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New graphical and text-based notations for representing task 

decomposition hierarchies: towards improving the usability of an 

Ergonomics method 

The representation of task decompositions, in the form of sub-goal hierarchies 

and their related sequencing triggering and exit conditions, lies at the heart of 

Hierarchical Task Analysis and related techniques. Analysis of the conventional 

graphical and text-based notations for these representations, using the principles 

of cognitive load theory, identifies a number of features that may give rise to 

difficulties when reading and constructing HTA representations. A revised 

graphical notation is presented, derived from similar notations that are used in the 

software engineering and human factors domains. An equivalent text-based 

notation is also presented to facilitate the representation of the task 

decomposition tabular format, where additional details of the task can be 

captured. It is suggested that the use of these revised notations could improve 

usability when constructing and interpreting graphical and tabular representations 

of hierarchical task decompositions.  

Keywords:  hierarchical task analysis, graphical notation, cognitive load, 

usability, ergonomics methods. 

Relevance to human factors/ergonomics theory 

This paper illustrates the application of human factors principles to the evaluation of the usability of a 

human factors methodology. Specifically, cognitive load theory is used to evaluate the usability of 

graphical and tabular notations used for representing task decompositions in hierarchical task analysis. 

Usability criteria for task analysis notations are identified and used to support the analysis. Based on the 

findings of the analysis, the same principles are then used to guide the development of revised graphical 

and tabular notations  which include representation forms for recurrent operations. The properties of the 

revised notation are then evaluated against the identified usability criteria. The approach taken could be 

applied to the evaluation of the usability of the notations used in other human factors methods.  

Introduction 

Task analysis is a core human factors technique and is typically required in any human 

factors analysis effort (Stanton et al 2005, 2013). A key component of the task analysis 

process is the production of a documented representation (also referred to as a model) of 

the task that has been analysed.  In the context of human computer interaction, Paris et 

al (2000) and van Welie et al (2000) echo the thoughts of Lim and Long (1994) in  

underlining the importance that these representations have in supporting communication 

during systems development, which they suggest is one of their major values. They cite 

the use of task models to support communication between a wide range of people from 

different backgrounds, such as software architects, interface designers, end users, and 

various stakeholders in activities such as validation of user requirements, definition of 

the vocabulary to be used in a user interface, and validation design feasibility. Annett 

(2004) also identifies the more general requirement to check the validity of a task 

analysis by inviting stakeholders to review the task representation to identify 

misinterpretations and omissions. Balbo et al (2004) observe that such communication 

requirements present a usability challenge as task representations have to be easily read 

by people without a background in task analysis, as well as the analysts themselves. 

They also note that task modelling notations are not typically designed explicitly for the 

purposes of communication. A content analysis of industry perspectives on task analysis 



by Stanton and Diaper (2004) identified difficulties faced by non-analysts in reading 

task analysis outputs to be a common concern.    

Annett (2004) makes a poignant comment about human factors methods when 

he states that “it is reasonable to expect that the same standards of usability should 

apply to the methods used by human factors specialists as apply to the objects of their 

study” (p80). This paper aims to take a step towards the achievement of this expectation 

by applying human factors principles to the evaluation and revision of examples of task 

analysis notational forms, with the goal of improving their usability both for analysts 

producing task representations and stakeholders who may be required to read and 

interpret them.  

The task representations of Hierarchical Task Analysis (HTA) have been 

selected for analysis in this paper, with Cognitive Load Theory (CLT) providing the 

theoretical framework for the analysis. The next section provides a brief introduction to 

HTA and the justification for its selection as the subject of this study. After a brief 

explanation of the choice of CLT as an analysis framework, examples of HTA task 

representations are analysed. Revised graphical and textual notations for HTA task 

representations are then developed to address the issues identified in the analysis. This 

is followed by the illustration of its use in recasting the examples used in the analysis 

section and an evaluation of its merits form a usability perspective.  

Hierarchical Task Analysis 

HTA, developed by Annett, et al (1971), is a widely used task analysis method. It has 

been characterised Ainsworth and Marshall (1998) as “perhaps the nearest thing to a 

universal TA [task analysis] technique” (p1611). Stanton (2006) notes that many HF 

methods require an HTA as an input or are made easier if an HTA is available. 

Consequently the, use of hierarchical task decomposition representations is common in 

the human factors domain.  

Annett et al (1971) conceptualise tasks as being operations that can be defined 

by their goals. They can be decomposed into sub-operations, defined by sub-goals, and 

these are represented in a sub-goal hierarchy. Critically, the sequencing, triggering and 

exit conditions for sub-operations have to be identified. The description of the order in 

which sub-operations are carried out, and their triggering and exit conditions, is called a 

plan. Annett (2004) attributes the central HTA concepts of hierarchical decomposition 

of tasks and the use of plans to the work of Miller, Gallanter and Pribram (1960) on 

feedback theory.  HTA employs complementary graphical and tabular task 

representations of sub-goal hierarchies. The graphical representation provides an 

overview of the task, whilst the tabular format facilitates the capture of more detail 

about the task components. Plans may be represented in HTA diagrams as textual 

annotations on the graphical representation of the sub-goal hierarchy or in a flowchart 

format. Much of the ubiquity of HTA is probably owed to the flexibility of the approach 

these complementary representations offer (Stanton, 2004).  

Whilst HTA use has been widespread there have been issues identified with use 

of the method. Stanton and colleagues have reported that HTA is one of the most time 

consuming methods to train novices in (Stanton and Young, 1998, Stanton et al, 2014). 

Shepherd (1976) observed that only one of a group of training officers new to HTA 

attempted to record plans in the task decomposition.  Recent studies on HTA training 

shed further light on the difficulties that novices experience in conducting HTA. Patrick 

et al (2000) found that novices experienced difficulty with hierarchical analysis, often 

producing representations that were more akin to flowcharts. They also report that most 

were unable to formally specify plans, although they note that the activity may simply 



have been forgotten.  The correct identification of task boundaries and determination of 

when to stop the analysis also proved problematic. The findings of Adams et al (2013) 

were very similar. They report that novices having difficulty with hierarchical 

decomposition and the production of plans, typically only producing one, top-level plan. 

They also experienced difficulties with correctly identifying task boundaries. Whilst 

some caution is needed in generalising these findings because, as Patrick et al note, one 

would expect novices to make mistakes, and in each of these studies only a few hours of 

training were provided, it is interesting to see what types of errors persist in professional 

practice.  

Ainsworth and Marshall (1998) conducted a survey of task analyses carried out 

in the defence and nuclear industry sectors in which they evaluated task analysis reports 

and collected additional data from the analysts where possible. Some 90 studies were 

considered. In the military sector reports, half included HTAs but it was found that 

plans were only developed in the minority of cases. HTAs were also widely used in the 

nuclear sector reports. By contrast, plans were included in the majority of the analyses. 

Where they were not, it appeared that the tasks were linear sequences. Whilst plans 

were mainly described using text, flow diagrams were used in some cases, but these 

were often unclear for complex plans. Ainsworth and Marshall describe the quality of 

the HTA reports as variable, with one third not including an HTA diagram and some of 

the HTA diagrams being very cluttered. Furthermore, users who were unfamiliar with 

HTA reported that they sometimes misinterpreted the HTA representations. Some 

caution is also needed in interpreting these findings, as they are not diagnostic as to the 

cause of the weaknesses exposed. However, the fact that there appears to be a consistent 

theme relating to the production of plans, and that consumers of the task representations 

as well as the producers have experienced difficulties with them, suggests that 

investigation into the properties of the notations used to identify if there are any features 

which may propagate errors in the construction and interpretation of task 

representations is merited.  Furthermore, given the ubiquity of HTA as an ergonomics 

method, any developments which enhance its usability could potentially be of benefit to 

a wide audience in the ergonomics community. 

Cognitive load theory as an analysis framework for the usability of HTA 

notations 

Usability is defined by the International Standards Organisation (ISO) as the ‘extent to 

which a system, product or service can be used by specified users to achieve specified 

goals with effectiveness, efficiency and satisfaction in a specified context of use’ (ISO 

2015:p9).  Balbo et al (2004) identify two key usability criteria for task modelling 

notations: 

Usability for communication:  the ease with which a task model produced using the 

notation can be read and understood for the purpose of communication between the 

originators of the model and other stakeholders. 

 Usability for task modelling: the ease with which task models are generated and 

modified, which requires communication within the task modelling team. 

They suggest that, to support these constructs, a task notation must be easy to read and 

quick to learn by both novices and professionals.  

Cognitive Load Theory (CLT) suggests that the cognitive load imposed on an 

individual’s information processing system in comprehending information is a function 

of both the inherent complexity of the information and the way in which it is presented 

(Paas, Renkl and Sweller, 2003; Sweller and Chandler, 1991).  In CLT, cognitive load  

is conceptualised in three categories: intrinsic, extraneous and germane (Sweller and 



Chandler 1991). Intrinsic cognitive load is the cognitive load attributable to the inherent 

complexity of the information presented. Comprehending a task analysis of for tying a 

shoelace would be considered to impose a lower cognitive load than comprehending a 

task analysis of flying an aircraft. Germane cognitive load is that required to process 

presentational features that facilitate comprehension (such as highlighting key terms). 

Extraneous cognitive load is that generated by processing presentational features that 

detract from comprehension. Sweller and Chandler (1991) identify two attributes of 

textual and graphical representations that can induce extraneous cognitive load. The 

first is where materials contain mutually-referring, disparate sources of information, 

such as text separated from a graphic or two separate pieces of text, have to be 

integrated resulting in what they term the split-attention effect. Mayer and Moreno 

(2003) describe the cognitive overload problem associated with this effect as 

representational holding; one of the representations has to be held in working memory 

whilst the second is processed and integrated with the first.  The second attribute of 

written materials that causes extraneous cognitive load is where information is repeated. 

If this repeated information is integrated physically with essential information it results 

in what they term the redundancy effect, as the reader has no choice but to process it 

(Sweller and Chandler 1991).  

In this paper the constructs of representational holding and redundancy will be 

applied to the analysis of HTA notational constructs to determine if they impose 

extraneous cognitive load which could impact on the usability of HTA task 

representations, and to inform the revision of the notation to address any issues that are 

identified. 

Analysis of HTA Task Representation Notations 

In this section, conventional graphical and tabular HTA notations are evaluated. 

Graphical representations are considered first, followed by tabular representations.  

Figure 1 shows two examples of published HTA graphical representations. 

Figure 1a shows the top five levels of analysis for an aircraft taxying task adapted from 

Huddlestone et al (2014). This was produced during an investigation of aircrew tasks 

during current, two-crew flight operations.  Figure 1b shows part of the analysis for the 

task of descending a Boeing 737 conducted by Marshall et al (2003). This was 

developed for use as a data source during the development of an error prediction 

methodology. The two components of the representations to be analysed are the plans 

and the sub-goal hierarchies. 

The plan representations in Figure 1a have been adapted to illustrate alternative 

forms for text-based plan representations. The first plan in Figure 1a (Plan 0), is written 

in free text above the line of the decomposition that it applies to. Its close placement 

minimises the split attention problem in so far as the reader does not have to transfer 

their gaze far from the plan to the graphical structure that it applies to, but 

representational holding is required. The reader has to read and understand the plan and 

then hold it in working memory as they then apply it to the graphical structure to, in this 

case, understand which processes are carried out in sequence and which two are 

conducted in parallel within the overall sequence. The remaining plans in Figure 1a are 

written in boxes linked with lines to the node to which they apply. This is a useful 

approach where space precludes writing the plan above the horizontal line linking the 

sub-goals to which it applies. Representational holding is still required to integrate these 

plans with the sub-goals.  Plans 3.2, 3.2.2 and 3.2.2.1 are written using symbolic 

shorthand, with “>” meaning “then” and “+” meaning in “parallel with”.  This is a 

useful device where plans are long, particularly as the decimal code numbers for the  



 

a. Partial HTA for an aircraft taxying task adapted from Huddlestone et al (2014) 

 

b.  Partial HTA for descending a Boeing 737, adapted from Marshall et al (2003). 

Figure 1 Examples of graphical representations of a hierarchical task decompositions 

using conventional HTA notation. 



sub-goals lengthen as the hierarchy deepens.  However, the use of this shorthand can 

impose further extraneous cognitive load as the symbols have to be translated as part of 

the interpretation process.  This may be minimal for experienced practitioners who are 

producing or reading HTAs frequently, but those less familiar with the notation (such as 

irregular users, novices or subject matter experts reviewing HTAs for accuracy) 

reference to a key may be necessary, adding further representational holding 

requirements. In figure 1b, a flowchart representation of a plan is used for sub-goal 3.3. 

This form of plan notation is also commonly used as an alternative to purely narrative 

plans. In the original articulation of the HTA method Annett et al (1971) refer to them 

as decision trees, although they were not included on the hierarchical representations.  

In this case, sub-goals 3.3.1 and 3.3.2 need to be memorised and then inserted into the 

flowchart to comprehend the meaning of the plan, which is another instance of 

representational holding being required. Finally, each of the plans contains the word 

“exit” to indicate that, once the sequence of sub-goals that the plan describes is 

complete, the next superordinate sub-goal is actioned. It could be argued that these 

“exit” statements are redundant, since this could be regarded as implicit in the nature of 

the hierarchical decomposition.. 

Considering the sub-goal hierarchies, it could be argued that one of the 

fundamental strengths of HTA and this form of representation is the elegant way in 

which abstraction is used to understand the structure of a complex task. At the first level 

of decomposition in Figure 1a, the taxiing task is represented as having a sequence of 

five sub-goals, each of which is simple to understand. At each of the lower levels of re-

description of sub-goal 3 there are similarly simple to understand sequences of sub-

goals. Interpreting the sub-goal hierarchy imposes cognitive load but this can be 

considered to be germane cognitive load, as it aids the understanding of a complex task. 

Figure 1 also illustrates the conventions for indicating if sub-goals are further re-

described.  There are three possibilities with regard to re-description of a sub-goal: it is 

re-described in the same diagram, with subordinate sub-goals shown linked below it; it 

is re-described in another diagram, so it has links to sub-ordinate sub-goals but they are 

not showing in the diagram; or it is not re-described further and so has no sub-ordinate 

sub-goals to be shown. The notational convention commonly used in HTA diagrams is 

that if a sub-goal is not further re-described it is underlined, whereas if it is re-described 

on another diagram it does not have an underline. Reviewing Figure 1a, it can be seen 

that twelve underlines are required in order to show that only one sub-goal (3.2.2.1 

Control speed, in the bottom left-hand corner of the diagram) is re-described elsewhere. 

Similarly, eleven underlines are required to show that only one sub-goal is re-described 

elsewhere in Figure 1b.  It is also interesting to note that, in the full version of Figure 1b 

in Marshall et al (2003), 47 sub-goals are represented across two landscape pages. None 

of them are further re-described elsewhere but it takes 47 underlines to indicate this. 

Therefore, the underline convention results in extraneous cognitive load due to 

redundancy.  When describing this notational convention in his book on HTA, Shepherd 

(2001, 91) states ‘I have not maintained this convention in the rest of the book in order 

to enhance the clarity of the diagrams’. His point about clarity could be construed as a 

critique of the usability of the underlining nomenclature.  

Also of interest in Figure 1b, is the fact that there are multiple instances of the 

same sub-goals having to be carried out; throttling back appears as sub-goals 3.3 and 

3.6, whilst lowering flaps appears as sub-goals 3.4 and 3.7.  In the full version of the 

HTA in Marshall et al (2003), there are a total of five instances of each of these sub-

goals. As plan 3.3 suggests, the sequence of actions for throttling back is the same on 

each occasion, just the airspeed value is different on each occasion. Similarly, the 



actions for lowering flap are the same, just the required flap setting changes. Complete 

re-description of the throttling back and flap setting sub-goals for each instance of their 

use requires a total of 35 sub-goal boxes in the full HTA, whereas only seven of these 

are conveying new information. This can be considered as introducing ineffective 

cognitive load due to the redundancy effect. In addition, it introduces the possibilities of 

errors being made during the composition of the HTA, if the sequences are not copied 

correctly. This is a particular risk if modifications are made to such recurrent sub-goals, 

as the changes may not be copied into all instances of the recurrent structures.  

Table 1 shows the top two levels of decomposition of the taxing task from 

Figure 1a represented in the tabular form proposed by Shepherd (1976). The sub-goals 

and plans can be copied into the table from the graphical HTA as they are expressed in 

exactly the same format. Table shows the re-description of sub-goal 3 below the re-

description of the top level goal 0. The fact that a re-description of it will be found 

lower in the table is indicated by a ‘yes’ in the re-description column. Addition 

information and analysis of each sub-goal can be recorded in subsequent columns in the 

table. Table 1 shows just one column for notes, but the format can be adapted to support 

as many columns as are required to support the type of analysis being conducted.  

Notwithstanding the utility and simplicity of construction of the tabular format, it does 

have some issues in terms of extraneous cognitive load. Interpretation of the plans still 

requires representational holding as discussed above, and the exit statements are still 

redundant. In addition, the ‘Nos’ in the re-description column are analogous to the 

redundant underlines in the graphical format. Also, if recurrent operations were re-

described as in the graphical format, the redundancy that this imposes would persist in 

the tabular form.  

 

Table 1 Example of a tabular task analysis format as proposed by Shepherd (1976) 

 

Conventional notation Further  

Redescribed 

Notes 

0 Taxi from runway to gate 

Plan 0: Do 1 then 2 then 3 and 4 in parallel 
then 5 then exit. 

  

 1.0  Get taxi clearance route No  

2.0  Identify route on taxi plate No  

3.0 Follow taxi route to the gate Yes  

4.0 Carry out After Landing checks No  

5.0 Park at gate No  

3.0 Follow taxi route to the gate 

Plan 3.0: Do 3.1 then 3.2 then 3.3 then 
exit.  

  

 3.1 Check if in gate heading No  

 3.2 Taxi to gate turning point  Yes  

 3.3 Taxi up to gate No  

 

 



In summary, this analysis has shown that the representation of plans in the 

conventional manner imposes extraneous cognitive load due to the requirement for 

representational holding. The use of exit statements in plans, the use of underlines to 

indicate when re-description stops, and the repetitive representation of recurrent 

operations all impose extraneous cognitive load due to redundancy.  

Revised graphical and textual HTA notations 

This section describes the revised graphical and textual HTA notations developed to 

address the extraneous cognitive load issues with the extant notations identified in the 

previous section, and provides the rationale behind their design. Three constraints were 

applied to the design of the notation. Firstly, the graphical and textual notations should 

be consistent; otherwise an extraneous cognitive load issue would be introduced due to 

the need to map one notation to the other when using both forms. Secondly, it should be 

possible to produce the representations using commonly available drawing and word 

processing packages (MS PowerPoint™ and MS Word™ were used as references). 

Thirdly, the representation of operations as sub-goals should be independent of the 

representation of their triggering and exit conditions. To illustrate the significance of 

this requirement, consider the task of hammering in a nail until it is flush. A description 

of this task might start with the nail first being held in place and struck once to locate in 

in the wood. Then, after its alignment is correctly, it is struck repeatedly until it is flush 

with the surface. The operation of striking the nail is the same in both cases. What 

differs, are its triggering and exit conditions, or to put it another way, the relationship 

between the subordinate operation (striking the nail) and the superordinate operation 

(hammering in the nail until flush).   

A number of methodologies in the human factors and software engineering 

domains use the same graphical notation for representing hierarchies as that of HTA, 

but use additional graphical symbols to indicate different types of sequencing 

constructs, rather than written plans. Jackson Structured Programming (JSP) is a 

methodology developed for designing data processing software. Jackson (1974) states 

that it is based upon the principles of structured programming (Dijkstra 1968), the 

central tenants of which are that problems should be decomposed into hierarchical parts 

and that each level of decomposition should only contain sequence, repetition and 

selection constructs (analogous to HTA liner, cyclical and branching/selection plan 

constructs). Jackson’s structure chart notation is used to portray hierarchical data 

structures and program structures, using these constructs. Structured Systems Analysis 

and Design Methodology (SSADM) Methodology was developed for the UK 

Government in the 1980s to support information systems design. It uses Jackson 

structure chart notation for a variety of modelling tasks. Notably, it uses an extended 

version of the notation to describe parallel events (Weaver et al 2003).  Jackson 

Structured Design – Human Computer Interaction (JSD-HCI) was developed by 

Sutcliffe and Wang (1990) to facilitate the integration of task analysis and human 

computer interface design into Jackson System Development (Jackson 1983). It uses 

Jackson structure charts to represent task descriptions and function allocations. In a 

similar vein, the Method for Usability Engineering (MUSE) was developed by Lim and 

Long (1994) to provide a structured approach to the integration of human factors 

activity into the systems development lifecycle. They use Jackson structure chart 

notation for a wide variety of modelling tasks, including task modelling, and have 

extended the notation to cater for concurrent and non-linear sequences and to describe 

the conditions under which cyclical tasks are executed. Conventional HTA plan 



constructs and the corresponding Jackson structure chart-based notations used by these 

four methods are shown in Figure 2 (columns 1 and 2),  

 

 

Figure 2 Extant HTA plan notation, extant graphical sequence notation and new HTA 

sequence notations for the six conventional HTA plan types. 

 

In all of the methods reviewed, the notation for linear sequences formed the 

baseline notation from which all the others were developed by the addition of other 

symbology. This approach was adopted for the development of the new HTA 

symbology. Linear sequences are shown using the conventional HTA representation for 

decomposition, with the textual equivalent being a simple list.  (Figure 2, row 1). The 

MUSE notation for concurrent operations requires the production of separate charts for 

each operation, so was rejected. However, SSADM addresses this in a simple way by 



using a replacing the single horizontal line connecting operations with a parallel line. As 

this could easily be replicated in the textual representation by modifying the formatting 

of the cell border in a table, this symbology was adopted (Figure 2, row 3). Only MUSE 

had a graphical representation for non-liner sequences, with a downward pointing arrow 

in the top right-hand corner of the box for each operation in the sequence. However, this 

representation conflates the representation of sub-goals with the representation of 

triggering and exit conditions, so was rejected in all cases. In the case of non-linear 

sequences, a square bracket to surround the operations was used instead as it groups the 

sub-goals whose order of execution can be swapped, yet distinguishes the grouping 

from a linear or parallel sequence. Also it could easily be replicated in the textual 

notation by the use of emboldened in table cell border formatting. MUSE was also 

unique in that it was the only method in which there was a representation of triggering 

conditions for cyclical representations, listing them under the operation box (Figure 2, 

row 4). Since triggering conditions determine if a sub-operation is executed, and as such 

define the link between a sub operation and its super-ordinate operation, it was 

considered more logical to place the condition statement (in the form ‘repeat until X’) 

above the sub-goal to which they applied (Figure 2, row 4). A rounded box was used to 

distinguish condition statements from sub-goals. In the textual format, the condition 

statement is written above the sub-goal. The same formats were used for representing 

branching and selection constructs, with the triggering condition statements written in 

the form ‘if condition’ (Figure 3, rows 5 and 6).  Branching structures commonly 

represent two alternative courses of action, such as shaking martini if the customer is 

James Bond, or stirring it if the customer is not James Bond. However there are 

situations where no alternative course of action is required. For example, the alternative 

to turning on car windscreen wipers if it is raining is to take no action if it is not raining. 

In all of the alternative notations examined ‘no action’ is represented by a horizontal 

line in operation box. As this constitutes just another piece of notation to be learn, 

simply writing ‘no action’ was favoured.  It was noted that none of the representations 

in the other methods examined represented conditions for selection and branching 

constructs, which would suggest that task models produced using these notations would 

be incomplete. 

The redundancy effect caused by repeated re-description of sub-goal hierarchies 

for operations that recur in the task hierarchy (referred to as recurrent operations in this 

paper) can be solved very simply. The operation is re-described in a sub-goal hierarchy 

separate from the main sub-goal hierarchy, and then referenced wherever it is required 

in the main sub-goal hierarchy.  This is conceptually equivalent to the approach taken in 

the Goals, Operators, Methods and Selection Rules (GOMS; Card, Moran and Newall 

1983) methodology whereby high-level methods (the equivalent of operations) 

reference lower-level methods. It is also analogous to the sub-routine construct used in 

software languages which allows for sections of program code to be written once and 

then called from many different points in the main program. The graphical notation 

used for defining and referencing recurrent operations is shown in Figure 3. A box with 

parallel lines on each side was selected to represent recurrent operations as it is the 

symbol used to represent sub-routines in flowchart notation and is commonly available 

as a standard symbol in graphics packages such as Microsoft PowerPoint™. Also, the 

same notation can be easily constructed in the textual form using line formatting for 

cells in a table. Recurrent operations are uniquely numbered in the form Rn, where n is 

an integer number stating from 1, so if there were five recurrent operation identified in a 

task analysis they would be numbered R1-R5. This avoids any potential ambiguity of 

sub-goal numbering across multiple hierarchies. The final aspect of the notation is the 



use of parameters. Recurrent operations will often contain cyclical or 

branching/selection structures. However the actual values to be used in the conditions 

statements will typically be different for each situation that they are referenced. For 

example, in analysing the task of driving a car, a recurrent operation ‘accelerate to 

speed limit’ might be identified. When describing driving through a village this 

operation would be referenced as ‘accelerate to 30 mph’, whereas the description of 

driving on a motorway would reference it as ‘accelerate to 70 mph’. The term ‘speed 

limit’ serves as a placeholder in the condition descriptions of any cyclical and 

branching/selection structures in the definition, for which actual values which are 

substituted when the recurrent operation is referenced. Such placeholders are referred to 

in the definition of recurrent operations as ‘parameter names’, with the values that 

replace them in recurrent operation references being termed ‘parameter values’.  

 

 

Figure 3 Notational representations for recurrent operations and links between HTA 

diagram segments 

 

The issue of the redundancy of underlines used to indicate that a sub-goal is not 

re-described any further in the graphical representations has been partially addressed by 

Lim and Long (1994) in the MUSE notation by using a horizontal dotted line at the 

bottom inside (Figure 3). Whilst recommending the use of underlines for the cessation 

of re-description, Shepherd (2001) also suggests the use of lozenge shaped page 

connectors to show links across pages (Figure 3). The notation selected extends 



Shepherd’s suggestion by using numbered circles with an optional page number if 

required. This caters for the possibility of more than one sub-goal being further re-

described on the same page. For consistency, the same link notation is applied to lateral 

splits in the graphical representation. In the textual format a bold ‘R’ is written at the 

end of a sub-goal that is re-described further, as used by Annett et al (1971) in their 

original exposition of the method. 

Examples of the use of the revised notations 

Figure 4 shows an HTA for the ‘taxi from runway to gate task’ presented in the revised 

graphical notation. The decomposition of the ‘control speed task’ has been included at 

the bottom to illustrate the use of the selection construct. There are a number of points 

worth noting about this representation, compared with the version in conventional HTA 

notation presented at Figure 1a. The removal of plan statements and underlines reduces 

the number of graphical elements in the diagram and increases the amount of white 

space, which increases visual clarity.  It is also easy to see the sequencing constructs. At 

the first level of decomposition, the parallel connection between the third and fourth 

sub-goals stand out, as does the parallel connection between the sub-goals in the lowest 

level of the  upper hierarchy. Also, the cyclical sequences become very clear, due to the 

white space that results from the conditions statements in the rounded box being placed 

between the sub-goals and the superordinate goal which they re-describe. They literally 

link the sub-goals and the superordinate goal.  It is also easy to see the one off-page 

link, indicating that the bottom left sub-goal is re-described elsewhere. The re-

description of the ‘3.2.2.1 Control speed ‘sub-goal shows the use of the selection 

construct (Figure 4). The selection conditions for each of the sub-goals in the selection 

construct can be read in the rounded boxes immediately above each sub-goal.  

In conventional graphical HTA representations the sequencing of sub-goals can 

only be determined by reading the plans and then applying them to the sub-goals they 

refer to, where as in the new notation they can be read directly from the hierarchical 

links in the diagram. By contrast, in HTA representations using the new graphical 

notation, the sequencing of any one sub-goal can be determined simply by inspecting 

the representation of the link between it and its superordinate sub-goal/goal; there is no 

need to look elsewhere for information. One could argue that the sequencing constructs 

have been promoted visually to equal status with the sub-goals in the graphical 

representation.  



 

Figure 4 HTA for the ‘Taxy from runway to gate’ task in the revised graphical notation 

 

Figure 5 shows the ‘Descend aircraft task’, originally presented in Figure 1b, 

recast in the new graphical notation, illustrating the use of the notation for recurrent 

sub-goals. In the top part of Figure 5, multiple instantiations of the recurrent sub-goal 



‘R1 Throttle back’ as sub-goals 3.3 and 3.6 in the main hierarchy can be seen, with the 

required speed showing as a parameter. A second recurrent sub-goal (R2) is shown for 

the ‘lower flaps’ sub-goal.  The re-description of R1 is shown in the lower part of 

Figure 5. It has the parameter ‘required speed’ which is shown by name in the top level 

box in the hierarchy and is used in the condition controlling the iteration of the lowest 

two sub-goals. The use of the recurrent sub-goal notation results in significant 

simplification of the sub-goal hierarchy compared with the version in conventional 

notation shown in Figure 1b. Given that in the full version of the HTA in Marshall et al 

2003 there are five occurrences of the ‘throttle back’ and ‘lower flaps’ tasks, the use of 

the recurrent sub-goal notation would substantially reduce the complexity of the HTA 

representation. 

 

Figure 5 Illustration of the use of the notation for defining and instantiating recurrent 

sub-goals.  

 

Two versions of the definition of the ‘R1 Throttle back’ definition sub-goal 

hierarchy are shown in Figure 5. They are in fact logically equivalent, the only 

difference being that an additional sub-goal (R1.2 Adjust speed) has been introduced 

which describes the cyclical sequence below it. It is left to the reader to determine 

which is the most aesthetically pleasing and which is the simplest to read. From a CLT 

perspective the question is whether the introduction of the additional sub-goal into the 

structure constitutes extraneous or germane cognitive load. The key point here is that 

the cognitive load of the representation is not determined purely by the form of the 

notation, but how the notation is used in representing the task. This is a known 

reliability issue that has been documented in the literature (Stanton 2013).  



Table 2 shows the use of the revised textual notation in the tabular 

representation of the HTA for the elements of the ‘taxi from runway to gate’ task. It has 

been modified from the original version to illustrate the use of the recurrent sub-goal 

notation (sub-goal 3.2.3) and the non-linear sequence construct (sub-goal 4.0). As with 

the graphical HTA notation, it is easy to spot the different types of sequencing 

constructs. 

 

Table 2 Tabular representation of elements of the ‘Taxy from runway to gate’ task, 

presented in the revised notation.  

 

Key  Do in 
parallel 

  Do in any 
order 

 Recurrent 
operation 

 

Sub-goal Hierarchy 

(R) indicates sub-goals that are re-described 
further down in the table 

Notes 

0 Taxi from runway to gate  

  1.0  Get taxi clearance route  

2.0  Identify route on taxi plate  

 3.0 Follow taxi route to the gate (R)  

4.0 Carry out After Landing checks(R)  

 5.0 Park at gate  

  

3.2 Taxi to gate turning point 

    Repeat until on gate heading 

 

 3.2.1 Check distance to turning point  

3.2.2 Taxi to turning point (R)  

3.2.3  R1 Turn onto next heading  

3.2.4 Check if on gate heading  

  

3.2.2.1.2 Adjust speed  

 If speed too low  

   3.2.2.1.2.1  Increase speed 

If speed correct  

   3.2.2.1.2.2  Maintain speed 

If speed too high  

   3.2.2.1.2.1  Decrease  speed 

  

4.0 Carry out after landing checks  

  4.1 Turn off weather radar  

4.2 Raise flaps  

 

One way to get a sense of the difference between the conventional and the new 

textual notations in the tabular form is to imagine having to give a set of instructions on 

how to achieve one of the higher level sub-goals to someone sat across the table who 

cannot see the text. Taking the first Goal 0 as an example in Table 2, the text from the 



new notation could simply be read out: “Get [the] taxi clearance route, identify [the] 

route on [the] taxi plate, then in parallel, follow the taxi route to the gate and carry out 

After Landing checks, then park at the gate.” The same could not be said for the 

conventional notation version in Table 1, where each plan has to be interpreted and 

applied to the list of sub-goals first, in some cases after decoding the abbreviated 

notation. It is contended that this difference reflects a useful reduction in intrinsic 

cognitive load in reading the new notation which should facilitate both the development 

and interpretation of tabular HTAs. 

Discussion 

The use of cognitive load theory has facilitated the identification of attributes of 

conventional HTA graphical and textual notations which impose extraneous cognitive 

load due to representational holding and redundancy when reading task decomposition 

hierarchies. It has also proved useful in guiding the refinement of the notational 

constructs to address these issues. However, the key issue is whether the revisions to the 

notations enhance their usability in terms of efficiency, effectiveness and satisfaction 

from the perspective of supporting communication and the development of task models.  

The use of the notation for recurrent operations should result in the production 

of less complex models which have lower therefore have lower intrinsic cognitive load, 

whilst also reducing the extraneous cognitive load associated with redundancy. 

Similarly, the graphical visualisation of sequencing and triggering condition constructs 

proximal to the sub-goals that they relate to should eliminate much of the extraneous 

cognitive load related to representational holding. If these assertions hold true then 

readers of the task hierarchies should have more cognitive resources available to focus 

on their primary task which was the purpose for reading the hierarchies in the first 

place. This in turn should lead to more effective and efficient conduct of their tasks.  

This would go some way to addressing industry concerns about the difficulties faced by 

non-analysts in reading task analysis outputs which Stanton and Diaper (2004) report.  

Similarly, the reductions in complexity which the use of recurrent operation notation 

should afford should manifest itself in more expeditious production of task hierarchies. 

Reductions in the cognitive load associated with reading task hierarchies should also 

facilitate their utility for communication within teams during their production which 

should also impact positively on the efficiency and effectiveness of the production task.  

If both analysts and untrained stakeholders are able to carry out their tasks both more 

efficiently and effectively, one could posit that task would increase.  However, for these 

benefits to be realised the differences in cognitive load, both intrinsic and extraneous 

would have to be of a sufficient magnitude to make a practical difference to the 

communication and development related tasks.  All of that said, cognitive load of a task 

hierarchy is only in part attributable to the notation used. The intrinsic cognitive load is 

related to complexity of the representation which is a function of both the complexity of 

the task being represented and the way in which the analyst uses the notation to 

represent the task. The dearth of style guidelines for developing ‘good’ task hierarchies 

is concerning. 

Conclusions 

The aim of this paper was to take a step towards improving the usability of a task 

analysis method. Analysis of the conventional graphical and tabular HTA notations 

using CLT constructs has identified that some of the notational constructs impose 

extraneous cognitive load when reading HTA task representations. Revised graphical 



and textual notations have been developed to address these issues, and from a 

theoretical perspective, it has been shown that they should impose less extraneous 

cognitive load when reading HTA task representations produced using these notations. 

Therefore, it is contended that the development of these notations constitutes a potential 

step forwards in the usability of HTA notation.  

However, some key questions have yet to be answered. Empirical evidence 

needs to be gathered to determine if the use of these notations results in significant 

improvements in the readability of task representations which manifest in shortened 

time to both construct and interpret HTA representations produced using the new 

notation compared with equivalent representations produced using conventional 

notation. Studies are also required to determine if the use of these notations enhances 

the learnability of HTA as a method. More ambitiously, it would be interesting to 

investigate if the use of these notations yields improvements in the effectiveness and 

efficiency of HTA use in professional settings, both academic and commercial. 

More broadly, if the application of CLT in this study can be likened to putting 

an arrow in the quiver of techniques used to evaluate and enhance the usability of 

ergonomics methods, it is hoped that this work inspires colleagues in the domain to 

place further arrows in the quiver and to fire them at a wider range of methodological 

targets than simply representational forms. The development of a generic usability 

framework for ergonomics methods might be one such arrow. The development of style 

guidelines for the use of graphic notation within methods might be another.  
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