature monitoring in cold chain logistics. Third, the successful implementation 
78 

of the MS-FCAP proves the feasibility of adopting WSN integrated with CS and paves the way for much wider 
79 

application in the areas of cold chain logistics monitoring. 
80 

The next section discusses the system analysis and architecture. This is followed by the system models discussion 81 

and design. The paper then discusses the system implementation and evaluation. Finally, the discussion and 82 

conclusion about this research as well as implications for future work are presented. 83 

 84 
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 85 

2. System analysis and architecture design 86 

Multiple methods proposed Cortes et al. (2014) and Xiao et al. (2014) were followed to make sure that temperature 87 

monitoring system would be designed to meet the need of potential users: a) Field observation for frozen and chilled 88 

aquatic products in cold chain logistics; b) Field survey and interviews. 89 

2.1. Field observation for frozen and chilled aquatic products in cold chain logistics  90 

A field observation for frozen and chilled aquatic products in cold chain logistics was conducted in 2013, in 91 

Hainan province, China. The purpose is to understand the actual process of cold chain logistics, including any factors 92 

that may affect the safety and quality of aquatic products. As illustrated in Figure1, the typical cold chain logistics 93 

process consists of the following basic steps:  94 

Step 1: Catching the fresh fish from the farm.  95 

Step 2: After the catching, fresh aquatic products are transported immediately via live or refrigerated 96 

transportation to processing plants for further processing. 97 

Step 3: Aquatic products processing and storage. Aquatic products are normally divided into two categories 98 

for processing, either segmentation (with fish scales, cheek and viscera cast off) or whole fish. 99 

Processed aquatic products are stored in cold storage or freezer maintained in -18ć or lower.  100 

Step 4: Transporting the frozen and chilled aquatic products from processing plants to retail stores. In this 101 

process, temperature fluctuations, such as the variation from ambient temperature of about 20ć to 102 

-18ć or lower, may cause safety and quality problems during the cold chain logistics process. 103 

Step 5: Display and sale of frozen and chilled aquatic products by wholesalers and retailers. A large number of 104 

refrigerated and frozen shelves are used to keep the appropriate temperature on -10ć or lower. 105 
Throughout the cold chain logistics, the chilled or refrigerated transportation has significantly impacted on 106 

products safety. Pathogens, such as Listeria monocytogenes, can grow as low as -0.4°C (Fallah et al., 2013). 107 

Clostridium botulinum type E and non-proteolytic type B and F can grow at temperatures as low as 3.3°C (Smelt et 108 

al., 2013). Therefore, the ideal storage temperature of the frozen and chilled aquatic products should be maintained in 109 

-18ć or lower to ensure the products quality and safety. 110 

Fig.1. Process of frozen and chilled aquatic products in cold chain logistics 111 

2.2. Field survey and interview 112 

To find out more about the needs of potential users, an interview based semi-structured survey was conducted to 113 

explore and identify the potential users’ functional and information requirements. 6 senior managers and 20 first-line 114 

managers working in the cold-chain logistics were involved in the survey. The interviewees were asked to describe 115 

their routine work process, how they normally record the temperature information in the cold chain, how they get the 116 

shelf-life information of the frozen and chilled aquatic products, and whether they knew about wireless monitoring or 117 

if they have ever used it, what kind of information requirements are the most concerned or expected of such systems. 118 

The interview survey lasted for one week. The results of the survey also helped the researcher to identify functional 119 

and information requirements and system module divisions of MS-FCAP, which is discussed in the system 120 

architecture below. 121 

2.3. System architecture 122 

 In consideration of the functional and information requirements identified from the field observation and field 123 

survey, the MS-FCAP architecture is developed consisting of three basic layers, namely wireless temperature sensor 124 
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nodes, the aggregation node, and the Aquatic Cold-chain Management System (ACMS) (see Figure 2). 125 

� A sensor node is a ZigBee wireless temperature sensor node. It is deployed at the refrigerated truck or storage 126 

to sense the real-time temperature data and then send them to the network coordinator via ZigBee network 127 

during cold chain logistics. A number of sensor nodes and a network coordinator will make up of a WSN. The 128 

sensor nodes acquire and send the temperature data after the successful network synchronization and fall into 129 

sleep after the successful data sending at regular intervals. 130 

� The aggregation node consists of a network coordinator and an Advanced RISC Machines (ARM) controller. 131 

The network coordinator not only creates and controls the entire network, but also aggregates the sensor data 132 

from the sensor nodes and sends them to the ARM controller to sparse sampling. The sparse sampling aims to 133 

sample the sensor data and represents the original sensor data by a relative small number of samples. The 134 

sampled data will be sent to the ACMS via General Packet Radio Service (GPRS) module for reconstruction 135 

and generating predictions of the product shelf-life. 136 

� The ACMS is responsible for data receiving, reconstruction, and processing at the remote terminals. It 137 

includes two layers: one is the server layer, which is responsible for data receiving/storage, sampled data 138 

reconstruction, aquatic products shelf-life prediction via the data warehouse. The server layer serves as the 139 

pipeline to connect the users and the sensor nodes, and also serves as the knowledge base and the model base. 140 

The other one is the client layer, which provides not only the real-time and shelf-life information for the users, 141 

but also the user-friendly operation and configuration interface for system managers. 142 

Fig.2. Architecture diagram of the MS-FCAP 143 
The temperature data is transmitted to the remote monitoring center via WSN integrated with CS, which includes 144 

data sparse sampling and data reconstruction. The aquatic products shelf-life was then predicted via the shelf-life 145 

prediction model (see Figure 3). The next section discusses in more detail about the system models of the MS-FCAP. 146 

3. System models of MS-FCAP 147 

3.1. Compressed sensing 148 

  Compressed Sensing (CS) ensures that the temperature signals can be acquired the global measurements with a 149 

low sampling rate and reconstructed with a much smaller number of samples than those required by the Nysquist 150 

theorem. This is possible only if the signals can be sparse represented under certain appropriate orthogonal basis 151 

(Candes et al., 2006; Candes and Wakin, 2008; Chen and Wassell, 2012).  152 

  The sensor data NT RNxxx ∈= )](,),2(),1([ Lx are sparse transformed by the equation (1) as follows: 153 

Ψsxx ==∑ ori

N

i
isψ  (1) 

where [ ]Nψψψ ,,, 21 L=Ψ , N
i R∈ψ  is the NN ×  sparse matrix which is built according to the signal 154 

characteristic, and T
Nsss ],,[ 21 L=s , N

i Rs ∈ , where s  is the sparse representation of original signal x  under 155 

the basis of Ψ . 156 

  Vectory denotes the sampled data by calculating the inner product M
jj 1}{ =φ as in equation (2). 157 
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ΘsΦΨsΦxy ===  (2) 

where [ ]TMφφφ L,, 21=Φ  is the NM ×  observation matrix. 158 

The sensor nodes are deployed at the refrigerated truck or storage to acquire the temperature data. The 159 

biorthogonal wavelet transform matrix is built as the sparse matrixΨ , and the Gaussian random matrix Φ  is built 160 

as the signal observation matrix according to the temperature signal’s space-time characteristic to realize the sparse 161 

sampling of the sensor data (see Figure 3). The sparse sampled data are sent via the GPRS module to the ACMS for 162 

data reconstruction, data storage and processing, and for aquatic products shelf-life prediction. 163 
  The sparse sampled data y  are reconstructed by choosing the Orthogonal Matching Pursuit (OMP) algorithm 164 

model (Tropp and Gilbert, 2007; Donoho et al., 2012; Zhao et al., 2015) as described in equation (3) and (4): 165 

Φxyxs == ..minargˆ 2

2
ts

s
 (3) 

sΨx 1ˆˆ −=  (4) 

where x̂  is the accuracy or approximation value reconstructed by the 2-norm optimization method. Vector ŝ  is an 166 

optimization sparse representation after the signal reconstruction.  167 

  The OMP is an efficient method to solve the data reconstruction problem. It is considered to be faster and easier to 168 

implement for signal recovery problems (Tropp and Gilbert, 2007; Donoho et al., 2012; Zhao et al., 2015). The OMP 169 

follows 5 steps as below: 170 

� Step 1: Initializing the model parameters. Setting I to be a null set and matrix q to be null to store the 171 

suffix and the basis vectors of the recovery matrix respectively. Setting the initial residual yr = , the sparse 172 

coefficient 0s = , the recovery matrix ΦΨΤ =  and iterations 0=n . 173 

� Step 2: Choosing the basis vectors. To choose the maximum inner product value within the residual r  from 174 

the recovery matrix Τ  as the basis vectors. Setting i  to be the suffix of basis vectors, then it can get the 175 

suffix value via the equation (5) as follows: 176 

ii
i

tri ,maxˆ =  (5) 

  After the calculating, updating the set { }iII ˆ,= , the matrix ],[ itqq =  and the basis vectors to be zero. 177 

� Step 3: Finding the sparse representation coefficient 
2

2
minargˆ qsys −=
s

 by the chosen basis vectors. 178 

� Step 4: Updating the residual sqyr ˆ−= . 179 

� Step 5: Stopping the iteration when the iterations get the maximum sparse value or the sparse coefficient equal 180 

or less than reconstruction error. If not, then return to the step 2 to continue the iteration.   181 

 182 
Fig.3. Flow chart of the system data transmission 183 

 184 

3.2. Shelf-life prediction model 185 

The frozen and chilled aquatic products shelf-life is the length of time aquatic products may be stored without 186 

becoming unsuitable for use or consumption. Accurate shelf-life prediction can provide aid for the managers to 187 

improve cold chain logistics processes and ensure aquatic products quality and safety. However, since temperature 188 
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fluctuations in the environment occur very frequently, it is impossible to use simple mathematical expressions 189 

directly to describe the time-temperature change. In this study, the time-temperature change is divided into multiple 190 

shorter time intervals which are assumed to be constant. As shown in equation (6) to (7), the Gompertz equation is 191 

used to describe the microbial growth kinetics under different temperature and to calculate the predicted product 192 

shelf-life (Mosqueda et al., 2012).  193 

( )
















+−×

×
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log
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0
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µ
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log
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0
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0
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N
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LSL

s

µ
 (7) 

where )(tN  is the number of bacteria at time t , maxN is the maximum number of bacteria, sN  is the minimum 194 

number of bacteria, 0N  is the initial number of bacteria at 0=t , maxu is the maximum bacteria growth rate, agL  195 

is the bacteria growth delay time, and SL  is the predicted product shelf-life when the number of bacteria proliferate 196 

from 0N  to sN . The effect of temperature on microbial growth could be described using the Belehradek equation 197 

as shown in equation (8) and (9) (Xing et al., 2013; Pang et al., 2015). 198 

( )minmaxmax b TTu −×=µ  (8) 

( )minbag TTL Lag −×=  (9) 

where T  is the monitoring temperature, minT  is the minimum temperature when the microbial growth rate is zero, 199 

maxµb and Lagb are the constant coefficient of the equations. 200 

3.3. Data analysis 201 

The Normalized Mean Square Error (NMSE) is adopted to analyze the data reconstruction error. The NMSE is 202 

defined in equation (10) (Candes and Wakin, 2008). 203 

pj

pjj

nx

nxnx
NMSE

)(

)()(ˆ −
=  (10) 

where )(nx j  and )(ˆ nx j  are thej -th value before and after the data reconstruction, p is the norm. Set p =2 to 204 

solve the mean square value of each element in vectors according to the data reconstruction model. 205 

In addition, the data compression ratio is used to analyze the data compression efficiency. The data compression 206 
ratio ρ  is defined in equation (11) (Cho, et al., 2015). 207 

%100×−=
N

MNρ  (11) 

where N is the number of original data, and M  is the number of sampled data. The Mean Absolute Error (MAE) 208 
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and Mean Relative Error (MRE) are adopted to measure the accuracy of the recovered data by comparing with the 209 

original sensor data. 210 

4. System design and implementation 211 

  This section discusses in more detailed in the system design and implementation of the MS-FCAP, which includes 212 

the ACMS and the system hardware. 213 

4.1. Hardware design and implementation 214 

  As shown in Figure 4, the system hardware mainly consists of the hardware of the sensor nodes and the 215 

aggregation node. A sensor node is an integration of a microcontroller, a temperature sensor, and a battery power 216 

supply. The aggregation node consists of the network coordinator, the ARM controller, and the GPRS remote 217 

transmission module. The sensor node and the network coordinator adopt the CC2530 wireless sensor system on a 218 

chip, which integrates a radio frequency transceiver with an enhanced 8051 microcontroller to improve the 219 

integration and optimization of the hardware design. The sensor node and the network coordinator apply the CC2591 220 

as the radio frequency front end to increase the transmission distance.  221 

A sensor node adopts the DS18B20 as the temperature sensor, of which the temperature range is between -55°C 222 

and +125°C and the temperature accuracy is ±0.5°C. The aggregation node adopts the S3C2440 as the ARM 223 

controller to process the sparse sampling of data and to send the sampled data to the GPRS module. The network 224 

coordinator and the GPRS module are all communicated with the ARM controller via the RS232 bus. The physical 225 

implementation of the system hardware is illustrated in Figure 5. Each sensor node with an external antenna is 226 

integrated in a plastic case. 227 

 228 

Fig.4. Block diagram of the system hardware 229 

Fig.5. Physical implementation of the sensor node hardware 230 

4.2. ACMS design and implementation 231 

  ACMS serves as the management system for end-users. It is also responsible for maintaining the database of the 232 

data received from the WSN, the reconstructed data of the sampled data, and data of aquatic products shelf-life 233 

prediction during the cold chain logistics. The ACMS provides the function to add or edit the raw data from daily 234 

operation and to search or review monitoring records. 235 

  ACMS adopts a 3-tier architecture, which includes the User Interface tier, the Functional Logic tier and the 236 

Database tier (see Figure 6). 237 

(1) User Interface tier provides a user interface for checking input data integrity and displaying information. For 238 

example, cold chain managers can inquire the real-time temperature and the remaining products shelf-life in the cold 239 

chain. Inquiry results can be displayed in the form of numerical temperature data or graphs and charts. The User 240 

Interface tier also performs the data transmission between users and business logics. 241 

(2) Business Logic tier consists of two components, is responsible for a variety of processing logics:  242 

� System management logic component consists of 5 modules of authorization management, communication 243 

management, data management, model management and knowledge management. The authorization 244 

management and communication management modules exchange data with the basic database in the database 245 

tier. The data management module, the model management module, and the knowledge management module 246 

exchange data with the data warehouse, the model base, and the knowledge base respectively.  247 

� Data processing logic component is the system core to realize the system real-time monitoring, data 248 

reconstruction, and shelf-life prediction. The real-time temperature information is exchanged between the 249 
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temperature monitoring module and data management module within the system management component. 250 

Data processing component reconstructs the sampled data and predicts the aquatic products shelf-life based 251 

on the model management module and knowledge management module in the system management 252 

component. After data reconstruction and shelf-life prediction, the data processing component sends the 253 

real-time temperature monitoring and products shelf-life information based on model determined to user 254 

interface tier. 255 
Fig.6. Architecture of the ACMS 256 

(3) Database tier consists of the following 4 independent databases, which communicate with each other and are 257 

driven by the corresponding database management modules in the Business Logic tier: 258 

� The basic base is responsible for storing the authority and communication configuration information.  259 

� The data warehouse is responsible for storing the real-time temperature data which include the sampled and 260 

reconstructed temperature data. 261 

� The knowledge base is responsible for storing knowledge models used for data analysis and decision making. 262 

� The model base is responsible for storing the parameters and equations of system models. 263 

SQL Server 2008 database management system is applied to manage all the databases. ACMS is developed using 264 

C# in Microsoft Visual Studio 2008 which is integrated with the real-time monitoring chart and shelf-life prediction 265 

model powered by the Matlab M-language dynamic link library.  266 

5. System test and evaluation 267 

The MS-FCAP system is designed to improve the transparency of the cold chain logistics by better understanding 268 

the temperature characteristics of cold chain process, and hence to ensure the quality and safety of the frozen and 269 

chilled aquatic products. To evaluate the performance of the MS-FCAP system, system test and evaluation was 270 

carried out, which is discussed in this section. The evaluation results were analyzed using Origin 8.1 software 271 

(OriginLab Corporation, Northampton, MA) and SPSS 20.0 software (IBM Corporation, New York, NY, USA). 272 

5.1. Experiment scenario  273 

The MS-FCAP system was implemented in a Chinese aquatic products company to monitor the cold chain logistics 274 

of frozen tilapia. The frozen products were kept in a refrigerated truck in 15-day transportation from Hainan, China to 275 

Beijing, China. The transportation distance is around 2760 km. The length, width and height of the refrigerated truck 276 

container are 3.0m×2.5m×2.4m. 27 sensor nodes were installed in the truck. Figure 7 indicates the sensor nodes 277 

deployment in the refrigerated truck. Each sensor node was put into a box containing frozen and chilled tilapia before 278 

loading. One aggregation node was installed in the driver’s cabin and the ACMS was installed in a remote control 279 

center located in the company’s office. 280 

To satisfy the low temperature storage requirements, the frozen tilapia transported should be kept in the container at 281 

-18°C during the transportation and cold chain logistics (Qi et al., 2012; Calil et al., 2013). Real-time monitor and 282 

control of the temperature in the refrigerated truck was carried out. The sensor nodes were calibrated using the 283 

Resistance Temperature Detector calibrator (Fluke, Washington, USA) before deployed. 284 

The temperature sample interval of the sensor nodes was set to 1 second, and the data sending interval of the 285 

aggregation node was set to 1 minute. The length of data sending packet was 9 Bytes, which included the sensor ID 286 

(1 Byte), the temperature data (4 Bytes) and the battery voltage (4 Bytes). The aggregation node aggregates and 287 

sparse sampling the temperature data acquired from the 27 sensor nodes for every sample interval (1 second), and 288 

transmits the sampled data to the ACMS for data reconstruction, and products shelf-life prediction via the GPRS 289 
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module for every data sending interval (1 minute). The aggregation node also stores the original temperature data to 290 

test and evaluate the data reconstruction error while the sparse sampling of temperature data is being carried out.  291 
Fig.7. Wireless temperature sensor nodes deployment in the refrigerated truck 292 

  The temperature distribution acquired from the MS-FCAP was analyzed to improve the transparency of the 293 

temperature in the cold chain logistics and the aquatic products shelf-life predictions were also analyzed according to 294 

the experiment scenario. 295 

5.2. Data reconstruction error analysis 296 

  The cold chain for the frozen and chilled tilapia needs the pre-cooling step after loading to cool the temperature 297 

down to -18°C from the ambient temperature, which takes around 2 hours. After pre-cooling, the temperature stays 298 

constant at -18°C, which is referred to as the constant temperature condition, and then unloading (Wang et al., 2011). 299 

The pre-cooling and unloading steps are referred to as the variable temperature condition. The data reconstruction 300 

model was run at the ACMS to recover the sampled data. One of the sensor nodes, located nearby the door to reflect 301 

the worst case temperature condition in refrigerated truck, was dedicated to analyze the temperature reconstruction 302 

error in the cold chain. The absolute error with fitting surface between reconstructed and original temperature is 303 

shown as Figure 8. 304 

Fig.8. The absolute error between reconstructed and original temperature data in the cold chain 305 

During the experiment, N is about 1620 and M is 256 (see also equation (1) and (2)). The NMSE, Mean 306 

Absolute Error (MAE), Mean Relative Error (MRE) of reconstructed temperature data, and data compression ratio 307 

under variable and constant temperature conditions are described in Table 1. 308 

Table 1 309 

Errors of the reconstructed temperature data under variable and constant temperature conditions  310 

Conditions NMSE (%) MAE (°C) MRE (%) Data compression ratio (%) 

Variable temperature 8.42 0.56 7.03 84.19 

Constant temperature 0.76 0.12 0.66 84.19 

The NMSE, MAE and MRE of reconstructed temperature data are 8.42%, 0.56°C and 7.03%, respectively under 311 

variable temperature condition, while they are 0.76%, 0.12°C and 0.66% respectively under constant temperature 312 

condition. The data compression ratios under both conditions are 84.19%. Therefore, the accuracy of data 313 

reconstruction under variable temperature condition is lower than that under constant temperature condition. The 314 

reason is that the temperature is in continuous fluctuation under variable temperature condition, such that the system 315 

is unable to sparse sampling as well because of the temperature variation. However, the result of the data 316 

reconstruction error analysis still satisfies the real application in cold chain (Qi et al., 2011; Xiao et al., 2014).  317 

The results show that the data reconstructed model could recover the sampled temperature accurately and 318 

efficiently, which reflected the real-time temperature variation in refrigerated truck and thus satisfied the monitoring 319 

requirements of cold chain logistics. 320 

5.3. Temperature distribution analysis 321 

The monitoring data results show that WSN and ACMS worked well at the sample interval and the data sending 322 

intervals set previously. The temperature distribution in refrigerated truck could be real-time monitored via the sensor 323 

nodes installed. The lateral view and the top view of the temperature field in truck container under constant 324 
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temperature condition are illustrated in Figure 9. 325 
Fig.9. The lateral view (a) and top view (b) of the temperature field in refrigerated truck  326 

Specifically, the temperature near the container door is about -16.4°C and inside the container is about -18.5°C. 327 

After evaluating the truck container, it was found that the temperature near the door being higher than that on the 328 

inside because the refrigerator is installed inside of the container, and the cold winds are unevenly distributed, and 329 

thus result in spatial differences in the temperature distribution (Cruz et al., 2009; Tarrega et al., 2011; Liu et al., 330 

2014). The results show that the MS-FCAP could provide complete and accurate temperature monitoring information 331 

in cold chain, so that to provide the more effective safety and quality assurance for the frozen and chilled aquatic 332 

products in the cold chain. 333 

5.4. Shelf-life prediction 334 

The shelf-life of aquatic products was predicted according the determination of spoilage organism and the results 335 

of fitting curve. The Total Viable Count (TVC) and Pseudomonas spp. spoilage organism for tilapia were determined 336 

at the laboratory in Beijing between the year of 2012 and 2013 according to the literatures (Gram & Huss, 1996; 337 

Boari et al, 2008; Xing et al., 2013).  338 

Tilapias, which were almost the same size about 300-400g, were put into constant temperature incubators 339 

(DPJ-100, Shanghai, China) with 0ć, 5ć, 10ć, 15ć, 20ć and the variable temperature respectively for about 25 340 

days. The Total Viable Count (TVC) and Pseudomonas spp. were determined from the samples every 48 hours. The 341 

determination was composed of the following steps: 342 

Step 1: Weighing tilapias for about 25g from each incubator by aseptic operation every time.  343 

Step 2: Mincing by the meat grinder (TS-22, Beijing, China) with sterilization. 344 

Step 3: Putting minced tilapia into 225mL conical flask within sterile physiological saline and several glass pearls. 345 

Step 4: Shaking fully on the shaker (VS-10, Beijing, China). 346 

Step 5: Diluting with 10 times volume. 347 

Step 6: Determining the TVC using the pour method on plate count agar (Oxoid CM463, Hampshire, UK). 348 

Step 7: Determining Pseudomonas counts using the spread plate method on agar base (Oxoid CM733, Hampshire, 349 

  UK) with CFC (cetrimide fucidin cephalosporin) selective supplement (Oxoid SR103, Hampshire, UK). 350 

The TVC growth kinetics at various temperatures is shown as Figure 10. The fitting coefficients of determination 351 

are about 0.996, 0.974, 0.994, 0.996 and 0.993 under 0ć, 5ć, 10ć, 15ć and 20ć temperature respectively. The 352 

initial bacteria number is 5.12 log CFU/g and the maximum number is 20.12 log CFU/g. It can be seen that the 353 

number of TVC increases with the storage time generally. However, the maximum growth rate is larger and the lag 354 

phase is shorter when the temperature is higher (Xing et al., 2013). The initial TVC number under various 355 

temperature conditions are almost identical because that’s the same amount of samples were weighed. The effect of 356 

temperature on maxu and agL  at various temperatures is shown as Figure 11. The temperature has a good linear 357 

relation with the maximum Pseudomonas growth rate maxu  and growth delay timeagL , whose coefficient of 358 

determination is about 0.973. 359 

The TVC growth kinetics at variable temperature is shown as Figure 12. The variable temperature was controlled 360 

according to the actual aquatic products cold chain, and the TVC and Pseudomonas counts were determined as the 361 

same steps mentioned above. The coefficient of determination is about 0.956. It can be seen that the number of TVC 362 

also increases with the storage time, but slower than that above 0ć. The calculated minimum Pseudomonas growth 363 
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temperature minT  is about -0.112ć according to the equation (8) and (9). This is may affect of the psychrophilic 364 

bacteria. The psychrophilic bacteria will increase activity at below 0ć, but be inhibited at the normal temperature. 365 

However, it has little impact on the quality of aquatic products because of the slower psychrophilic bacteria growth 366 

rate compared with the Pseudomonas spp. (Farag et al. 2009).  367 

The shelf-life prediction model, integrated the determined kinetic parameters, was performed by ACMS. The 368 

calculated results interface is shown in Figure 13.The evaluation results show that the aquatic products shelf-life 369 

prediction model built on the MS-FACP could be used to predict the remaining shelf-life of the aquatic products 370 

during cold chain logistics and provide the effective decision support for the frozen and chilled aquatic products 371 

managers in cold chain. 372 

 373 

Fig.10. The TVC growth curve at various temperatures 374 

Fig.11. The effect curve of temperature on maxu and agL  at various temperatures 375 

Fig.12. The TVC growth curve at variable temperature 376 

Fig.13. The calculated results interface of aquatic products shelf-life prediction 377 

5.5. System evaluation 378 

System evaluation measures the current performance and provides the basis for the improvements of cold chain 379 

management for frozen and chilled aquatic products on technological capacity, performance and system utilization 380 

which brought by the MS-FCAP as well as the defects of this system prototype. 381 

Managers and workers from the enterprise were invited to take part in a committee to evaluate the system and 382 

discuss the system performance and form a consistent view on how this system should be perfected to improve 383 

management efficiency of frozen and chilled aquatic products. 384 

Table 2 shows the efficiency and performance analysis before and after the MS-FCAP implementation; table 3 385 

shows the suggestions for the MS-FCAP improvement and perfection. 386 

 387 

Table 2 388 

Performance analysis before and after the MS-FCAP implementation 389 

ID Content 
Before 

implementation 

After 

implementation 

1 Cold chain logistics temperature monitoring Null Real-time 

2 Number of the data transmission Large Decrease 

3 Data compressed sensing transmission Null Real-time 

4 Efficiency of WSN-based monitoring system Low High 

5 Cold chain logistic traceability Null Real-time 

6 Shelf-life prediction for the aquatic products Null Real-time 

 390 

 391 

 392 

 393 
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Table 3 394 

Suggestions for the improvement and perfection of MS-FCAP 395 

ID Suggestion Suggestion type 

1 Increase the WSN immunity and stability on-site Functional 

2 Reduce the economic cost and size of WSN hardware Non-functional 

3 Reduce the sample data number in further Non-functional 

4 Increase the data reconstruct accuracy and efficiency in further Non-functional 

5 Improve certain system operation to be easier Non-functional 

According to the data reconstruction error, temperature distribution and system evaluation analysis, CS method 396 

enables the sensor data being transmitted with a relatively small number of samples and reconstructs the sparse 397 

sampled data with high accuracy and efficiency, which improves the efficiency of WSN-based monitoring system for 398 

frozen and chilled aquatic products in cold chain logistics. 399 

 400 

6. Conclusions  401 

This paper presents the design of the MS-FCAP system based on WSN and CS, which was implemented and 402 

evaluated in cold chain logistics from Hainan to Beijing. The WSN technology enables a real-time sensor data 403 

acquisition without complicated network infrastructure. The CS method enables the sensor data being transmitted to 404 

the ACMS with a relatively small number of samples and reconstructs the sparse sampled data with high accuracy 405 

and efficiency. The aquatic product shelf-life prediction function can help the cold chain managers to carry out 406 

real-time monitoring of the products shelf-life, so that to more effectively control the safety and quality of the aquatic 407 

products in the cold chain logistics. 408 

The data reconstruction error analysis and the temperature distribution analysis suggest that the MS-FCAP could 409 

recover the sampled sensor data accurately and efficiently with reasonable error terms. It is also shown that the 410 

reconstructed temperature data can reflect the real-time temperature variation and spatial temperature differentiations 411 

in the refrigerated truck during the cold chain logistics, and thus satisfies the cold chain logistics monitoring 412 

requirements in practice. Moreover, the aquatic products shelf-life prediction results indicate that the aquatic products 413 

shelf-life prediction model built in the MS-FCAP can be used to predict the microbial growth and the remaining 414 

shelf-life of the aquatic products during the cold chain logistics. 415 

The system implementation and evaluation suggest that the MS-FCAP is an effective quality management tool that 416 

enables real-time temperature monitoring and shelf-life prediction of the aquatic products in the cold chain logistics. 417 

Compared with traditional monitoring systems, the MS-FCAP can be used to provide more effective decision support 418 

for managers and traceability of the frozen and chilled aquatic products in the cold chain. 419 

Although the MS-FCAP is developed to monitor aquatic products cold chain logistics, the system architecture and 420 

system models can be exploited by future researchers or practitioners in developing monitoring systems to perform 421 

wider cold chain monitoring tasks. The successful integration of CS with WSN in MS-FCAP, also paves the way for 422 

CS to be applied to other areas of application that need huge amounts of data collection from the sensor nodes. 423 

Furthermore, building on MS-FCAP system architecture and system models, future researcher could also explore the 424 

possibility of combining multiple kinds of sensors in the system, such as sulfur-dioxide and oxygen sensors, to 425 

examine and implement integrated multi-sensors models in the cold chain logistics. 426 
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Table 1 

Errors of reconstructed temperature data under variable and constant temperature conditions  

Conditions NMSE (%) MAE (°C) MRE (%) Data compression ratio (%) 

Variable temperature 8.42 0.56 7.03 84.19 

Constant temperature 0.76 0.12 0.66 84.19 

 

 

Table 2 

Performance analysis before and after the MS-FCAP implementation 

ID Content 
Before 

implementation 

After 

implementation 

1 Cold chain logistics temperature monitoring Null Real time 

2 Number of the data transmission Large Decrease 

3 Data compressed sensing transmission Null Real time 

4 Efficiency of WSN-based monitoring system Low High 

5 Cold chain logistic traceability Null Real time 

6 Shelf-life prediction for the aquatic products Null Real time 

 

 

Table 3 

Suggestions for the improvement and perfection of MS-FCAP 

ID Suggestion Suggestion type 

1 Increase the WSN immunity and stability on-site Functional 

2 Reduce the economic cost and size of WSN hardware Non-functional 

3 Reduce the sample data number in further Non-functional 

4 Increase the data reconstruct accuracy and efficiency in further Non-functional 

5 Improve certain system operation to be easier Non-functional 
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1. Improving efficiency of a WSN-based temperature Monitoring System using CS. 

2. Implemented in actual aquatic cold chain between Hainan and Beijing in China.  

3. Models include sparse sampling, data reconstruction and shelf life prediction.  

4. System is capable of recovering sampled sensor data accurately and efficiently. 

5. Providing effective decision support for aquatic products quality and safety. 

 


